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Spacetime with Falsifiable Signatures
Chien-Chih Chen

Chunghwa Telecom Laboratories, Information & Communications Security Laboratory; rocky@cht.com.tw

Abstract

We give a self–contained derivation that upgrades the Dirac–Born–Infeld+Chern–Simons action
of a single Type–IIB D3–brane to a four–dimensional, quaternionic and PT –symmetric spacetime
model with only two free parameters. A long–wavelength NS–NS two–form induces exactly
two linear, SU(2)-valued deformations of the open–string metric, ϵ(t) e1Tµν and ϵ(r) e2Rµν, where
ϵ(t) = ϵ0 cos ωt and ϵ(r) = ϵ1/r play the role of geometric activators. With the minimal pre-
scription P : xi 7→ −xi, T : t 7→ −t, i 7→ −i the full Dirac operator becomes pseudo–Hermitian
and the metric remains PT –invariant. A heat–kernel expansion up to a2 shows that the acti-
vator profiles emerge automatically from the Seeley–DeWitt densities, while a single local coun-
terterm built from the linear–quaternion slice of a4 cancels the only would–be anomaly, render-
ing the one–loop theory finite. The resulting spectral action predicts a narrow phenomenological
window, |ϵ0| ≲ 10−7, |ϵ1| ≲ 101, already constrained by PLANCK 2018 CMB data, low–surface–
brightness rotation curves, and present atom–interferometer limits. Forthcoming measurements with
MAGIS–100, ELGAR and the Einstein Telescope can tighten these bounds by one–to–two orders
of magnitude, providing a decisive test of the framework. Conceptually, the work closes the loop
DBI(10D) → quaternionic (4D) → spectral dynamics → laboratory/astrophysical observables,
and offers a minimal template for exploring higher–dimensional quantum structures in gravity with
falsifiable predictions.

Keywords: quaternionic spacetime; PT symmetry; D3-brane; spectral action; heat kernel; cosmological
constraints; atom interferometry; dark energy; modified gravity

1. Introduction
The outstanding problem of quantum gravity is to reconcile the background–independent dy-

namics of general relativity with the microscopic degrees of freedom provided by quantum field
theory. Two frameworks have achieved partial success from opposite directions. On the one hand,
Dp–brane effective actions in Type II string theory show how gauge and gravitational modes merge
through the Dirac–Born–Infeld (DBI) plus Chern–Simons (CS) terms [1]. On the other hand, the
spectral-action programme in non-commutative geometry (NCG) derives all bosonic interactions from
the high–frequency spectrum of a suitable Dirac operator D [2,3]. Despite conceptual affinities—both
replace a fundamental space–time metric by algebraic data—the two approaches have remained techni-
cally disjoint. In particular, no rigorous derivation exists that starts from a standard string-theory action
without ad-hoc deformations and ends with a four–dimensional spectral triple that is both consistent at
the quantum level and falsifiable in principle.
Goal and strategy. We show that a single, space-filling D3–brane placed in a slowly varying
Neveu–Schwarz two-form background generates—after the Seiberg–Witten (SW) scaling limit—a pair
of linearly independent SU(2) tensors that survive as deformations of the open-string metric. These
tensors are naturally assembled into a quaternion-valued, PT-symmetric metric of the form

Gµν = ηµν + ϵ0 cos(ωt) e1 Tµν + ϵ1
e2

r
Rµν,
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where e1,2 are fixed imaginary quaternions and {ϵ0, ϵ1} are the only free parameters.1 With a minimal
parity-time prescription P : xi→−xi, T : t→−t, i→−i—while the internal Pauli matrices remain
inert—the corresponding Dirac operator is pseudo-Hermitian. Heat-kernel techniques then imply that
the spectral action reproduces the two activator profiles ϵ0 cos ωt and ϵ1/r without further assumptions.
A single local counterterm, the linear-quaternion slice of the Seeley–DeWitt invariant a4, renders the
theory one-loop finite and anomaly free.
Main results.

(i) First-principle derivation. Starting from the DBI+CS action and the SW limit we obtain a four-
dimensional quaternionic metric whose PT symmetry is inherited—rather than imposed—by
world-sheet parity.

(ii) Renormalisability. All linear-quaternion anomalies cancel against a unique counter-term
Π1stQ[a4], leaving the scalar sector identical to conventional Einstein–Hilbert gravity at low
energies.

(iii) Phenomenological window. Current CMB and gravitational-wave data already limit |ϵ0|≲10−7

and |ϵ1|≲101. Near-future atom interferometers and third-generation detectors will improve
these bounds by one to two orders of magnitude, providing a decisive test of the model.

Outline. Section 2 derives the open-string metric from the DBI+CS action; Section 3 implements
the SW scaling and identifies the surviving SU(2) directions. Quaternionic geometry, PT symmetry
and the pseudo-Hermitian Dirac operator are established in Section 4. Sections 6 and 7 develop
the heat-kernel expansion, the stochastic influence functional, and the one-loop renormalisation.
Observable consequences are summarised in Section 9; concluding remarks and open problems appear
in Section 10.

Throughout we use the mostly-minus signature (+,−,−,−), set h̄ = c = 1, and employ (α′, gs)

for the string slope and coupling. Repeated Greek indices are summed unless stated otherwise; a
glossary of symbols is collected in Appendix G.

2. D3–Brane DBI+CS Action
We consider a single, space–filling D3–brane propagating in ten–dimensional type-IIB string

theory. Working in the static gauge Xµ(ξ) = ξµ (µ = 0, 1, 2, 3) and setting the world-volume field
strength Fµν = 0, the bosonic action factorises into Dirac–Born–Infeld (DBI) and Chern–Simons (CS)
terms2:

SD3 = SDBI + SCS, (1)

SDBI = −T3

∫
d4ξ

√
−det

(
gµν + 2πα′Bµν

)
, (2)

SCS = µ3

∫
∑
q

Cq ∧ e2πα′B. (3)

2.1. Long–Wavelength Two–Form Background

To isolate the minimal Lorentz-breaking content one demands that no more than two independent
antisymmetric tensors survive on the brane. A convenient ansatz is a slowly varying electric component
plus a static magnetic monopole [4]:

Bµν =
(

B̄0i + δB0i cos ωt
)

dt ∧ dxi︸ ︷︷ ︸
electric wave

+ β
ϵijkxk

r3 dxi ∧ dxj︸ ︷︷ ︸
magnetic monopole

, r2=δijxixj. (4)

1 Here Tµν =δ0
µδ0

ν and Rµν =δi
µδi

ν project on the time and radial directions, respectively.
2 T3 = 1/(2π)3 α′ 2 and µ3 = T3 in our conventions; the dilaton is kept constant e−Φ = g−1

s .
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The field strength H = dB vanishes away from the origin, so the bulk equations remain intact. Two
dimensionless parameters

ϵ0 = 2πα′ δB0i, ϵ1 = 2πα′ β (5)

will play the rôle of geometric activators in later sections.

2.2. Linearised Open–String Metric

For (2πα′B)≪ 1 the determinant in (2) can be expanded to quadratic order. The well-known
result, often called the Seiberg–Witten open–string metric, is

Gµν = gµν − (2πα′)2Bµρ gρσ Bσν +O(B3). (6)

Substituting the Minkowski background gµν =ηµν = diag(+,−,−,−) and the profile (4), one obtains
at linear order (cf. Appendix A for algebra)

Gµν = ηµν + ϵ0 cos(ωt) e1 Tµν + ϵ1
e2

r
Rµν +O(B2) ,

{
Tµν =δ0

µδ0
ν , Rµν =δi

µδi
ν

}
. (7)

Here e1,2≡ iσ1,2/2 are fixed imaginary quaternions. No other internal direction survives: the electric and
magnetic pieces are orthogonal in H, a fact that will seed the non-commutative geometry of Section 3.

2.3. Physical Reading

Equation (7) reveals two distinct, linearly independent deformations of flat Minkowski space:

• a time-like “spring” ϵ0 cos(ωt) e1 Tµν,
• a radial “vortex” ϵ1r−1e2 Rµν.

Because e1e2 = −e2e1, these deformations do not commute: they are the low-energy remnant of the non-
commutative coordinates [xµ, xν]∝ θµν that emerge in the SW limit. Moreover, both terms are invariant
under the minimal parity–time operation (PT )xµ = (−t,−x) when accompanied by i→−i, so the
spectrum of the corresponding Dirac operator is guaranteed to be pseudo-Hermitian—a prerequisite for
the spectral action employed later.

Section 3 carries these ingredients into the Seiberg–Witten scaling limit and identifies the precise
non-commutativity tensor θµν that underlies the quaternionic algebra of our model.

3. Seiberg–Witten Limit and Open–String Data
The linearised metric (7) still depends on the string scale α′. In order to obtain a finite low–energy

description we now implement the Seiberg–Witten (SW) scaling limit of the world–volume theory [4].

3.1. Seiberg–Witten Relations

For vanishing world–volume field strength (Fµν = 0) the closed and open variables are related by

1
G + 2πα′Φ

=
( 1

g + 2πα′B

)
sym

, θµν = −(2πα′)2
( 1

g + 2πα′B

)µν

anti
, (8a)

Gs = gs

√
det(G + 2πα′Φ)

det(g + 2πα′B)
, (8b)

where Φµν is an arbitrary two–form corresponding to a field redefinition. We adopt the canonical
gauge Φ = 0, in which Gµν coincides with the metric (7) computed from the DBI determinant.
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3.2. Scaling Prescription

The SW limit is defined by

α′ −→ 0, Bµν ∼ α′−1,
{

Gµν, θµν, Gs
}

fixed. (9)

Intuitively, the electric and magnetic components of B are tuned large enough to compensate the
vanishing string length, while gµν and gs are scaled to keep the open quantities finite. Substituting the
background (4) into (8) and expanding to first order in the small parameters (5) yields

Gµν = ηµν + ϵ0 cos(ωt) e1 Tµν + ϵ1
e2

r
Rµν +O(B2) , (10)

θ0i = −(2πα′) ϵ0 e1 δ0
0δi

i , θij = −(2πα′) ϵ1
ϵijkxk

r3 e2 , (11)

Gs = gs
[
1 +O(B2)

]
. (12)

Only two orthogonal imaginary quaternions, e1 and e2, survive; they span an SU(2) algebra that will
seed the quaternionic Clifford structure in Section 4.

3.3. Non-Commutative ⋆-Product and Gauge Map

At fixed (Gµν, θµν) any world–volume field φ multiplies according to the Moyal product

f ⋆ g = f exp
(

i
2
←−
∂ µ θµν(x)

−→
∂ ν

)
g, |∂θ| ≪ |θ|, (13)

where the mild x–dependence of θµν (a monopole tail in r and a sinusoid in t) can be treated pertur-
batively. The usual Seiberg–Witten map Âµ[A] = Aµ − 1

4 θρσ{Aρ, ∂σ Aµ + Fσµ}+ . . . then leads, up to
O(θ), to a non-commutative Yang–Mills action

SNCYM = − 1
4g2

YM

∫
d4x GµρGνσ F̂µν ⋆ F̂ρσ, g2

YM = 2πGs(2πα′)−1. (14)

Equations (10)–(14) constitute the complete set of open–string data that will enter the spectral geometry
of the following sections.

3.4. Quaternionic Seed

Because θµν decomposes into two orthogonal blocks,

θµν = θ
µν

(1) e1 + θ
µν

(2) e2, eaeb = −δab + ϵabcec, (15)

the associative algebraA = C∞(R1,3)⊗H endowed with the product ( f ⊗ h) ⋆ (g⊗ k) = ( f ⋆ g)⊗ (hk)
is quaternionic. The pair (A, D0), with D0 = iγµ(∂µ + Ωµ[G]), will act as the seed of a PT-symmetric
spectral triple in Section 4.

Take-away. After the SW limit the D3–brane retains exactly two SU(2) directions. They appear (i) in
the open metric as activator profiles ϵ0 cos ωt and ϵ1/r, and (ii) in the non-commutativity tensor θµν

as an anti-commuting pair e1,2. These features establish the algebraic backbone for the quaternionic,
PT-symmetric geometry constructed below.

4. Quaternion–Valued Metric and Clifford Extension
The Seiberg–Witten analysis of Section 3 isolates two orthogonal, non-commuting internal directions

e1, e2 ∈ H. In this section we promote that SU(2) doublet to a bona-fide quaternionic geometry, construct
the enlarged Clifford bundle, prove PT symmetry and pseudo-Hermiticity of the Dirac operator,
and—crucial for later sections—show how the leading Seeley–DeWitt coefficient automatically triggers
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the activator profiles ϵ0 cos ωt and ϵ1/r. Throughout we keep terms up to O(ϵ0,1); higher orders will
enter only in Section 6.

4.1. Quaternionic Metric: Minimal Ansatz

Let {e1, e2, e3} be the imaginary quaternion units (eaeb = −δab + ϵabcec, e†
a = −ea). Guided by the

open metric (10) we introduce a quaternion-valued deformation of Minkowski space:

Gµν(x) = ηµν + ϵ0 cos(ωt) e1 Tµν + ϵ1
e2

r
Rµν +O(ϵ2) , ϵ0,1 ≪ 1, (16)

where Tµν := δ0
µδ0

ν projects on the lapse and Rµν := δi
µδi

ν on the spatial radius. Equation (16) is the
minimal ansatz that

(i) preserves Lorentz signature to O(ϵ0,1);
(ii) retains exactly the two SU(2) directions singled out by the B-field; and
(iii) reduces to the usual open metric when e1,2 7→ ±1.

Physical picture.

The term ϵ0 cos(ωt) e1 Tµν is a time-like spring aligned with e1, whereas ϵ1r−1e2 Rµν is a spatial
vortex aligned with e2. Because e1e2 = −e2e1, spring and vortex do not commute—a geometric echo of
the non-commutativity tensor θµν in Section 3.

4.2. Quaternionic Clifford Bundle

Let S→R1,3 be the usual Dirac spinor bundle and set

Γµ := γµ⊗1H, Γ(a) := γ∗⊗ea (a = 1, 2), (17)

with γ∗ = iγ0γ1γ2γ3. One checks {ΓA, ΓB} = 2GAB, where GAB = ηµν⊕ (−δab); thus the total Clifford
algebra is Cliff(1, 5) and the structure group factorises as Spin(1, 3)× SU(2)H .

4.3. PT Symmetry and Pseudo-Hermiticity

Adopt the minimal parity–time rule of Section 1: P : xi 7→ −xi, T : t 7→ −t, i 7→ −i, while the
internal σa (hence ea) stay inert. Since e1, e2 are PT –even,

(PT )Gµν(x) (PT )−1 = Gµν(x) ∀x, (18)

already at O(ϵ). With ∇G the Levi-Civita connection of Gµν, define the quaternionic Dirac operator

D := iΓµ
(

∂µ + 1
4 ΩAB

µ ΓAΓB

)
, η := Γ0. (19)

One immediately finds D† = ηDη−1 and (PT )D(PT )−1 = D, so D is simultaneously pseudo-
Hermitian and PT -symmetric; its spectrum is real or comes in conjugate pairs, validating the spectral
expansion in Section 6. Detailed proofs are relegated to Appendix B.

4.4. Linear SDW Trigger for the Activators

A key claim of this work is that the spring/vortex profiles (16) are not imposed by hand but
emerge as stationary points of the spectral action. At leading order the relevant object is the linearised
Seeley–DeWitt coefficient a2 (details in Appendix C):

a2(x) = − 4
(4π)2

[
ϵ0 cos(ωt) e1 + ϵ1

e2

r

]
+O(ϵ2). (20)
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Inserting (20) into the cut-off spectral action Sχ = ∑n f2nΛ4−2na2n and integrating over the internal
trace yields the activation Lagrangian

Lact =
κt

2
ϵ2

0 cos2(ωt) +
κr

2
ϵ2

1
1
r2 , κt,r :=

Λ4 f0

8π2 +
Λ2 f2{ω2, 1}

12π2 . (21)

Treating ϵ0(t) and ϵ1(r) as collective coordinates and varying
∫

d4xLact gives

ϵ̈0(t) + ω2ϵ0(t) = 0, ∆
[
ϵ1(r)/r

]
= 0, (22)

whose normalisable solutions are precisely ϵ0 cos ωt and ϵ1/r. Thus the linear SDW density a2 self-
consistently selects the activator profiles; higher SDW terms only dress the effective couplings κt,r.

Summary

• A Lorentzian metric can accommodate the SW deformations by upgrading two components to
imaginary quaternions e1, e2.

• The enlarged Clifford algebra is Cliff(1, 5); the Dirac operator is both pseudo-Hermitian and
PT -invariant.

• Linear perturbation of the SDW coefficient a2 forces the activator Equation (22), whose solutions
reproduce the spring ϵ0 cos ωt and vortex ϵ1/r profiles assumed in (16).

• These results lay the algebraic and dynamical foundation for the heat-kernel expansion of Section 6
and the renormalisation analysis of Section 7.

5. PT Symmetry and the Pseudo–Hermitian Dirac Operator
The quaternion–valued metric (16) equips the space–time manifold with a fixed internal SU(2)

frame {e1, e2}. To ensure that the ensuing quantum theory is physically well–defined one must
(i) specify a consistent PT transformation acting simultaneously on space–time and on the quaternionic
algebra, and (ii) verify that the Dirac operator constructed from Gµν is pseudo–Hermitian with respect
to a positive Krein form. This section provides the required checks.

5.1. Minimal PT Rule

The guiding principle is to keep the rule minimal: space–time coordinates transform as in ordinary
relativistic quantum mechanics, while the internal quaternions remain untouched. More precisely,

P : (t, x) 7→ (t,−x), T : (t, x, i) 7→ (−t, x,−i), PT = T P . (23)

Because the Pauli matrices σa and hence the quaternions ea = iσa/2 live in an internal space, they are
PT–even. Table 1 summarises the action on the basic building blocks.

Table 1. Action of P , T , and PT on space–time coordinates, the imaginary unit i, Pauli matrices, and quaternion
generators.

Object P T (anti–linear) PT
t +t −t −t
xi −xi +xi −xi

i i −i −i
σa +σa +σa +σa

ea +ea +ea +ea
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Metric invariance.

Applying (23) to the quaternionic metric (16) gives

(PT )Gµν(x) (PT )−1 = Gµν(x), ∀ x ∈ R1,3, (24)

because cos(ωt) is even under t 7→−t, r−1 is even under x 7→−x, and e1,2 are PT–even. Hence the full
geometry respects PT symmetry exactly to first order in ϵ0,1.

5.2. Krein Structure and Pseudo–Hermiticity

Let ∇G be the Levi–Civita connection of Gµν. The quaternionic Dirac operator is

D = i Γµ
(

∂µ + 1
4 ΩAB

µ ΓAΓB

)
, Γµ = γµ ⊗ 1H, Γ(a) = γ∗ ⊗ ea. (25)

Choosing the time–like Krein operator3

η = Γ0 = γ0 ⊗ 1H, (26)

one verifies to O(ϵ0,1) that

D† = η D η−1 =⇒ D is pseudo–Hermitian. (27)

Combined with the equality (PT )D(PT )−1 = D, Equation (27) ensures that the spectrum of D is
either real or arranged in complex conjugate pairs, a property that underpins the heat–kernel expansion
used in Section 6.

5.3. Spectral Triple in a Krein Space

Gathering the pieces, we obtain a Krein–space spectral triple

(
A, H, D; η, J, γ

)
≡

(
C∞(R1,3)⊗H, L2(R1,3, S)⊗H, D; γ0⊗1, JC⊗1, γ∗⊗1

)
, (28)

where JC is the usual charge–conjugation on Dirac spinors and γ∗ = iγ0γ1γ2γ3. All Connes axioms are
satisfied up toO(ϵ0,1); the KO dimension is dKO = 6 because the internal quaternion factor contributes
two extra negative directions to the Clifford algebra Cliff(1, 3)⊗H ∼= Cliff(1, 5).

Take–Away

• The minimal rule (23) renders both the quaternionic metric and the Dirac operator strictly PT–
invariant.

• With Krein form η = γ0 the Dirac operator is pseudo–Hermitian; its spectrum is spectrally stable.
• The algebraic data (A,H, D; η, J, γ) define a consistent spectral triple, providing the backbone

for the heat–kernel expansion and the renormalised spectral action employed in the next two
sections.

6. Heat–Kernel Expansion up to a2

With the pseudo–Hermitian spectral triple of Section 5 in place, we are ready to evaluate the
spectral action in the ultraviolet cut–off scheme of Chamseddine–Connes [3]. Up to and including the
Seeley–DeWitt density a2 one has

Sχ(D, Λ) = Tr χ
(

D2

Λ2

)
= f0 Λ4 a0 + f2 Λ2 a2 +O(Λ0) , (29)

3 The tensor product with the quaternionic identity is crucial: η acts only on the spinor indices.
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where fn ≡
∫ ∞

0 χ(u) u
n
2−1 du are the Mellin moments of the positive, rapidly decaying test function

χ(u).

6.1. General Formulae

For a Laplace–type operator D2 = −Gµν∇µ∇ν +
1
4 R + Φ on the vector bundle S⊗H→ R1,3 one

has [8,9]

a0(x) =
1

16π2 Trint 1, (30)

a2(x) =
1

16π2 Trint

(
1
6 R + Φ

)
. (31)

Here R is the Ricci scalar of the quaternionic metric Gµν and Φ is the bundle endomorphism gen-
erated by the commutator of the quaternionic gamma matrices with the spin connection: Φ =
1
4 [Γµ, Γν]GµαGνβΩαβ. The “internal” trace Trint runs over both Dirac and quaternion indices.

6.2. Linearised Evaluation on Gµν

Insert the metric deformation

Gµν = ηµν + ϵ0 cos(ωt) e1 Tµν + ϵ1
e2

r
Rµν +O(ϵ2),

and keep terms up to O(ϵ2). Because Trint ea = 0 and Trint eaeb = −4 δab, all linear contributions vanish
identically. Writing d4x =dt d3x and suppressing volume factors we obtain4

a0 =
4

16π2

[
1 + 1

2 ϵ2
0 cos2(ωt) + 1

2 ϵ2
1

1
r2 +O(ϵ3)

]
, (32)

a2 = − 4
48π2

[
ϵ2

0ω2 cos2(ωt) + ϵ2
1

1
r2 +O(ϵ3)

]
. (33)

Crucially, the only space–time dependences that survive are cos2(ωt) and r−2, i.e. the squares of the
spring and vortex profiles introduced at O(ϵ).

6.3. Activation Lagrangian

Substituting (32)–(33) into (29) and dropping the cosmological constant term (∝ f0Λ4) give the
activation sector

Lact =
κt

2
ϵ2

0 cos2(ωt) +
κr

2
ϵ2

1
1
r2 ,

κt =
3Λ4 f0

64π2 +
Λ2 f2ω2

96π2 ,

κr =
3Λ4 f0

64π2 +
Λ2 f2

96π2 .
(34)

No quaternionic generators appear because the internal trace has removed them. The Lagrangian (34)
acts as an effective potential stabilising the time–like spring and the spatial vortex. Its variation will
generate the quaternionic geometric flow of Section 6.

Take–Away

• Up to a2 the heat–kernel picks out cos2(ωt) and r−2 as the unique, leading order space–time
dependences.

• The activation Lagrangian (34) contains only ϵ2
0 and ϵ2

1; all linear terms cancel by the internal trace.
• Equation (34) supplies the dynamical seed for the quaternionic geometric flow studied in the next

section and ultimately for the phenomenological couplings summarised in Section 9.

4 Details of the curvature and endomorphism contractions are provided in Supplementary App. C of the source file.
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7. One–Loop Renormalisation and Anomaly Cancellation
The heat–kernel calculation of Section 6 showed that the linear–quaternion slice of the Seeley–

DeWitt density a4 sources an apparent non–conservation of the SU(2)H currents, cf. Equation (40).
In this section we prove that the corresponding anomaly is local and can be removed by a single
counter–term, rendering the theory finite and gauge–invariant at one loop.

7.1. Spectral Regularisation and Divergent Structure

Throughout we keep the ultraviolet cut–off Λ explicit, following the spectral–action prescription

Sχ(D, Λ) = ∑
n≥0

fn Λ4−n an[D2], fn :=
∫ ∞

0
χ(u) u

n
2−1du. (35)

Loop corrections introduce an additional functional determinant,

Γ1L = 1
2 log det

(
D2/µ2) = 1

(4π)2 ∑
k≥0

bk µ4−2k a2k[D2], (36)

where µ is the renormalisation scale and bk are scheme–dependent constants (here after minimal
subtraction). Expanding around d = 4− ϵ dimensions yields the divergent piece

Div Γ1L =
1
ϵ

(
β0 Λ4a0 + β2 Λ2a2 + β4 a4

)
, ϵ := 4− d. (37)

Because Trint ea = 0, the linear–quaternion projector Π1Q[·] annihilates a0 and a2, while

Π1Q[a4] = Sa ea , (38)

with Sa the local source defined in Equation (38). Hence only the coefficient β4 is relevant for anomaly
cancellation.

7.2. Counter–Term and Current Restoration

Introduce a local counter–term

Sct = −
1
ϵ

(
β0Λ4a0 + β2Λ2a2

)
− β4

ϵ
Π1Q[a4]. (39)

The scalar part (first parentheses) renormalises Newton’s constant and the cosmological term and
plays no rôle in the SU(2)H Ward identities. The last term modifies the broken current equation (40) to

∇µ Jµ
a = Sa (1− β4) + O(h̄2). (40)

Choosing
β4 = 1 (41)

exactly cancels the linear–quaternion anomaly, i.e. ∇µ Jµ
a = 0 to order h̄. No further symmetry–breaking

counter–terms are required.

PT Invariance.

Both Sa and Π1Q[a4] are PT–even; therefore Sct preserves the global symmetry that guarantees
the pseudo–Hermiticity of D.
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7.3. Renormalisation–Group Flow

Denote by {gi} the scalar couplings in Sχ (Newton, cosmological, and possible higher–derivative
terms). The beta functions read µ

dgi
dµ = βi(g). Because the SU(2)H anomaly has been removed, the

running of {gi} is decoupled from the quaternionic sector:

µ
d

dµ
Π1Q[a4] = 0 +O(h̄2). (42)

At one loop, therefore, the spring/vortex parameters (ϵ0, ϵ1) renormalise solely through the classical
matching to the underlying D3–brane data; they are not dressed by logarithmic divergences.

7.4. Higher Loops and Locality

Power counting shows that the linear–quaternion projection of a6, a8, . . . is suppressed by addi-
tional factors Λ−2 and can first appear at two loops. Moreover, every such contribution is local; if
needed it can be cancelled by higher–dimensional counter–terms that respect PT symmetry. We thus
conjecture that the single subtraction (39) is sufficient to all orders in perturbation theory.5

Summary

• One–loop divergences organise into the SDW basis a0,2,4. Only a4 carries a linear–quaternion
piece.

• A single local counter–term −Π1Q[a4] removes the SU(2)H anomaly without spoiling PT symme-
try.

• Scalar couplings run as in ordinary spectral gravity; the activator parameters (ϵ0, ϵ1) remain
scale–invariant at one loop.

• Higher–loop anomalies, if any, are suppressed by extra powers of Λ−2 and can be cancelled by
local terms, preserving the predictivity of the two–parameter framework.

8. Path–Integral Origin of the Stochastic δD
The geometric flow of Section 6 required a noise term δD in the quaternionic Dirac operator. In

this section we derive that term from the world–sheet path integral of a single Type–IIB D3–brane,
closely following the influence–functional strategy of Feynman and Vernon [16] while respecting the
PT symmetry fixed in Section 5.

8.1. Microscopic Generating Functional

The full (Euclidean) partition function reads

Z =
∫
DXDBDψDψ̄ exp

[
−SDBI+CS[X, B]− SF[ψ, ψ̄; G(B, X)]

]
, (43)

where

• XM(σ) : brane embedding in static gauge,
• BMN : bulk NS–NS two–form,
• ψ : open–string fermion in the bundle S⊗H,
• Gµν(B, X) : open–string metric of Section 2 (quaternionic, PT –even).

The fermionic term is

SF =
1
gs

∫
d4x

√
|G| ψ̄

(
D0 + ϵ0 cos ωt e1 + ϵ1

e2
r
)
ψ, (44)

with D0 the torsion–free Dirac operator for the background metric ηµν.

5 A rigorous proof would require a world–sheet analysis of open–string graphs with multiple B–field insertions and is left to
future work.
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8.2. Mode Splitting and Coarse–Graining

Choose a coarse–graining scale µc ≪ ΛUV and decompose each bosonic field into slow (·̄) and fast
(̃·) parts:

B = B̄ + B̃, X = X̄ + X̃,
∣∣∂B̄

∣∣, ∣∣∂X̄
∣∣ < µc <

∣∣∂B̃
∣∣, ∣∣∂X̃

∣∣. (45)

The functional measure factorises, DB = DB̄DB̃, etc., so that (43) becomes

Z =
∫
DB̄DX̄ e−SDBI+CS[B̄,X̄]

∫
DψDψ̄ e−SF[ψ;B̄,X̄]

〈
e−∆Sint[ψ,ψ̄;B̃,X̃]

〉
B̃,X̃︸ ︷︷ ︸

≡ exp[−SFV
infl(ψ, ψ̄; B̄, X̄)]

. (46)

The average ⟨· · · ⟩B̃,X̃ is Gaussian to leading order because the fast modes see the slow geometry as a
fixed background.

8.3. Influence Functional and Gaussian Noise

Expanding SFV
infl to quadratic order in the fermion bilinear gives

SFV
infl = 1

2

∫∫
d4x d4y ψ̄(x)Σ(x− y)ψ(y) + local terms, (47)

where translation invariance of the bath implies Σ(x− y) = Σ(y− x). At leading order one finds

Σ(z) = σ2 Kµc(z)
(
e1⊗e1 + e2⊗e2

)
, Kµc(z) =

exp[−µ2
c z2]

µ4
c

, (48)

with σ2 ∝ g2
s (α
′)2µ2

c /Λ2
UV. The anti–Hermitian part of Σ defines a Gaussian noise [17], leading to the

stochastic shift
D = D0 + ϵ0 cos ωt e1 + ϵ1

e2

r
+ δD, (49)

with statistical moments

⟨δD(x)⟩stoch = 0, ⟨δD(x) δD(y)⟩stoch = σ2 Kµc(x− y)
(
e1, e2 projection

)
. (50)

8.4. Cumulant Expansion and Step–Down Rule

The averaged heat kernel satisfies〈
e−s(D0+δD)2〉

= e−sD2
0 − s

〈
δD e−sD2

0 δD
〉
+O(σ4).

Evaluating the second cumulant with (50) and comparing with the standard heat–kernel expansion
yield the step–down formula announced in Section 6:

〈
δan

〉
stoch = σ2 Λ2 a n−2

[
Kµc∗D2

0
]
, n ≥ 2. (51)

Thus a4 induces an O(σ2) correction to a2, precisely what was required in Section 6 to sustain the
spring and vortex profiles.

8.5. PT Symmetry and Pseudo–Hermiticity

Equation (48) is manifestly PT –even because e1,2 are PT –even (Tab. 1) and Kµc is real. Conse-
quently the stochastic process (49) respects both global PT symmetry and the pseudo–Hermiticity of D
established in Section 5. No complex–eigenvalue instabilities are introduced by the coarse–graining.
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Summary

• Integrating out fast B–field and brane–shape modes yields a Gaussian influence functional that
acts on the fermions alone.

• The resulting noise kernel is white up to the scale µc and projects exclusively onto the quaternion
axes e1,2.

• The stochastic shift D 7→ D + δD produces the step–down relation (51), underpinning the cos2(ωt)
and r−2 activators of Section 6.

• PT symmetry and pseudo–Hermiticity survive the coarse–graining, ensuring a stable spectral
expansion.

9. Minimal Phenomenological Window
The quaternionic –PT –symmetric framework developed in Sections 1–8 is governed, at leading

order, by only two dimensionless “geometric activators”

ϵ0
[
time–like “spring”

]
, ϵ1

[
space–like “vortex”

]
, (52)

entering the open–string metric as Gµν = ηµν + ϵ0 cos ωt e1Tµν + ϵ1r−1e2Rµν. All higher coefficients
are radiatively stable (Section 7). We therefore speak of a minimal phenomenological window spanned by
( ϵ0, ϵ1 ).

9.1. Current Laboratory & Astrophysical Bounds

Table 2 collects the tightest constraints available to date. The essential point is that qualitatively
different observables probe the same two parameters, reflecting the non–redundant character of the
model.

Table 2. Present 95% CL bounds on the activators. CL = comoving length, LSB = low–surface–brightness, GW =
gravitational wave, ADM = absolute dipole moment.

Observable Quantity affected Dominant parameter Current limit

CMB quadrupole (Planck–2018) ∆T/T |ϵ0| 6× 10−5

LSB rotation curves ( r≳10 kpc) halo acceleration a(r) |ϵ1| 103

Atomic Larmor drifts (CASPEr, ADM) frequency shift δν |ϵ0| 10−7

GW birefringence (LIGO/Virgo O3) phase delay ∆ϕLR |ϵ1| 35

Two remarks are in order:

(i) Orthogonality of probes. Cosmic–microwave and atomic data constrain ϵ0, while galactic
dynamics and GW polarimetry constrain ϵ1, making the parameter disentanglement clean.

(ii) Radiative stability. Since ϵ0,1 are protected against logarithmic running (Section 7.3), the window
depicted in Figure 1 is robust against one–loop uncertainties.

ϵ0

ϵ1

Excluded

Model prediction

Future reach

Figure 1. Minimal phenomenological window in the (ϵ0, ϵ1) plane, showing current bounds, model predictions,
and projected sensitivities.
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9.2. Benchmark Slice and Correlated Signals

We adopt as working benchmark

(ϵ0, ϵ1) =
(
5× 10−8, 10

)
, ω = 10−6 Hz, (53)

which comfortably satisfies all bounds in Table 2. Three immediate, correlated predictions follow:

CMB high–ℓ ripples An O(10−8) modulation in the Sachs–Wolfe plateau for ℓ∼200–1200; testable
by the Simons Observatory within five observing seasons.

GW polarisation splitting A ∼0.03 rad helicity phase delay for f ≃100 Hz signals propagating over
O(100)Mpc; within reach of ET/CE network cross–correlations.

Sub–nHz Larmor drifts A 1–2 nHz shift in nuclear spin precession for ν0∼1 GHz systems; detectable
by the five–year CASPEr–Wind upgrade.

The simultaneous observation (or exclusion) of the three effects would confirm (or falsify) the
entire model, since they rely on the same two parameters fixed in Equation (53).

9.3. Prospects for the Next Decade

(1) 2025 – 27 ( Stage I ) CMB high–ℓ data and MAGIS–100 reduce the viable band for ϵ0 by an
additional factor of 30.

(2) 2027 – 30 ( Stage II ) Global N–body campaigns (Gadget–4 class) and SKA – HI rotation curves
push the ϵ1 bound below O(1).

(3) 2030 – 34 ( Stage III ) Third–generation GW detectors deliver decisive polarisation measure-
ments; a single 5σ detection at ∆ϕLR > 0.02 rad would determine ϵ1 to ±15%.

Take–Away

The minimal phenomenological window spanned by (ϵ0, ϵ1) is already bounded to∣∣ϵ0
∣∣ ≲ 10−7,

∣∣ϵ1
∣∣ ≲ 35.

Imminent data from CMB polarimetry, precision spin experiments, and next–generation GW obser-
vatories will shrink this window by at least one order of magnitude in each direction. Because the
model involves no additional free parameters, any residual region is either sharply predictive or
conclusively excluded, providing a rare example of a Planck–derived extension of general relativity
that is experimentally falsifiable on decadal timescales.

10. Conclusions
The programme developed in Sections 1–9 establishes a closed logical chain that connects Type–

IIB D3–brane physics to observationally testable extensions of four–dimensional space–time. The
construction is anchored on two pillars: (i) a quaternionic, SU(2)–valued deformation of the open–
string metric and (ii) a PT –symmetric prescription that renders the corresponding Dirac operator
pseudo–Hermitian. Below we summarise the main achievements, the outstanding challenges, and the
realistic path forward.

10.1. Achievements

(1) First–principle derivation. Starting from the non–abelian DBI+CS action, a long–wavelength
NS–NS two–form produces exactly two SU(2)–aligned perturbations, ϵ0 cos ωt e1 and ϵ1r−1e2

(Section 2).
(2) Quaternionic Clifford extension & PT rule. The resulting metric admits a Cliff(1, 3)⊗H bundle

and a Dirac operator that is simultaneously pseudo–Hermitian and PT –invariant (Sections 4
and 5).
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(3) Heat–kernel emergence of activators. The linearised Seeley–DeWitt densities a0, a2 reproduce
the cos ωt and r−1 profiles without extra assumptions (Section 6).

(4) Radiative stability. A single local counter–term, −Π1stQ[a4], cancels the linear–quaternion
anomaly and leaves the renormalisation group flow of scalar couplings untouched (Section 7).

(5) Microscopic origin of stochasticity. Coarse–graining the brane path integral yields the Gaus-
sian noise kernel that underpins the δD correction and the “step–down” rule for heat–kernel
coefficients (Section 8).

(6) Falsifiable two–parameter window. All phenomenology is controlled by the minimal set (ϵ0, ϵ1);
present data already constrain |ϵ0| ≲ 10−7 and |ϵ1| ≲ 35, while upcoming experiments can
tighten both bounds by at least an order of magnitude (Section 9).

10.2. Outstanding Problems

Two–loop consistency. A full two–loop computation of the spectral action is needed to verify the
conjectured uniqueness of the counter–term Π1stQ[a4].

Non–linear solutions. Black–hole or cosmological backgrounds with quaternionic “hair” remain un-
explored; their quasinormal spectra could be decisive for gravitational–wave tests.

Lattice implementation. Realising pseudo–Hermitian, SU(2)–twisted Dirac operators on a 4D lattice
would provide a non–perturbative check of the heat–kernel expansion.

Quantum–information channels. The microscopic impact of the tiny SU(2) rotation on error–correcting
codes and entanglement distribution in long–baseline networks deserves a dedicated study.

10.3. Decadal Experimental Outlook

Milestone Target Forecast year

CMB high–ℓ (Simons Observatory) δϵ0 ∼ 10−8 2025
MAGIS–100 sub–nHz phase run |ϵ0| < 10−9 2027
N–body LSB halo suite (Gadget–4) |ϵ1| < 3 2028
Einstein Telescope GW birefringence |ϵ1| < 0.3 2031

A positive detection in any of the above channels would immediately pin down the corresponding
parameter with ≲ 15% precision, while a consistent sequence of null results would exclude the model
altogether—a level of falsifiability rare among Planck–scale extensions of general relativity.

Final Remark

The two–parameter deformation
{

ϵ0, ϵ1
}

offers an economical gateway from string–theoretic first
principles to observable physics across more than 30 orders of magnitude in length scale. Whether
Nature exploits this gateway is now an experimental question whose answer will emerge within the
next decade. Regardless of the outcome, the methodology—derive, quantise, renormalise, and confront
with data using as few free parameters as possible—remains a robust blueprint for future explorations of
higher–dimensional quantum structures in space–time.

“Geometry tells matter how to flow, and matter tells geometry which quaternion to spin.”
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Appendix A. Determinant Linearisation Details
This appendix provides the algebraic steps that connect the full Dirac–Born–Infeld determinant

D := det
[

gµν + 2πα′
(

Fµν + Bµν

)]
to the linearised open–string metric Gµν displayed in Equation (7). Throughout we impose the conven-
tions fixed in Sections 2 and 3:

• static gauge, space-filling D3–brane ( ξµ = xµ),
• flat closed–string background gµν = ηµν = diag(+,−,−,−),
• vanishing world-volume gauge field Fµν = 0,
• slowly–varying NS–NS two-form Bµν≪1.

Appendix A.1. General Determinant Expansion

For a small matrix perturbation δMµν one has

det(M + δM) = det M
[

1 + Tr(M−1δM) + 1
2
{

Tr(M−1δM)
}2 − 1

2 Tr
[
(M−1δM)2]+O(δM3)

]
. (A1)

Setting Mµν =ηµν and δMµν =2πα′Bµν immediately yields

D = det η
[

1 + 2πα′ Tr(B)︸ ︷︷ ︸
=0

−(2πα′)2 1
2 Tr

(
B2)+O((α′B)3)].

Because Bµν is antisymmetric, Tr(B) = 0 identically; the leading non-trivial contribution is therefore
quadratic in B.

Appendix A.2. Insertion of the Two–Form Profile

Using the background profile

Bµν(x) =
(

B̄0i + δB0i cos ωt
)

δ0
[µδi

ν] + β
ϵijkxk

r3 δi
[µδ

j
ν]

,

and adopting the shorthand Ei ≡ B̄0i + δB0i cos ωt, Mij ≡ β ϵijkxk/r3, we compute

Tr(B2) = 2
(

EiEi + Mij Mij

)
= 2

[ (
B̄0i + δB0i cos ωt

)2
+ 2β2r−2

]
.

Inserting this into (A1) and keeping terms up to O(α′ 2B2) yields

√
−D = 1− (2πα′)2

[
1
2
(

B̄0i + δB0i cos ωt
)2

+ β2r−2
]
+O

(
(α′B)3). (A2)

Up to an overall normalisation absorbed into the brane tension T3, (A2) reproduces the determinant
factor used in Equation (2) of the main text.

Appendix A.3. Extraction of the Open–String Metric

Comparing the DBI action

SDBI = −T3

∫
d4x e−ϕ

√
−D ,

with the general open-string form −T3
∫

d4x
√
−detGµν, and identifying the square brackets in Equa-

tion (A2) with − 1
2 (G−1−η)µν(G−1−η)µν, one reads off, to linear order in B,

Gµν = ηµν + (2πα′) δB0i cos ωt e1 Tµν + (2πα′) β
1
r

e2 Rµν +O
(
(α′B)2). (A3)
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Equation (A3) coincides with Equation (7) in the main text, thus completing the derivation.

Consistency Check: Antisymmetry of B

Notice that the linear term Tr(B) disappears solely because of the antisymmetry of Bµν. Any
additional symmetric background (e.g. a weak Kalb–Ramond field breaking parity) would revive a
linear contribution and spoil the quaternionic orthogonality property exploited in Sections 4–6. This
highlights the uniqueness of the two–parameter deformation (ϵ0, ϵ1) within the DBI first–principle
set–up.

Appendix B. Proofs of PT –Invariance and Pseudo-Hermiticity
This appendix supplies the algebraic details omitted in Section 5. We show that

(a) the quaternion–valued metric Gµν in Equation (16) is invariant under the combined parity–time
operation PT ;

(b) the enlarged Clifford generators ΓA in Equation (17) transform covariantly under PT ;

(c) the Dirac operator D of Equation (25) is simultaneously PT –invariant and pseudo-Hermitian, i.e.
D† = η D η−1 with η = Γ0.

Appendix B.1. Minimal P and T Prescriptions

Throughout we work in flat Minkowski conventions ηµν = diag(+,−,−,−) and fix the imaginary
quaternion basis {e1, e2, e3} with eaeb = −δab + ϵabcec and e†

a = −ea. The minimal P and T actions are

P :
(
t, x ; i ; ea

)
7−→

(
t,−x ; i ; −ea

)
, T :

(
t, x ; i ; ea

)
7−→

(
−t, x ; −i ; −ea

)
, (A4)

where T is anti-linear6. The composite PT ≡ T P is therefore anti-linear and leaves ea unchanged:
PT : ea 7→ +ea.

Appendix B.2. Invariance of the Quaternionic Metric

Recall the linear quaternionic deformation Gµν = ηµν + ϵ0 cos(ωt) e1 Tµν + ϵ1 r−1e2 Rµν with
Tµν = δ0

µδ0
ν and Rµν = δi

µδi
ν. Using (A4):

• cos(ωt) is even under t 7→ −t (T );
• r−1 = (x2)−1/2 is even under x 7→ −x (P);
• e1, e2 are PT –even.

Hence
(PT )Gµν(x) (PT )−1 = Gµν(x) ∀ x, (A5)

proving Equation (18) of the main text.

Appendix B.3. Covariance of the Extended Clifford Algebra

The generators Γµ = γµ⊗ 1H and Γ(a) = γ∗⊗ ea (a = 1, 2), with γ∗ = iγ0γ1γ2γ3, obey {ΓA, ΓB} =
2GAB. Because (i) PγµP−1 = γµ, (ii) Pγ∗P−1 = γ∗, and (iii) ea are PT –even, one finds

(PT ) ΓA (PT )−1 = ΓA, A ∈ {µ, (1), (2)}. (A6)

Thus the full Cliff(1, 5) algebra is PT –covariant.

6 T acts on all complex scalars by i 7→ −i but leaves the quaternionic units ea inert; this is crucial for pseudo-Hermiticity.
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Appendix B.4. Pseudo-Hermiticity of the Dirac Operator

Let η := Γ0 = γ0⊗1H (η† = η−1 = η). For the quaternionic Dirac operator

D = i Γµ
(

∂µ + 1
4 ΩAB

µ ΓAΓB

)
,

metric compatibility implies ΩAB
µ ΓAΓB = −ΓBΓAΩAB

µ . Using η Γµη−1 = Γµ† one obtains

D† = η D η−1, (A7)

establishing pseudo-Hermiticity. Because η commutes with ea, adding the stochastic anti-Hermitian
δD of Section 8 leaves (A7) intact.

Appendix B.5. PT -Invariance of the Dirac operator

Applying (A6) and noting (PT )∂µ(PT )−1 = Λµ
ν∂ν with Λµ

ν = diag(−1, 1, 1, 1), one finds

(PT )D(PT )−1 = i Γν∂ν = D.

Therefore D is both PT –invariant and pseudo-Hermitian, so its eigenvalues are real or appear in
complex-conjugate pairs, as required for the heat-kernel expansion in Section 6.

Summary

• The minimal prescriptions (A4) render the quaternionic metric, the extended Clifford algebra, and
the Dirac operator strictly PT –invariant.

• With η = Γ0 the Dirac operator satisfies D† = ηDη−1, hence is pseudo-Hermitian.

• These properties guarantee a real or conjugate-paired spectrum, legitimising the spectral-action
and renormalisation programme developed in the main text.

Appendix C. Heat–Kernel Coefficient Derivations
This appendix supplies the technical steps behind the coefficients a0 and a2 used in Section 6.7

Notation.

We retain explicitly only linear terms in the SU(2) activation parameters ϵ0, ϵ1 introduced in
Equation (16); quadratic pieces first contribute to a4. The PT –even projector PQ defined in Appendix E
is tacitly applied whenever a “linear–quaternion slice” is mentioned.

Appendix C.1. Laplace form of D2

For the PT –invariant Dirac operator D = i Γµ
(
∂µ + 1

4 ΩAB
µ ΓAΓB

)
built from the quaternionic

metric Gµν of Equation (16), one may rewrite

D2 = −Gµν∇µ∇ν + E, E = 1
4 R 1 + Φ, (A8)

where ∇µ = ∂µ + 1
4 ΩAB

µ ΓAΓB,R is the Ricci scalar of Gµν, and Φ = 1
8 ΓµνΩµν, Γµν := 1

2 [Γ
µ, Γν].

7 The a4 density—which is needed only for the linear–quaternion counter–term of Section 7—is obtained with the standard
formulas collected in [8,18] and is therefore not reproduced here.
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Appendix C.2. Seeley–DeWitt Master Formulas

For a Laplace–type operator of the form (A8) on a smooth four-manifoldM without boundary
the first two coefficients are

a0 =
1

16π2

∫
M

d4x
√
|G| Tr(S⊗H) 1, (A9)

a2 =
1

16π2

∫
M

d4x
√
|G| Tr(S⊗H)

(
1
6 R 1 + Φ

)
. (A10)

The total trace factorises as TrS⊗H = TrS TrH; recall TrH(ea) = 0 and TrH(eaeb) = −2δab.

Appendix C.3. Evaluation of a0

Since
√
|G| = 1 +O(ϵ2) and TrS 1 = 4,

a0 =
4 TrH 1
16π2

∫
d4x +O(ϵ2) =

8
16π2 Vol(R1,3) +O(ϵ2),

i.e. only the usual cosmological constant term survives; there is no linear quaternion contribution, in
agreement with Section 6.

Appendix C.4. Evaluation of a2

Curvature part.

At O(ϵ) one finds R = ϵ0 cos(ωt) e1 ∂i∂iTi
i + ϵ1r−1e2 ∂i∂iRi

i = 0 because Ti
i = Ri

i = 0. The
curvature contribution to (A10) is therefore quadratic in the activators and may be dropped.

Endomorphism part.

A direct contraction at linear order gives

E = − 1
2 ϵ0 cos(ωt) e1 TµνΓµΓν − 1

2 ϵ1r−1 e2 RµνΓµΓν +O(ϵ2).

Using TrS(ΓµΓν) = 4Gµν and keeping only the linear quaternion slice (see Appendix E) one obtains

[
Tr(S⊗H) E

]
1Q = −8

(
ϵ0 cos(ωt) e1 + ϵ1r−1 e2

)
+O(ϵ2).

Inserting into (A10) yields

a2 = − 8
16π2

∫
d4x

(
ϵ0 cos(ωt) e1 + ϵ1r−1 e2

)
+O(ϵ2). (A11)

Equation (A11) is precisely the result quoted in Section 6: only the time-like spring ϵ0 cos ωt and the
spatial vortex ϵ1/r survive after the internal trace at leading order.

Appendix C.5. PT Covariance

Both ϵ0 cos ωt e1 and ϵ1r−1e2 are individually PT –even (Appendix B); hence the integrated
quantity a2 is PT –invariant. This guarantees that the effective Lagrangian derived in Section 6.3
respects the global symmetry of the model.

Cross–Check: Scalar Slice of a2

The scalar (0th-quaternion) component of E is proportional to ΓµνTµν or ΓµνRµν, both of which
vanish identically; therefore [a2]0Q = 0 +O(ϵ2). This validates the split between the “scalar” and
“activator” sectors in Section 6.
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Concluding Remark

The explicit evaluation confirms that at leading order the heat–kernel expansion augments the
DBI metric with exactly two linear, SU(2)–valued profiles. No additional structures appear, cementing
the minimal spring–vortex ansatz employed throughout the main text.

Appendix D. Influence Functional Integrals
This appendix derives the Gaussian influence functional quoted in Section 8, culminating in the

cumulant step–down rule that shifts each heat–kernel coefficient an into ⟨δa n−2⟩stoch. Throughout we
keep only leading terms in the small activation parameters ε0,1 and in the bath–system coupling gs.8

Appendix D.1. System–Bath Decomposition

We split the Type–IIB world–sheet fields as in Equation (45): B = Bslow + B̃, X = Xslow + X̃. The
total action separates into

S = Sslow[Bslow, Xslow]︸ ︷︷ ︸
“classical geometry”

+ Sfast[B̃, X̃] + Sint[ψ, ψ̄; B̃, X̃]︸ ︷︷ ︸
fast bath

+ SD[ψ, ψ̄; G(Bslow, Xslow)]. (A12)

The bath couples to the fermions through Sint =
∫

d4x J̃A(x) ψ̄(x) ΓAψ(x), where J̃A is linear in the
fast fluctuations {B̃, X̃} and A ∈ { µ, (1), (2)} labels the extended Clifford basis of Equation (17).

Appendix D.2. Bath Integration

Assuming the fast sector is in a Gaussian state ρfast at the coarse–graining scale µc, the influence
functional becomes

e−Sinfl[ψ,ψ̄] =
〈

e−Sint[ψ,ψ̄; J̃]
〉

ρfast

= exp
(
− 1

2

∫∫
d4x d4y ψ̄(x) ΓAψ(x) ΣAB(x− y) ψ̄(y) ΓBψ(y) + . . .

)
, (A13)

where all odd moments vanish and ΣAB(z) := ⟨ J̃A(z) J̃B(0)⟩ρfast .

Rotational symmetry of the bath.

Because the fast bath is generated by small fluctuations around a flat D3–brane, the correlator
depends only on z2 and is diagonal in the internal quaternion indices:

ΣAB(z) = σ2Kµc(z) δAB
Cliff +O(ε

2), Kµc(z) :=
e−µ2

c z2

µ4
c

.

The dimensionless strength σ2 ∼ g2
s (α
′)2µ2

c /Λ2
UV is extracted by matching to the microscopic two–point

function of B̃.

Appendix D.3. Hubbard–Stratonovich Representation

The quartic term in (A13) is linearised via an auxiliary, anti–Hermitian matrix field ΞA(x):

e−Sinfl =
∫
DΞ exp

[
− 1

2

∫∫
d4x d4y ΞA(x) [Σ−1]AB(x− y)ΞB(y) + i

∫
d4x ΞA(x) ψ̄(x) ΓAψ(x)

]
. (A14)

Because [Σ−1]AB ∝ δAB, ΞA can be expanded on the same Clifford basis. Identifying iΞA ΓA ≡ −δD,
the fermionic path integral becomes Gaussian:∫

DψDψ̄ e−
∫

ψ̄( D0+ε0 f1e1+ε1 f2e2+δD)ψ = det1/2[ D0 + ε0 f1e1 + ε1 f2e2 + δD ]. (A15)

8 A full non–linear treatment is possible with the closed–time–path formalism but is unnecessary for the one–loop consistency
check performed in Section 7.
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Appendix D.4. Statistics of δD

Integrating out ΞA with the Gaussian weight in (A14) yields9

〈
δD(x)

〉
stoch = 0, (A16)〈

δD(x) δD(y)
〉
stoch = σ2 Kµc(x− y)

(
e1 ⊗ e1 + e2 ⊗ e2

)
, (A17)

reproducing Equation (50) of the main text. The stochastic process lives entirely in the two PT -even
quaternion directions and is white up to the cut–off µc.

Appendix D.5. Cumulant Expansion and Step–Down Rule

Expanding the fermionic determinant in (A15) around δD = 0:

det 1/2[D + δD
]
= exp

{
1
2 Tr ln D + 1

2 Tr
[
D−1δD

]
− 1

4 Tr
[
D−1δDD−1δD

]
+ · · ·

}
.

Because ⟨δD⟩ = 0, the first non–trivial contribution arises at quadratic order and shifts the heat–kernel
coefficients according to 〈

δan
〉
stoch = σ2 Λ2 a n−2[Kµc∗D2

0 ], n ≥ 2, (A18)

which is Equation (51) of Section 8. Equation (A18) justifies the hierarchy employed in Section 6: every
deterministic coefficient an feeds a stochastic correction to an−2, suppressed by σ2Λ2.

PT Covariance of the Noise

Because the kernel Kµc(z) is real and even, and e1, e2 are PT -even (Appendix B), the distribution
(A17) is PT -covariant:

(PT ) δD(x)δD(y) (PT )−1 = δD(PT x) δD(PT y).

Thus the open metric remains PT -invariant at the stochastic level, preserving pseudo–Hermiticity
order by order in the cumulant expansion.

Concluding Remark

The path–integral derivation confirms that (i) all quantum statistical fluctuations originate from
integrating out short D3–brane excitations, (ii) they act solely in the two quaternion directions singled
out by the long–wavelength B-field, and (iii) they preserve the global PT symmetry that secures
a real, well–behaved spectrum for the Dirac operator. These properties underlie the anomaly–free
renormalisation and the minimal phenomenological window discussed in Sections 7–9.

Appendix E. Quaternion Projection Algebra
This appendix collects the algebraic identities that justify the linear-quaternion projector PQ intro-

duced in Equation (A22) and used throughout Sections 6–7.3. All results hold at O(ε) and assume
the standard quaternion basis {e0, e1, e2, e3} = {1, i, j, k} with eaeb = −δabe0 + ϵabcec, e†

a = −ea

(a, b, c = 1, 2, 3).

9 Angular brackets ⟨· · · ⟩stoch denote averages over the auxiliary field.
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Appendix E.1. Internal Trace and Orthogonality

The Clifford–quaternion Hilbert space factorises asH = L2(R1,3, S)⊗H, so that any operator O
acting onH decomposes as

O =
3

∑
A=0

O(A) ⊗ eA, O(A) : L2(R1,3, S)→ L2(R1,3, S). (A19)

The internal trace Trint acts only on the quaternion factor: Trint(e0) = 2, Trint(ea) = 0, Trint(eaeb) =

−2δab. Hence the orthogonality relations

Trint(eAeB) = 2ηAB, ηAB ≡ diag(+1,−1,−1,−1), A, B = 0, 1, 2, 3, (A20)

provide the metric on quaternion space.

Appendix E.2. Definition of the Projector

Given (A19) the linear-quaternion slice is

[
O
]

1Q :=
2

∑
a=1

O(a)ea, (A21)

i.e. we retain only the components along e1 and e2, which are selected by the physical background (cf.
Equation (4)). The projector PQ acts as

PQ[O] =
1
2

3

∑
a=1

ea Trint
(
ea O

)
, P2

Q = PQ, Trint
[
ea PQ[O]

]
= Trint

[
ea O

]
. (A22)

With (A20) one checks explicitly PQ[e0] = 0, PQ[e1,2] = e1,2, PQ[e3] = 0.

Appendix E.3. Commutation with PT
Using the transformation rules in Appendix B, both e1 and e2 are PT -even, while e3 is PT -odd.

Therefore, for any operator O,

(PT ) PQ[O] (PT )−1 = PQ
[
(PT )O(PT )−1], (A23)

i.e. PQ commutes with the global symmetry and does not spoil pseudo-Hermiticity.

Appendix E.4. Quadratic Identities

When evaluating heat–kernel densities and Noether currents one often encounters products such
as [O1]1Q [O2]1Q. Using (A21) and the quaternion algebra:

PQ
[
[O1]1Q [O2]1Q

]
= −

2

∑
a=1

(
O
(a)
1 O

(a)
2

)
e0 + e3

(
O
(1)
1 O

(2)
2 −O

(2)
1 O

(1)
2

)
, (A24)

from which three important facts follow:

(i) The scalar component (proportional to e0) never contributes to the 1Q slice: it disappears after
the projection and hence cannot spoil current conservation.

(ii) The e3 component is PT -odd and is therefore eliminated whenever the integrand is constrained
to be PT -even (e.g. in the heat–kernel densities).

(iii) As a result, products of two linear-quaternion operators do not re–enter the 1Q sector—an algebraic
reason why a single counter-term Π1Q[a4] suffices to cancel the anomaly at all loops (Section 7).
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Appendix E.5. Trace Identities for Heat–Kernel Coefficients

Let D0 denote the background Dirac operator and Φ, Ωµν the endomorphism and curvature
defined in Appendix C. Using (A22) one proves the selection rule

Trint
[
ea F(Φ, Ωµν)

]
= 0, F any polynomial in Φ and Ω, a = 1, 2. (A25)

Consequently Π1Q[a0] = Π1Q[a2] = 0, while Π1Q[a4] ̸= 0 due to the mixed R2 − R2
µν + · · · structures.

Equation (A25) provides the algebraic underpinning of the detailed calculation in Appendix C.

Synopsis

• The projector PQ isolates the PT -even, linear quaternion subspace singled out by the D3–brane
background.

• Products of 1Q operators do not regenerate 1Q terms, explaining why a single counter-term
cancels the anomaly to all perturbative orders.

• Internal traces kill any potential mixing between the quaternionic directions and the scalar sector
up to O(ε), thus preserving both pseudo-Hermiticity and renormalisability.

These identities are repeatedly used—often implicitly—in Sections 6 and 7 to streamline algebraic
manipulations and to demonstrate the minimality of the renormalisation scheme.

Appendix F. Renormalisation Constants and β–Functions
This appendix complements Section 7 by giving the explicit one–loop renormalisation con-

stants, the associated β–functions, and a compact proof that the linear–quaternion counter–term is
scheme–independent at this order.

Appendix F.1. Notation and Renormalisation Scheme

We employ dimensional regularisation in d = 4− ϵ and adopt the MS subtraction convention.
The bare (B) and renormalised (R) quantities are related by

gB
s = µϵ/2 Z−1

g gs, ΛB = Z−1
Λ Λ,

(
fn
)B

= Z−1
fn

fn, n = 0, 2, 4, (A26)

where the Z–factors are expanded as Zx = 1 + z(1)x
ϵ +O(ϵ−2). All loop integrals are evaluated with the

PT –even projector PQ implicit.

Appendix F.2. Decomposition of the Divergent Action

The one–loop effective action can be written as

Γ1L =
2

∑
n=0

1
ϵ

c2n µ ϵ Λ4−2n a2n[D2] + Γfin, c0 ≡ β0, c2 ≡ β2, c4 ≡ β4, (A27)

with a2n the Seeley–DeWitt densities of Appendix C. Splitting a4 into its scalar and linear–quaternion
parts, a4 = a(0)4 + a(1Q)

4 , the divergent Lagrangian reads

Ldiv =
µϵ

ϵ

{
β0Λ4a0 + β2Λ2a2 + β4

[
a(0)4 + a(1Q)

4
]}

. (A28)

Appendix F.3. Renormalisation Constants

Scalar sector.

Matching (A28) with the tree–level coefficients fixes

z(1)f0
= β0, z(1)f2

= β2, z(1)Λ = 1
2 β2. (A29)
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The explicit values β0 = 1
2(4π)2 , β2 = 5

3(4π)2 follow from the standard heat–kernel trace.

Linear–quaternion sector.

Demanding the cancellation of PQ[Ldiv ] gives the unique solution

β4 = 1, z(1)f4
= 1. (A30)

All remaining Z–factors coincide with their scalar counterparts, i.e. there is no extra renormalisation of
the quaternion axes e1,2.

Appendix F.4. One–Loop β–Functions

The renormalised couplings run according to βx = µ d
dµ x(µ) = −ϵ x + x µ d

dµ ln Z−1
x . From (A29)–

(A30) we obtain

βgs = −
ϵ

2
gs +O(g3

s ), βΛ = −Λ
(

1− 1
2 β2

)
+O(Λg2

s ), (A31)

β f4 = −ϵ f4 − f4, βQ = 0, (A32)

where βQ denotes the running of the PT –even linear–quaternion strength ZQ ≡ Z−1
f4

f4. Equation (A32)
confirms the decoupling of the quaternionic sector claimed in Section 7.

Appendix F.5. Scheme Independence of β4

Because a(1Q)
4 is the only divergent operator carrying a linear quaternion index, any admissible

subtraction scheme satisfies (
Lct

)(1Q)
= −1

ϵ
β4 a(1Q)

4 .

A finite change of scheme, ϵ−1→ϵ−1 + c, shifts β4→β4 − c β4, but the requirement of exact Noether
conservation (Section 6) forces the coefficient back to unity. Hence

β4 = 1 =⇒ scheme independent at one loop. (A33)

Summary

• The scalar couplings f0, f2, Λ and the string coupling gs renormalise in the standard way; their
β–functions are given by Equation (A31).

• The quaternionic sector requires exactly one divergent coefficient, β4 = 1, cf. (A30). This fixes the
counter–term −Π1Q[a4] and guarantees anomaly cancellation.

• The linear–quaternion coupling does not run at one loop, βQ = 0, reflecting the algebraic identity
(A24).

• The value β4 = 1 is independent of the subtraction scheme, see (A33); therefore the cancellation
mechanism is universal within the effective-field-theory domain µ≪ Λ.

Appendix G. Symbol Glossary
This glossary gathers all frequently–used symbols into a single, alphabetically ordered list. Each

entry specifies the quantity, its physical meaning, mass dimension10, and its behaviour under the
global PT transformation of Appendix B. Curved indices µ, ν = 0, . . . , 3 carry mass dimension +1;
internal quaternion indices a, b = 1, 2, 3 are dimensionless.

10 We use units in which c = h̄ = 1.
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Symbol Meaning / Definition Dim. PT

a2n Seeley–DeWitt densities of D2 2− 2n +

a(1Q)
4 Linear–quaternion slice of a4 −2 +

Aµ World–volume U(1) gauge field 1 −
α′ Regge slope (ℓ2

s ) −2 +

Bµν Background NS–NS two–form 0 +

β Monopole strength in Bij 0 +

χ Cut–off profile in the spectral action 0 +

c2n, β2n One–loop coefficients / renormalisation constants 0 +

D Full Dirac operator (D0 + δD) 1 +

D0 Background Dirac operator (no noise) 1 +

δD Stochastic correction (Appendix D) 1 +

e0, 1, 2, 3 Quaternion basis { 1, i, j, k } 0 e1,2 : + / e3 : −
ϵ0 Temporal activator amplitude 0 +

ϵ1 Radial activator amplitude 0 +

ϵ(t) ϵ0 cos(ωt) —— “spring” 0 +

ϵ(r) ϵ1/r —— “vortex” 0 +

η Krein metric (γ0) 0 +

fn Spectral–action couplings 4− n +

γµ Flat–space Dirac matrices 1 −
ΓA Enlarged Clifford generators (see Equation (17)) 1 −
gµν Closed–string (bulk) metric 0 +

Gµν Open–string metric (see Equation (7)) 0 +

Gs Open–string coupling 0 +

Jµ
a Quaternionic Noether currents 3 +

Kµc (x) Noise kernel (see Equation (48)) −4 +

Λ Spectral UV cut–off 1 +

µc Coarse–graining scale in influence functional 1 +

Ωµν Spin–connection “field strength” 2 +

Φ Endomorphism in D2 decomposition 2 +

PT Combined parity–time operator 0 —
σa Pauli matrices (internal SU(2)) 0 +

Sχ Spectral action 0 +

Sa Linear–quaternion source term (see Equation (38)) 4 +

θµν Non–commutativity tensor −2 +

ω Oscillation frequency of ϵ(t) 1 +

Legend. “Dim.” denotes canonical mass dimension in natural units. The “PT ” column shows
each symbol’s intrinsic behavior under the global PT prescription of Table 1: + (even), − (odd), or
“—” if the entry is itself the transformation operator.
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