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Abstract

We give a self-contained derivation that upgrades the Dirac-Born-Infeld + Chern-Simons action
of a single Type-IIB D3-brane to a four—dimensional, quaternionic and PT—-symmetric spacetime
model with only two free parameters. A long-wavelength NS-NS two—form induces exactly
two linear, SU(2)-valued deformations of the open-string metric, €(t) e; Ty, and €(r) e2R, Where
€(t) = epcoswt and e(r) = e1/r play the role of geometric activators. With the minimal pre-
scription P : x' + —x/, T : t+~ —t, i ~ —i the full Dirac operator becomes pseudo—Hermitian
and the metric remains P7—invariant. A heat-kernel expansion up to a, shows that the acti-
vator profiles emerge automatically from the Seeley-DeWitt densities, while a single local coun-
terterm built from the linear—quaternion slice of a4 cancels the only would-be anomaly, render-
ing the one-loop theory finite. The resulting spectral action predicts a narrow phenomenological
window, |eg| < 1077, |e;| < 10, already constrained by PLANCK 2018 CMB data, low-surface—
brightness rotation curves, and present atom-interferometer limits. Forthcoming measurements with
MAGIS-100, ELGAR and the Einstein Telescope can tighten these bounds by one—to-two orders
of magnitude, providing a decisive test of the framework. Conceptually, the work closes the loop
DBIjopy — quaternionic (4D) — spectral dynamics — laboratory/astrophysical observables,
and offers a minimal template for exploring higher-dimensional quantum structures in gravity with
falsifiable predictions.

Keywords: quaternionic spacetime; PT symmetry; D3-brane; spectral action; heat kernel; cosmological
constraints; atom interferometry; dark energy; modified gravity

1. Introduction

The outstanding problem of quantum gravity is to reconcile the background—independent dy-

namics of general relativity with the microscopic degrees of freedom provided by quantum field
theory. Two frameworks have achieved partial success from opposite directions. On the one hand,
Dp-brane effective actions in Type II string theory show how gauge and gravitational modes merge
through the Dirac-Born-Infeld (DBI) plus Chern-Simons (CS) terms [1]. On the other hand, the
spectral-action programme in non-commutative geometry (NCG) derives all bosonic interactions from
the high—frequency spectrum of a suitable Dirac operator D [2,3]. Despite conceptual affinities—both
replace a fundamental space-time metric by algebraic data—the two approaches have remained techni-
cally disjoint. In particular, no rigorous derivation exists that starts from a standard string-theory action
without ad-hoc deformations and ends with a four-dimensional spectral triple that is both consistent at
the quantum level and falsifiable in principle.
Goal and strategy. We show that a single, space-filling D3-brane placed in a slowly varying
Neveu-Schwarz two-form background generates—after the Seiberg—Witten (SW) scaling limit—a pair
of linearly independent SU(2) tensors that survive as deformations of the open-string metric. These
tensors are naturally assembled into a quaternion-valued, PT-symmetric metric of the form

e
Guv = 1w + €0 cos(wt) ey Ty + €1 - Ry,
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where e » are fixed imaginary quaternions and {eo, €1} are the only free parameters.! With a minimal
parity-time prescription P: x' — —x!, T : t — —t, i — —i—while the internal Pauli matrices remain
inert—the corresponding Dirac operator is pseudo-Hermitian. Heat-kernel techniques then imply that
the spectral action reproduces the two activator profiles € cos wt and e /r without further assumptions.
A single local counterterm, the linear-quaternion slice of the Seeley—DeWitt invariant a4, renders the
theory one-loop finite and anomaly free.

Main results.

(i) First-principle derivation. Starting from the DBI4-CS action and the SW limit we obtain a four-
dimensional quaternionic metric whose PT symmetry is inherited—rather than imposed—by
world-sheet parity.

(if) Renormalisability. All linear-quaternion anomalies cancel against a unique counter-term
ITystp[as], leaving the scalar sector identical to conventional Einstein-Hilbert gravity at low
energies.

(iii) Phenomenological window. Current CMB and gravitational-wave data already limit |eg| <107

and |e1| <10'. Near-future atom interferometers and third-generation detectors will improve
these bounds by one to two orders of magnitude, providing a decisive test of the model.

Outline. Section 2 derives the open-string metric from the DBI+CS action; Section 3 implements
the SW scaling and identifies the surviving SU(2) directions. Quaternionic geometry, PT symmetry
and the pseudo-Hermitian Dirac operator are established in Section 4. Sections 6 and 7 develop
the heat-kernel expansion, the stochastic influence functional, and the one-loop renormalisation.
Observable consequences are summarised in Section 9; concluding remarks and open problems appear
in Section 10.

Throughout we use the mostly-minus signature (+, —, —, —), seti = ¢ = 1, and employ (&, gs)
for the string slope and coupling. Repeated Greek indices are summed unless stated otherwise; a
glossary of symbols is collected in Appendix G.

2. D3-Brane DBI + CS Action

We consider a single, space—filling D3-brane propagating in ten—-dimensional type-1IB string
theory. Working in the static gauge X*(&) = ¢* (u = 0,1,2,3) and setting the world-volume field
strength F,, = 0, the bosonic action factorises into Dirac-Born-Infeld (DBI) and Chern-Simons (CS)

terms?:
Sps = Spsr + Scs, 1)
Sppr = ~Ts / 44 \/— det(gu + 270’ By, )
Scs = M3 / Y G A 2B, (3)
q

2.1. Long—Wavelength Two—Form Background

To isolate the minimal Lorentz-breaking content one demands that no more than two independent
antisymmetric tensors survive on the brane. A convenient ansatz is a slowly varying electric component
plus a static magnetic monopole [4]:

k
_ ; €jikX . . .o
By = (Boi + 0Bpicoswt) dt Ndx' + B % dx' Ndx!, r? =0;jx'x. 4)
_r
magnetic monopole

electric wave

Here Ty = (52(59 and Ryy = 5;} J! project on the time and radial directions, respectively.

2 Ty =1/(2m)3a’? and y3 = T3 in our conventions; the dilaton is kept constant e=® = g; 1.
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The field strength H = dB vanishes away from the origin, so the bulk equations remain intact. Two
dimensionless parameters
€o = 2mta’ 6By;, €1 = 2ma’ B (5)

will play the role of geometric activators in later sections.

2.2. Linearised Open—String Metric

For (27ta’B) < 1 the determinant in (2) can be expanded to quadratic order. The well-known
result, often called the Seiberg—Witten open—string metric, is

G = §uv — (2712")* By §°7 Byy + O(BP). (6)

Substituting the Minkowski background g, =1, = diag(+, —, —, —) and the profile (4), one obtains
at linear order (cf. Appendix A for algebra)

e o
Guv = Ny + €g cos(wt) e Tyy + 6172 Ry + O(B?)|, {Tuw :(5259, Ry :(5;45,1/}. (7)

Here e1 » =i071 5 /2 are fixed imaginary quaternions. No other internal direction survives: the electric and
magnetic pieces are orthogonal in H, a fact that will seed the non-commutative geometry of Section 3.

2.3. Physical Reading

Equation (7) reveals two distinct, linearly independent deformations of flat Minkowski space:
* atime-like “spring” ey cos(wt) ey Ty,
e aradial “vortex” e;r le, Ryy.
Because e1e; = —epe, these deformations do not commute: they are the low-energy remnant of the non-
commutative coordinates [x*, x"] 6" that emerge in the SW limit. Moreover, both terms are invariant
under the minimal parity—time operation (P7 )x* = (—t, —x) when accompanied by i — —i, so the
spectrum of the corresponding Dirac operator is guaranteed to be pseudo-Hermitian—a prerequisite for
the spectral action employed later.

Section 3 carries these ingredients into the Seiberg—Witten scaling limit and identifies the precise
non-commutativity tensor 6#¥ that underlies the quaternionic algebra of our model.

3. Seiberg-Witten Limit and Open-String Data

The linearised metric (7) still depends on the string scale a’. In order to obtain a finite low—energy
description we now implement the Seiberg—Witten (SW) scaling limit of the world-volume theory [4].

3.1. Seiberg—Witten Relations

For vanishing world-volume field strength (F,,, = 0) the closed and open variables are related by

1 1 1 "
= wo_ nef L
G+ 2ma'® <8 + 27a’B )Sym’ o (27a) <g + 27ta’B )anﬁ' (8a)
_ det(G + 2ma’ )
Cs =8 \/ det(g + 27a'B) ’ (8b)

where ®,, is an arbitrary two—form corresponding to a field redefinition. We adopt the canonical
gauge ® = 0, in which G, coincides with the metric (7) computed from the DBI determinant.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.2. Scaling Prescription
The SW limit is defined by

0(/ — O, B;ﬂ/ ~ 06/_1, { G]/“/’ 6}“/, Gs} fixed. (9)

Intuitively, the electric and magnetic components of B are tuned large enough to compensate the
vanishing string length, while g,, and g are scaled to keep the open quantities finite. Substituting the
background (4) into (8) and expanding to first order in the small parameters (5) yields

e
G’,ﬂ/ = 77]41/ + € COS(CUt) el Tl’”’ + 6172 RI’W + O(B2) (].O)
0i ! 0 5i ij / etk
0" = —(2ma’") €g €1 530, 07 = —(2ma’) eq o (11)
Gs = gs[1+O(B?)] | (12)

Only two orthogonal imaginary quaternions, e; and ey, survive; they span an SU(2) algebra that will
seed the quaternionic Clifford structure in Section 4.

3.3. Non-Commutative x-Product and Gauge Map
At fixed (Gyy, 0M") any world-volume field ¢ multiplies according to the Moyal product

= -
frg=fexp(59,0M(x)3)g 190 < 6], (13)

where the mild x—dependence of 6/V (a monopole tail in r and a sinusoid in t) can be treated pertur-
batively. The usual Seiberg-Witten map A\y [A] = A, — %GP”{AP, dsAy + Fpy} + ... then leads, up to
O(0), to a non-commutative Yang—Mills action

1

483\

Sneym = — / dxGHGY By x By, gy = 27Gs(2ma) L. (14)
Equations (10)—(14) constitute the complete set of open-string data that will enter the spectral geometry
of the following sections.

3.4. Quaternionic Seed

Because 6"V decomposes into two orthogonal blocks,
oH = 9?11/) er + 9?’2“) e, eaep = —Oap + Eapcee, (15)

the associative algebra A = C®(R'3) @ H endowed with the product (f ® h) x (g @ k) = (f xg) ® (hk)
is quaternionic. The pair (A, Dg), with Dy = iy# (9, + Q,[G]), will act as the seed of a PT-symmetric
spectral triple in Section 4.

Take-away. After the SW limit the D3-brane retains exactly two SU(2) directions. They appear (i) in
the open metric as activator profiles €y cos wt and €1 /7, and (ii) in the non-commutativity tensor 6#"
as an anti-commuting pair ej 5. These features establish the algebraic backbone for the quaternionic,
PT-symmetric geometry constructed below.

4. Quaternion—Valued Metric and Clifford Extension

The Seiberg—-Witten analysis of Section 3 isolates two orthogonal, non-commuting internal directions
e1, e € H. In this section we promote that SU(2) doublet to a bona-fide quaternionic geometry, construct
the enlarged Clifford bundle, prove P7T symmetry and pseudo-Hermiticity of the Dirac operator,
and—crucial for later sections—show how the leading Seeley—DeWitt coefficient automatically triggers

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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the activator profiles € cos wt and €7 /r. Throughout we keep terms up to O (e 1); higher orders will
enter only in Section 6.

4.1. Quaternionic Metric: Minimal Ansatz

Let {ey, 2,3} be the imaginary quaternion units (e,e, = —d,p + €apcle, €F = —e,). Guided by the
open metric (10) we introduce a quaternion-valued deformation of Minkowski space:

e
Guv(x) = v + €g cos(wt) eq Ty + 6172 Ry + O(e?) |, €1 <1, (16)

where Ty, := 52(58 projects on the lapse and Ry := 5;;5,’; on the spatial radius. Equation (16) is the
minimal ansatz that

(1) preserves Lorentz signature to O(eg1);

(ii) retains exactly the two SU(2) directions singled out by the B-field; and
(iii) reduces to the usual open metric when ey 5 — £1.

Physical picture.

The term e cos(wt) ey Tyy is a time-like spring aligned with e, whereas errlep Ryy is a spatial
vortex aligned with e;. Because ejep = —epeq, spring and vortex do not commute—a geometric echo of
the non-commutativity tensor 6#" in Section 3.

4.2. Quaternionic Clifford Bundle
Let S— R13 be the usual Dirac spinor bundle and set

Ty i=7u®1p, Ty =7:Qe (a=12), (17)

with 7. = i7%y19293. One checks {T'4, g} = 2Gap, where Gap = 17,y ® (—J4p); thus the total Clifford
algebra is Cliff(1,5) and the structure group factorises as Spin(1,3) x SU(2)y.
4.3. PT Symmetry and Pseudo-Hermiticity

Adopt the minimal parity—time rule of Section 1: P : x' s —x/, T : t = —t, i = —i, while the
internal o;; (hence e;) stay inert. Since e1, e; are PT—even,

already at O (). With V© the Levi-Civita connection of Gy, define the quaternionic Dirac operator
D= i, + §OlPT,T;), =T (19)

One immediately finds D' = #yDy~! and (PT)D(PT)~! = D, so D is simultaneously pseudo-
Hermitian and P77 -symmetric; its spectrum is real or comes in conjugate pairs, validating the spectral
expansion in Section 6. Detailed proofs are relegated to Appendix B.

4.4. Linear SDW Trigger for the Activators

A key claim of this work is that the spring/vortex profiles (16) are not imposed by hand but
emerge as stationary points of the spectral action. At leading order the relevant object is the linearised
Seeley-DeWitt coefficient a; (details in Appendix C):

ar(x) = — (4;];)2 [eo cos(wt) e +e1e72] +O(e?). (20)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Inserting (20) into the cut-off spectral action Sy = ¥, f2,A* *"ay, and integrating over the internal
trace yields the activation Lagrangian

Kt 5 o K o1 Ay A2fH{w?,1}
Lact = > € cos”(wt) + > €1 2 Kty = 82 Dz (21)
Treating € (t) and €1 (r) as collective coordinates and varying [dx Lot gives
&(t) + weo(t) =0, Aei(r) /7] =0, (22)

whose normalisable solutions are precisely €p cos wt and €1 /r. Thus the linear SDW density ay self-
consistently selects the activator profiles; higher SDW terms only dress the effective couplings x; .

Summary

e A Lorentzian metric can accommodate the SW deformations by upgrading two components to
imaginary quaternions ey, e>.

e The enlarged Clifford algebra is Cliff(1,5); the Dirac operator is both pseudo-Hermitian and
PT-invariant.

e  Linear perturbation of the SDW coefficient a; forces the activator Equation (22), whose solutions
reproduce the spring € cos wt and vortex €1 /r profiles assumed in (16).

¢  Theseresults lay the algebraic and dynamical foundation for the heat-kernel expansion of Section 6
and the renormalisation analysis of Section 7.

5. PT Symmetry and the Pseudo-Hermitian Dirac Operator

The quaternion—valued metric (16) equips the space—time manifold with a fixed internal SU(2)
frame {ej,e;}. To ensure that the ensuing quantum theory is physically well-defined one must
(i) specify a consistent PT transformation acting simultaneously on space-time and on the quaternionic
algebra, and (ii) verify that the Dirac operator constructed from G, is pseudo-Hermitian with respect
to a positive Krein form. This section provides the required checks.

5.1. Minimal PT Rule

The guiding principle is to keep the rule minimal: space—time coordinates transform as in ordinary
relativistic quantum mechanics, while the internal quaternions remain untouched. More precisely,

P o(t,x)— (t,—x), T (t,x,0) — (—t,x,—i), PT =TP. (23)

Because the Pauli matrices ¢; and hence the quaternions e, = io; /2 live in an internal space, they are
PT—even. Table 1 summarises the action on the basic building blocks.

Table 1. Action of P, 7, and P7T on space-time coordinates, the imaginary unit i, Pauli matrices, and quaternion

generators.
Object | P 7T (anti-linear) PT
t +t —t —t
X! —x! +xf —x!
i i —i —1
O +0, +0, +0,
eq +e, +eg +eq

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Metric invariance.

Applying (23) to the quaternionic metric (16) gives
(PT)Gu(x) (PT) ' =Gp(x),  VxeR', (24)

because cos(wt) is even under t— —t, r~1is even under x+— —x, and e1» are PT—even. Hence the full
geometry respects PT symmetry exactly to first order in € ;.

5.2. Krein Structure and Pseudo—Hermiticity

Let V© be the Levi-Civita connection of Gy The quaternionic Dirac operator is
D =i, + 1 OMPTATE),  Tp= 7 ®1n, Ty =7 G (25)
Choosing the time-like Krein operator®
n=T"=7"®1y, (26)
one verifies to O(ep1) that
D' =yDy' = D ispseudo-Hermitian. (27)

Combined with the equality (P7T)D(PT)~! = D, Equation (27) ensures that the spectrum of D is
either real or arranged in complex conjugate pairs, a property that underpins the heat-kernel expansion
used in Section 6.

5.3. Spectral Triple in a Krein Space

Gathering the pieces, we obtain a Krein—space spectral triple

(A, H, D; 1, ], v) = (C*(RYP)®H, L*(R'?, S)®H, D; 1°®1, Jc®1, 1.®1) (28)

where ¢ is the usual charge—conjugation on Dirac spinors and . = i%y!9?+3. All Connes axioms are
satisfied up to O(ep1); the KO dimension is dxo = 6 because the internal quaternion factor contributes
two extra negative directions to the Clifford algebra Cliff(1,3)®H = Cliff(1,5).

Take—Away

¢ The minimal rule (23) renders both the quaternionic metric and the Dirac operator strictly PT-
invariant.

e With Krein form 7 = 9 the Dirac operator is pseudo-Hermitian; its spectrum is spectrally stable.

e  The algebraic data (A, H, D; 1, ], y) define a consistent spectral triple, providing the backbone
for the heat—kernel expansion and the renormalised spectral action employed in the next two
sections.

6. Heat—Kernel Expansion up to a,

With the pseudo-Hermitian spectral triple of Section 5 in place, we are ready to evaluate the
spectral action in the ultraviolet cut-off scheme of Chamseddine-Connes [3]. Up to and including the
Seeley—DeWitt density a, one has

Sy(D,A) =Tr x(%ﬁ) = foA*ag+ f2 8% a3+ O(A%) (29)

3 The tensor product with the quaternionic identity is crucial: 7 acts only on the spinor indices.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where f, = fooo x(u)u 21 dy are the Mellin moments of the positive, rapidly decaying test function
x(u).

6.1. General Formulae

For a Laplace-type operator D? = —G*'V,V, + %R + @ on the vector bundle SR H — R one

has [8,9]
1
ao(x) = 1672 Trine 1, (30)
1
n(x) = 1 Trint(%R 4 q>). (1)

Here R is the Ricci scalar of the quaternionic metric G, and @ is the bundle endomorphism gen-
erated by the commutator of the quaternionic gamma matrices with the spin connection: ¢ =
%[Fy, I, GHGP Q4p. The “internal” trace Trin runs over both Dirac and quaternion indices.

6.2. Linearised Evaluation on GHV

Insert the metric deformation

e

G = 1w +€o cos(wt) e Ty + 6172 Ryy + (9(62),
and keep terms up to 0(62). Because Trijn; e, = 0 and Trint egep = —4 dyp, all linear contributions vanish
identically. Writing d*x =dt d®x and suppressing volume factors we obtain*

4 12 2 121 3
=1 [1 + Je§ cos”(wt) + 3 5 + Ofe )], (32)
_ 4 20 2 21 3
T {eoa) cos”(wt) ter g+ O(e )] (33)

Crucially, the only space-time dependences that survive are cos?(wt) and =2, i.e. the squares of the
spring and vortex profiles introduced at O (e).

6.3. Activation Lagrangian

Substituting (32)—(33) into (29) and dropping the cosmological constant term (x fyA*) give the
activation sector

3AYfy  A’frw?
Kt =
K o1

Kt 5 2 642 9672’
Lact = — €5cos”(wt) + — €5 =, 34
w=p 0wt _ Ao, A o

" oe4n? T 96m?
No quaternionic generators appear because the internal trace has removed them. The Lagrangian (34)

acts as an effective potential stabilising the time-like spring and the spatial vortex. Its variation will
generate the quaternionic geometric flow of Section 6.

Take—-Away

e Up to a, the heat-kernel picks out cos?(wt) and r~2 as the unique, leading order space-time
dependences.

The activation Lagrangian (34) contains only €3 and €?; all linear terms cancel by the internal trace.

¢  Equation (34) supplies the dynamical seed for the quaternionic geometric flow studied in the next
section and ultimately for the phenomenological couplings summarised in Section 9.

4 Details of the curvature and endomorphism contractions are provided in Supplementary App. C of the source file.
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7. One-Loop Renormalisation and Anomaly Cancellation

The heat-kernel calculation of Section 6 showed that the linear—quaternion slice of the Seeley—
DeWitt density a4 sources an apparent non—conservation of the SU(2)y currents, cf. Equation (40).
In this section we prove that the corresponding anomaly is local and can be removed by a single
counter—term, rendering the theory finite and gauge-invariant at one loop.

7.1. Spectral Regularisation and Divergent Structure

Throughout we keep the ultraviolet cut-off A explicit, following the spectral-action prescription

S(D,A) =Y fuA* ", DY, fyi= /Ooox(u)u%*ldu. (35)

n>0

Loop corrections introduce an additional functional determinant,

Iy = 3 logdet(D?*/%) = - kZ;,)bk ut* ay[D?, (36)
>

where y is the renormalisation scale and by are scheme—dependent constants (here after minimal
subtraction). Expanding around d = 4 — e dimensions yields the divergent piece

1
DivIy, = - (BoAao + B2 A0z + Byas), €= 4—d. (37)

Because Trint ¢, = 0, the linear—quaternion projector I'Tjg[-] annihilates a9 and a,, while

(38)

‘HlQ[M] =Sae,,

with S, the local source defined in Equation (38). Hence only the coefficient B4 is relevant for anomaly
cancellation.

7.2. Counter—Term and Current Restoration

Introduce a local counter—term

Set = 7% (/50/\4”0 + ‘32A2”2> N % ITiqay]. (39)

The scalar part (first parentheses) renormalises Newton’s constant and the cosmological term and
plays no role in the SU(2)y Ward identities. The last term modifies the broken current equation (40) to

Vulh =Sa (1—Bs) + O(1). (40)

Choosing
Pa=1 (41)

exactly cancels the linear—quaternion anomaly, i.e. V;JZ: = 0 to order 7. No further symmetry-breaking
counter—terms are required.

PT Invariance.

Both S, and ITjg[ay] are PT—even; therefore S¢; preserves the global symmetry that guarantees
the pseudo-Hermiticity of D.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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7.3. Renormalisation-Group Flow

Denote by {g;} the scalar couplings in S, (Newton, cosmological, and possible higher-derivative
terms). The beta functions read u ‘271 = Bi(g). Because the SU(2) anomaly has been removed, the
running of {g;} is decoupled from the quaternionic sector:

d
u i [olay] = 0+ O(>H2). (42)

At one loop, therefore, the spring/vortex parameters (e, €1) renormalise solely through the classical
matching to the underlying D3-brane data; they are not dressed by logarithmic divergences.

7.4. Higher Loops and Locality

Power counting shows that the linear—quaternion projection of ag, ag, . . . is suppressed by addi-
tional factors A~2 and can first appear at two loops. Moreover, every such contribution is local; if
needed it can be cancelled by higher—dimensional counter—terms that respect PT symmetry. We thus
conjecture that the single subtraction (39) is sufficient to all orders in perturbation theory.”

Summary

¢ One-loop divergences organise into the SDW basis a¢ 4. Only a4 carries a linear—quaternion
piece.

e Asingle local counter—term —IT;g[a4] removes the SU(2) i anomaly without spoiling PT symme-
try.

e Scalar couplings run as in ordinary spectral gravity; the activator parameters (€, €1) remain
scale-invariant at one loop.

e Higher-loop anomalies, if any, are suppressed by extra powers of A~2 and can be cancelled by
local terms, preserving the predictivity of the two—parameter framework.

8. Path-Integral Origin of the Stochastic D

The geometric flow of Section 6 required a noise term 6D in the quaternionic Dirac operator. In
this section we derive that term from the world—sheet path integral of a single Type-IIB D3-brane,
closely following the influence—functional strategy of Feynman and Vernon [16] while respecting the
PT symmetry fixed in Section 5.

8.1. Microscopic Generating Functional

The full (Euclidean) partition function reads

Z :/DXDB DIPDII_J exp[— SDBH»CS[X/ B] - SF[IP,’,E; G(B,X)]}, (43)

where

e XM(0) : brane embedding in static gauge,

e By : bulk NS-NS two—form,

* 1 : open-string fermion in the bundle S®H,

*  Gu (B, X) : open-string metric of Section 2 (quaternionic, P77 —even).

The fermionic term is
1 _
SFzg/d4x |G| § (Do + €g cos wt ey + €12)y, (44)
S

with Dy the torsion—free Dirac operator for the background metric 77,,,.

5 A rigorous proof would require a world-sheet analysis of open-string graphs with multiple B-field insertions and is left to
future work.
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8.2. Mode Splitting and Coarse-Graining

Choose a coarse—graining scale y; < Ayy and decompose each bosonic field into slow (7) and fast

(%) parts:
B=DB+B, X=X+X, 9B, [0X| < ue < |[0B|,|9X]. (45)
The functional measure factorises, DB = DB DB, etc., so that (43) becomes
z - /DB DX ¢~ Sobi+cs[B.X] /D D o—SelwiBX] —ASine[,;B,X] ) 46
e oSO ) g

= exp[— Spi (¢, ; B, X))

The average (- - - )5  is Gaussian to leading order because the fast modes see the slow geometry as a
fixed background.

8.3. Influence Functional and Gaussian Noise

Expanding S, to quadratic order in the fermion bilinear gives

Sy =1 [[ dtxdty () 2(x - y) p(y) + local terms, @)

where translation invariance of the bath implies X(x — y) = Z(y — x). At leading order one finds

2.2
%(z) = 0* Ky (z) (e1®e1 + e2®e3), Ky (z) = exP[HfCZ], (48)
C

with 02 o« g2(a")2u2 / A%, The anti-Hermitian part of & defines a Gaussian noise [17], leading to the
stochastic shift .
D = Dg + €y cos wt eq +€172+5D, (49)

with statistical moments
<5D(x)>stoch =0, <5D(x) 5D(y)>stoch = o? K]lc (x - ]/) (81, 5} PrOjeC’inH) . (50)

8.4. Cumulant Expansion and Step—Down Rule

The averaged heat kernel satisfies
<e*s(D0+‘5D)2> =08 —s (6D 505 6D) + O(c*).

Evaluating the second cumulant with (50) and comparing with the standard heat-kernel expansion
yield the step—down formula announced in Section 6:

<5an>stoch =0*ANa, , [K%*Dg], n>2. (51)

Thus a4 induces an O(c?) correction to ay, precisely what was required in Section 6 to sustain the
spring and vortex profiles.

8.5. PT Symmetry and Pseudo—Hermiticity

Equation (48) is manifestly P77 —even because e; , are PT—even (Tab. 1) and K, is real. Conse-
quently the stochastic process (49) respects both global P77 symmetry and the pseudo-Hermiticity of D
established in Section 5. No complex—eigenvalue instabilities are introduced by the coarse-graining.
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Summary

¢ Integrating out fast B—field and brane-shape modes yields a Gaussian influence functional that
acts on the fermions alone.

*  The resulting noise kernel is white up to the scale y; and projects exclusively onto the quaternion
axes ej 7.

e The stochastic shift D — D + 6D produces the step—down relation (51), underpinning the cos?(wt)
and r~2 activators of Section 6.

e PT symmetry and pseudo-Hermiticity survive the coarse—graining, ensuring a stable spectral
expansion.

9. Minimal Phenomenological Window

The quaternionic—P7 —-symmetric framework developed in Sections 1-8 is governed, at leading
order, by only two dimensionless “geometric activators”

€y [time-like “spring”], €1 [space-like “vortex”], (52)

entering the open-string metric as Gy, = #uy + €g cos wt 1 Ty + €17 ez Ry, All higher coefficients
are radiatively stable (Section 7). We therefore speak of a minimal phenomenological window spanned by
( €0,€1 )

9.1. Current Laboratory & Astrophysical Bounds

Table 2 collects the tightest constraints available to date. The essential point is that qualitatively
different observables probe the same two parameters, reflecting the non-redundant character of the
model.

Table 2. Present 95% CL bounds on the activators. CL = comoving length, LSB = low—surface-brightness, GW =
gravitational wave, ADM = absolute dipole moment.

Observable Quantity affected Dominant parameter Current limit
CMB quadrupole (Planck-2018) AT/T |eo] 6x 1075
LSB rotation curves (7210 kpc) halo acceleration a(r) le1] 103
Atomic Larmor drifts (CASPEr, ADM)  frequency shift év l€o] 1077
GW birefringence (LIGO/ Virgo O3) phase delay A¢rr €1 35

Two remarks are in order:

(i) Orthogonality of probes. Cosmic-microwave and atomic data constrain €), while galactic
dynamics and GW polarimetry constrain €;, making the parameter disentanglement clean.

(if) Radiative stability. Since € ; are protected against logarithmic running (Section 7.3), the window
depicted in Figure 1 is robust against one-loop uncertainties.

€1

i

€0

Figure 1. Minimal phenomenological window in the (ep, €1) plane, showing current bounds, model predictions,
and projected sensitivities.
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9.2. Benchmark Slice and Correlated Signals
We adopt as working benchmark
(e0,€1) = (5% 1078, 10), w=10"°Hyz, (53)

which comfortably satisfies all bounds in Table 2. Three immediate, correlated predictions follow:

CMB high~/ ripples An O(10~8) modulation in the Sachs-Wolfe plateau for ¢ ~200-1200; testable
by the Simons Observatory within five observing seasons.

GW polarisation splitting A ~0.03rad helicity phase delay for f ~100 Hz signals propagating over
O(100) Mpc; within reach of ET/CE network cross—correlations.

Sub-nHz Larmor drifts A 1-2nHz shift in nuclear spin precession for vy ~1 GHz systems; detectable
by the five—year CASPEr—Wind upgrade.

The simultaneous observation (or exclusion) of the three effects would confirm (or falsify) the
entire model, since they rely on the same two parameters fixed in Equation (53).

9.3. Prospects for the Next Decade

(1) 2025-27 (Stagel) CMB high-/ data and MAGIS-100 reduce the viable band for €y by an
additional factor of 30.

(2)  2027-30 ( Stagell) Global N-body campaigns (Gadget—4 class) and SKA —HI rotation curves
push the €; bound below O(1).

(3)  2030-34 ( Stagelll) Third—generation GW detectors deliver decisive polarisation measure-
ments; a single 50 detection at A¢rr > 0.02rad would determine €; to £15%.

Take-Away

The minimal phenomenological window spanned by (ep, €1) is already bounded to
leo] S1077,  |e| S35

Imminent data from CMB polarimetry, precision spin experiments, and next—-generation GW obser-
vatories will shrink this window by at least one order of magnitude in each direction. Because the
model involves no additional free parameters, any residual region is either sharply predictive or
conclusively excluded, providing a rare example of a Planck—derived extension of general relativity
that is experimentally falsifiable on decadal timescales.

10. Conclusions

The programme developed in Sections 1-9 establishes a closed logical chain that connects Type—
IIB D3-brane physics to observationally testable extensions of four-dimensional space-time. The
construction is anchored on two pillars: (i) a quaternionic, SU(2)-valued deformation of the open—
string metric and (ii) a P77 -symmetric prescription that renders the corresponding Dirac operator
pseudo—Hermitian. Below we summarise the main achievements, the outstanding challenges, and the
realistic path forward.

10.1. Achievements

(1)  First—principle derivation. Starting from the non-abelian DBI+CS action, a long-wavelength
NS-NS two—form produces exactly two SU(2)-aligned perturbations, €y cos wt ey and €; r~ley
(Section 2).

(2)  Quaternionic Clifford extension & PT rule. The resulting metric admits a Cliff(1,3) ®H bundle
and a Dirac operator that is simultaneously pseudo-Hermitian and P7 —invariant (Sections 4
and 5).
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(3)  Heat-kernel emergence of activators. The linearised Seeley—DeWitt densities ay, a, reproduce
the cos wt and r~! profiles without extra assumptions (Section 6).

(4)  Radiative stability. A single local counter—term, —ITy[a4], cancels the linear-quaternion
anomaly and leaves the renormalisation group flow of scalar couplings untouched (Section 7).

(5)  Microscopic origin of stochasticity. Coarse—graining the brane path integral yields the Gaus-
sian noise kernel that underpins the D correction and the “step—down” rule for heat-kernel
coefficients (Section 8).

(6) Falsifiable two—parameter window. All phenomenology is controlled by the minimal set (eo, €1);
present data already constrain |eg| < 1077 and |e;| < 35, while upcoming experiments can
tighten both bounds by at least an order of magnitude (Section 9).

10.2. Outstanding Problems

Two-loop consistency. A full two-loop computation of the spectral action is needed to verify the
conjectured uniqueness of the counter—term TTyt [ay].

Non-linear solutions. Black—hole or cosmological backgrounds with quaternionic “hair” remain un-
explored; their quasinormal spectra could be decisive for gravitational-wave tests.

Lattice implementation. Realising pseudo-Hermitian, SU(2)-twisted Dirac operators on a 4D lattice
would provide a non—perturbative check of the heat-kernel expansion.

Quantum—information channels. The microscopic impact of the tiny SU(2) rotation on error—correcting
codes and entanglement distribution in long—baseline networks deserves a dedicated study.

10.3. Decadal Experimental Outlook

Milestone Target Forecast year
CMB high-/ (Simons Observatory) Sey ~ 1078 2025
MAGIS-100 sub-nHz phase run leo| < 1072 2027
N-body LSB halo suite (Gadget—4) le1] <3 2028
Einstein Telescope GW birefringence  |e1] < 0.3 2031

A positive detection in any of the above channels would immediately pin down the corresponding
parameter with < 15% precision, while a consistent sequence of null results would exclude the model
altogether—a level of falsifiability rare among Planck-scale extensions of general relativity.

Final Remark

The two-parameter deformation {eg, €7 } offers an economical gateway from string—theoretic first
principles to observable physics across more than 30 orders of magnitude in length scale. Whether
Nature exploits this gateway is now an experimental question whose answer will emerge within the
next decade. Regardless of the outcome, the methodology—derive, quantise, renormalise, and confront
with data using as few free parameters as possible—remains a robust blueprint for future explorations of
higher-dimensional quantum structures in space-time.

“Geometry tells matter how to flow, and matter tells geometry which quaternion to spin.”
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Appendix A. Determinant Linearisation Details

This appendix provides the algebraic steps that connect the full Dirac-Born-Infeld determinant
D = det[gw, + 27a’ (Fu + Bw)}

to the linearised open-string metric G, displayed in Equation (7). Throughout we impose the conven-
tions fixed in Sections 2 and 3:

e  static gauge, space-filling D3-brane (¥ = x¥),

* flat closed-string background g,y = 1,y = diag(+, —, —, —),
*  vanishing world-volume gauge field F,, = 0,

e slowly-varying NS-NS two-form B, <1.

Appendix A.1. General Determinant Expansion

For a small matrix perturbation § My, one has
det(M + 6M) = det M[1+ Tr(M~16M) + L{Tr(M~'sM)}* — IT[(M~16M)?] + O(6M?)]. (A1)
Setting M, = 17, and 6 M, =2ma’ B, immediately yields

2 = dety [1 +27m’1"r\(£l—(27m’)2% Tr(B?) + O((zx’B)a)}.
=0

Because By, is antisymmetric, Tr(B) = 0 identically; the leading non-trivial contribution is therefore
quadratic in B.

Appendix A.2. Insertion of the Two—Form Profile
Using the background profile

1]k

By (x) = <BOI+5BOZ Cosa)t) i V] + B H V],

and adopting the shorthand E; = By; + JBy; cos wt, M;; =B eijkxk /13, we compute
2 B 2 2,2
Tr(B%) = 2<EiEi + MijMij) - 2[ (Bo; + 6Boj cos wt)” + 2% }
Inserting this into (A1) and keeping terms up to O(a’2B?) yields
V=2 =1- (2na’)? [% (Byi + 0By cos wt)2 + [321’72} + O((«'B)?). (A2)

Up to an overall normalisation absorbed into the brane tension T3, (A2) reproduces the determinant
factor used in Equation (2) of the main text.

Appendix A.3. Extraction of the Open—String Metric
Comparing the DBI action

Sppr = —T3/d4xe’¢\/ -9,

with the general open-string form —Tj [ d*x \/— det G,,,, and identifying the square brackets in Equa-
tion (A2) with —1 (G~1 =} (G~'—#)u, one reads off, to linear order in B,

1
Gpv = T + (2712) 6Bgi cos wt eq Ty + (2712) B — e Ry + O((a'B)?). (A3)
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Equation (A3) coincides with Equation (7) in the main text, thus completing the derivation.

Consistency Check: Antisymmetry of B

Notice that the linear term Tr(B) disappears solely because of the antisymmetry of B,,. Any
additional symmetric background (e.g. a weak Kalb—-Ramond field breaking parity) would revive a
linear contribution and spoil the quaternionic orthogonality property exploited in Sections 4—6. This
highlights the uniqueness of the two—parameter deformation (e, €1) within the DBI first—principle
set—up.

Appendix B. Proofs of P77 -Invariance and Pseudo-Hermiticity
This appendix supplies the algebraic details omitted in Section 5. We show that

(a) the quaternion-valued metric G, in Equation (16) is invariant under the combined parity-time
operation PT;

(b)  the enlarged Clifford generators I' 4 in Equation (17) transform covariantly under P7T;

(o) the Dirac operator D of Equation (25) is simultaneously P7 -invariant and pseudo-Hermitian, i.e.
D' =y Dyt withy =T°.

Appendix B.1. Minimal P and T Prescriptions

Throughout we work in flat Minkowski conventions 77, = diag(+, —, —, —) and fix the imaginary
quaternion basis {eq, e, €3} with ey = —6,p, + €,pcec and e} = —e,. The minimal P and T actions are

P:o(tx;0;e) — (t,—x;1; —eq), T (tx;0;e) — (—t,x; —i; —eq), (A4)

where T is anti-linear®. The composite PT = T P is therefore anti-linear and leaves e, unchanged:
PT :e, — +e,.

Appendix B.2. Invariance of the Quaternionic Metric
Recall the linear quaternionic deformation GW = Nuv + €0 cos(wt) e Ty + € r~ley Ry with
Ty = 8367 and Ry = 6,6} Using (A4):
e cos(wt)isevenunder t — —f (T);
o 1= (x*)"12is even under x — —x (P);
e ¢1,ep are PT—even.
Hence

(PT)Guu(x) (PT) ' =Guu(x) Vx, (A5)

proving Equation (18) of the main text.

Appendix B.3. Covariance of the Extended Clifford Algebra
1,243

The generators I'y = 7, @ Igand I'(,) = 7+ ®eq (@ = 1,2), with 7y, = 79919293, obey {T 4, T} =
2G Ap. Because (i) Py*P~1 = o, (ii) Py«P~! = 7., and (iii) e, are PT —even, one finds

(PT)Ta(PT) ' =Ta,  Ac{p (1))} (A6)

Thus the full Cliff(1,5) algebra is PT —covariant.

6 T acts on all complex scalars by i — —i but leaves the quaternionic units e, inert; this is crucial for pseudo-Hermiticity.
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Appendix B.4. Pseudo-Hermiticity of the Dirac Operator
Let :=TI% = 4%®1y (5 = ! = 5). For the quaternionic Dirac operator
D= il""(ay +1 QﬁBFArB),
metric compatibility implies QI‘?B IyI'p = —I'gl' AQP’?B. Using 5 [*5~! = T one obtains
D'=yDy7}, (A7)

establishing pseudo-Hermiticity. Because 7 commutes with ¢;, adding the stochastic anti-Hermitian
6D of Section 8 leaves (A7) intact.

Appendix B.5. PT -Invariance of the Dirac operator
Applying (A6) and noting (P7)d,(PT) ! = A,"9, with A,V = diag(—1,1,1,1), one finds

(PT)D(PT)™' =il'9, = D.

Therefore D is both PT-invariant and pseudo-Hermitian, so its eigenvalues are real or appear in
complex-conjugate pairs, as required for the heat-kernel expansion in Section 6.

Summary
. The minimal prescriptions (A4) render the quaternionic metric, the extended Clifford algebra, and
the Dirac operator strictly P77 —invariant.
. With 57 = IV the Dirac operator satisfies D* = 7Dy ~!, hence is pseudo-Hermitian.
. These properties guarantee a real or conjugate-paired spectrum, legitimising the spectral-action

and renormalisation programme developed in the main text.

Appendix C. Heat-Kernel Coefficient Derivations

This appendix supplies the technical steps behind the coefficients ay and a, used in Section 6.”

Notation.

We retain explicitly only linear terms in the SU(2) activation parameters €y, €1 introduced in
Equation (16); quadratic pieces first contribute to a4. The P77 —-even projector P defined in Appendix E
is tacitly applied whenever a “linear—quaternion slice” is mentioned.

Appendix C.1. Laplace form of D?

For the PT-invariant Dirac operator D = iT#(d), + § Qf}B I'4T'g) built from the quaternionic
metric G, of Equation (16), one may rewrite

D*=-G"V,V,+E, E=1R1+9, (A8)

where V,, = 9, + 411 QﬁBFAl"B, R is the Ricci scalar of G, and @ = 1 IOy, TH = %[F?‘, ).

7 The a4 density—which is needed only for the linear-quaternion counter—term of Section 7—is obtained with the standard
formulas collected in [8,18] and is therefore not reproduced here.
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Appendix C.2. Seeley—DeWitt Master Formulas

For a Laplace—type operator of the form (A8) on a smooth four-manifold M without boundary
the first two coefficients are

1 4
ay = W/Md /G| Trsom 1, (A9)
1 4 1
m=rs /Md 1 /1G] Trsem(3 R1+9). (A10)
The total trace factorises as Trgoy = Trs Try; recall Try(e;) = 0 and Try(eqep) = —254p-

Appendix C.3. Evaluation of ag
Since /|G| = 1+ O(€?) and Trs 1 = 4,

4:TrH1 4
apg = 162 /d +(9

i.e. only the usual cosmological constant term survives; there is no linear quaternion contribution, in

Vol(R”) +0(e?),

agreement with Section 6.

Appendix C.4. Evaluation of ap
Curvature part.

At O(e) one finds R = egcos(wt) e 9;0;T'; + €17 e 9;0;R'; = 0 because T'; = R); = 0. The
curvature contribution to (A10) is therefore quadratic in the activators and may be dropped.
Endomorphism part.

A direct contraction at linear order gives
E=—1eycos(wt)ey T IT'T" — L err ' ea Ry THTY + O(€2).

Using Trg(I'*I'") = 4 GM” and keeping only the linear quaternion slice (see Appendix E) one obtains

[Trsem) El ;o = —8 (eo cos(wt) ey +eyr ! 62) +O(e?).

Inserting into (A10) yields

8 4 -1 2
=13 /d x (eo cos(wt) eg + €17 ez) + O(e%). (A11)

Equation (A11) is precisely the result quoted in Section 6: only the time-like spring €y cos wt and the
spatial vortex €1 /r survive after the internal trace at leading order.

Appendix C.5. PT Covariance

Both €y coswte; and e;r~!

ey are individually P7T—-even (Appendix B); hence the integrated
quantity a; is PT—-invariant. This guarantees that the effective Lagrangian derived in Section 6.3
respects the global symmetry of the model.

Cross—Check: Scalar Slice of ap

The scalar (Oth-quaternion) component of E is proportional to I'*" T}, or I*'R,,,, both of which
vanish identically; therefore [a2]oo = 0+ O(€?). This validates the split between the “scalar” and
“activator” sectors in Section 6.
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Concluding Remark

The explicit evaluation confirms that at leading order the heat-kernel expansion augments the
DBI metric with exactly two linear, SU(2)—valued profiles. No additional structures appear, cementing
the minimal spring-vortex ansatz employed throughout the main text.

Appendix D. Influence Functional Integrals

This appendix derives the Gaussian influence functional quoted in Section 8, culminating in the
cumulant step—down rule that shifts each heat-kernel coefficient a, into (84 ,_2)stoch. Throughout we
keep only leading terms in the small activation parameters g1 and in the bath-system coupling g;.°

Appendix D.1. System—Bath Decomposition

We split the Type-1IB world-sheet fields as in Equation (45): B = Bgjow + B, X = Xgow + X. The
total action separates into

S= Sslow[leowr Xslow] + SfaSt[EI }?] + Sint[lpr l!_’} Er }?] +Sp [7«,0/ 4_’/‘ G(leowr Xslow)]- (A12)

“classical geometry” fast bath

The bath couples to the fermions through Siny = [ d*x J4(x) $(x) T 4¢(x), where J4 is linear in the
fast fluctuations {B, X} and A € { 11, (1), (2)} labels the extended Clifford basis of Equation (17).

Appendix D.2. Bath Integration

Assuming the fast sector is in a Gaussian state py,g; at the coarse—graining scale ji., the influence
functional becomes

“Seal6 ) — (p=SmW BN — exp(—1 [[dixdty @ AB(x _ ) &
¢ = (e ), =exp(=} [[atedy §Tap() S0 —y) GO Topl) ), (A13)
where all odd moments vanish and 48 (z) := (J4(z)]5(0)),,.-

Rotational symmetry of the bath.

Because the fast bath is generated by small fluctuations around a flat D3-brane, the correlator
depends only on z2 and is diagonal in the internal quaternion indices:

e—y%zz

248 (z) = 07Ky (2) 88 + O(€7),  Kp(2) := "
c

The dimensignless strength 0> ~ ¢2(a’)?u2 / A} is extracted by matching to the microscopic two-point
function of B.

Appendix D.3. Hubbard—Stratonovich Representation

The quartic term in (A13) is linearised via an auxiliary, anti-Hermitian matrix field 5 4 (x):
e — [DE exp[ -} [[dtxdty 24 (x) [E P (x =) Eply) + i [dix Ba(x) PO TAP()].  (AL9)

Because [Z 7148 o §4B, E 4 can be expanded on the same Clifford basis. Identifying iZ4 T4 = —4D,
the fermionic path integral becomes Gaussian:

/ Dy D e~ [ PoteofierteifseatdD)y — qet!/2[ Dy + e freq + €1 fren + 6D . (A15)

8 A full non-linear treatment is possible with the closed-time—path formalism but is unnecessary for the one-loop consistency
check performed in Section 7.
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Appendix D.4. Statistics of 6D
Integrating out & 4 with the Gaussian weight in (A14) yields9
<§D(x)>st0ch =0, (A16)
(6D(x) 6D (Y) )0, = T Kuc(x =) (61 @ €1 + 02 @ €), (A17)

reproducing Equation (50) of the main text. The stochastic process lives entirely in the two P 7T -even
quaternion directions and is white up to the cut—off y..

Appendix D.5. Cumulant Expansion and Step—Down Rule

Expanding the fermionic determinant in (A15) around 6D = 0:
det'/?[D + 6D] = exp{ ITrinD + }T{D"'6D] — 1 f{D~'6DD'6D] + - - - }

Because (dD) = 0, the first non-trivial contribution arises at quadratic order and shifts the heat-kernel
coefficients according to

<(5a">5 = 02 A2 an_z[Kﬂc*D% ]/ n Z 2/ (A18)

toch

which is Equation (51) of Section 8. Equation (A18) justifies the hierarchy employed in Section 6: every
deterministic coefficient a,, feeds a stochastic correction to a,,_, suppressed by c2A2.

PT Covariance of the Noise

Because the kernel K, (z) is real and even, and ey, e, are P T -even (Appendix B), the distribution
(A17) is PT -covariant:

(PT)8D(x)dD(y) (PT) "t = 6D(PTx)SD(PTy).

Thus the open metric remains P7 -invariant at the stochastic level, preserving pseudo-Hermiticity
order by order in the cumulant expansion.

Concluding Remark

The path-integral derivation confirms that (i) all quantum statistical fluctuations originate from
integrating out short D3-brane excitations, (ii) they act solely in the two quaternion directions singled
out by the long-wavelength B-field, and (iii) they preserve the global P77 symmetry that secures
a real, well-behaved spectrum for the Dirac operator. These properties underlie the anomaly—free
renormalisation and the minimal phenomenological window discussed in Sections 7-9.

Appendix E. Quaternion Projection Algebra

This appendix collects the algebraic identities that justify the linear-quaternion projector Pg intro-
duced in Equation (A22) and used throughout Sections 6-7.3. All results hold at O(¢) and assume
the standard quaternion basis {ep, e1,ep,e3} = {1, i, j, k} with e;e; = —dpe0 + €apcec, e;f = —¢,
(a,b,c =1,2,3).

9 Angular brackets (- - - )gtoch denote averages over the auxiliary field.
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Appendix E.1. Internal Trace and Orthogonality
The Clifford—quaternion Hilbert space factorises as H = L?(R'3 S) ® H, so that any operator O

acting on H decomposes as

3
0=Y)Y 0Wwme,,  OW:L2(R'YPS) — L2(R'SS). (A19)
A=0
The internal trace Trin: acts only on the quaternion factor: Trine(eg) = 2, Trint(ea) = 0, Trint(eqey) =
—20,,. Hence the orthogonality relations

Trint(eaep) = 21145, Hap = diag(+1, -1, -1, -1), A,B=0,1,2,3, (A20)
provide the metric on quaternion space.

Appendix E.2. Definition of the Projector

Given (A19) the linear-quaternion slice is

2
0], := ) 01e, (A21)

a=1

i.e. we retain only the components along e; and ep, which are selected by the physical background (cf.
Equation (4)). The projector P acts as

1

3
5 Y e Trind(ea O),  PH=Pg,  Trindea Pg[O]] = Triniea O]. (A22)

a=1

Po[O] =

With (A20) one checks explicitly Pg[eg] = 0, Pglei ] = e12, Pgles] = 0.

Appendix E.3. Commutation with PT

Using the transformation rules in Appendix B, both e; and e; are P7 -even, while e3 is P T -odd.
Therefore, for any operator O,

(PT)Pg[O] (PT) ! = P[(PT)O(PT) ], (A23)
i.e. Po commutes with the global symmetry and does not spoil pseudo-Hermiticity.

Appendix E.4. Quadratic Identities

When evaluating heat-kernel densities and Noether currents one often encounters products such
as [O1]1g [02]10- Using (A21) and the quaternion algebra:

2
PQ [ [01]1Q [02]1Q] = — 2 (O%”)Og‘l))eo + 83(051)09) - ng)Ogl)), (A24)
a=1

from which three important facts follow:

(i) The scalar component (proportional to ep) never contributes to the 1Q slice: it disappears after
the projection and hence cannot spoil current conservation.

(ii) The ez component is PT-odd and is therefore eliminated whenever the integrand is constrained
to be PT-even (e.g. in the heat-kernel densities).

(iii) As a result, products of two linear-quaternion operators do not re—enter the 1Q sector—an algebraic
reason why a single counter-term I'lj[a4] suffices to cancel the anomaly at all loops (Section 7).
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Appendix E.5. Trace Identities for Heat—Kernel Coefficients

Let Dy denote the background Dirac operator and ®, (), the endomorphism and curvature
defined in Appendix C. Using (A22) one proves the selection rule

Trint[ea F(®, Q)] =0, F any polynomial in ® and (), a=1,2. (A25)

Consequently I1;5[ag] = IT1g[ap] = 0, while ITjp[as] # 0 due to the mixed R? — wa + - - - structures.
Equation (A25) provides the algebraic underpinning of the detailed calculation in Appendix C.

Synopsis

*  The projector Py isolates the PT-even, linear quaternion subspace singled out by the D3-brane
background.

*  Products of 1Q operators do not regenerate 1Q terms, explaining why a single counter-term
cancels the anomaly to all perturbative orders.

e Internal traces kill any potential mixing between the quaternionic directions and the scalar sector
up to O(e), thus preserving both pseudo-Hermiticity and renormalisability.

These identities are repeatedly used—often implicitly—in Sections 6 and 7 to streamline algebraic
manipulations and to demonstrate the minimality of the renormalisation scheme.

Appendix F. Renormalisation Constants and f—Functions

This appendix complements Section 7 by giving the explicit one-loop renormalisation con-
stants, the associated f—functions, and a compact proof that the linear—quaternion counter—term is
scheme-independent at this order.

Appendix F.1. Notation and Renormalisation Scheme

We employ dimensional regularisation in d = 4 — € and adopt the MS subtraction convention.
The bare (B) and renormalised (R) quantities are related by

_ _ B _
gy = u/? Zg 'gs, AP = ZAl A, (fn)” = anl fn, =024, (A26)

m
where the Z-factors are expanded as Z, = 1+ 2~ + O(e~2). All loop integrals are evaluated with the

PT —even projector Pg implicit.

Appendix F.2. Decomposition of the Divergent Action

The one-loop effective action can be written as

2

1 _
M=), < Can pEA* a3, [D?] + Tpin,  co=Po, 2=Po ca= P (A27)
n=0

with ap, the Seeley-DeWitt densities of Appendix C. Splitting a4 into its scalar and linear—quaternion

parts, a4 = ago) + afllQ), the divergent Lagrangian reads

€
Lgiv = % {/301\4610 + BaA%ay + By [HL(;O) + IJSQ)] } (A28)

Appendix F.3. Renormalisation Constants
Scalar sector.

Matching (A28) with the tree-level coefficients fixes

M=py, ) =p N =1ip (A29)
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The explicit values By = ﬁ, B2 = ﬁ follow from the standard heat-kernel trace.
Linear-quaternion sector.
Demanding the cancellation of Pg[ Lg;y | gives the unique solution
Ba=1, 2 =1 (A30)

All remaining Z-factors coincide with their scalar counterparts, i.e. there is no extra renormalisation of
the quaternion axes e1,2-

Appendix F.4. One—Loop p—Functions

The renormalised couplings run according to fy = y%x( H)=—€x+x y% In Z; 1. From (A29)-
(A30) we obtain
€
Be. = —5 8+ 0(s2), Ba=—A(1-182) + O(AD), (A31)
Bry,=—€fa—fa, fo =0, (A32)

where 3, denotes the running of the P77 —even linear-quaternion strength Zo = Zﬁllf4. Equation (A32)
confirms the decoupling of the quaternionic sector claimed in Section 7.

Appendix F.5. Scheme Independence of B4

(1Q)

Because a, ~ is the only divergent operator carrying a linear quaternion index, any admissible

subtraction scheme satisfies 1
1
(»Cct)( Q _ - Ba 114(;1@'

! e~ + ¢, shifts B4 — By — ¢ By, but the requirement of exact Noether

conservation (Section 6) forces the coefficient back to unity. Hence

A finite change of scheme, €~

Bs=1 = scheme independent at one loop. (A33)

Summary

e The scalar couplings f, f2, A and the string coupling gs renormalise in the standard way; their
B—functions are given by Equation (A31).

e  The quaternionic sector requires exactly one divergent coefficient, B4 = 1, cf. (A30). This fixes the
counter—term —IT;[a4] and guarantees anomaly cancellation.

e The linear—quaternion coupling does not run at one loop, By = 0, reflecting the algebraic identity
(A24).

e  The value B4 = 1is independent of the subtraction scheme, see (A33); therefore the cancellation
mechanism is universal within the effective-field-theory domain y < A.

Appendix G. Symbol Glossary

This glossary gathers all frequently—used symbols into a single, alphabetically ordered list. Each

10 and its behaviour under the

entry specifies the quantity, its physical meaning, mass dimension
global PT transformation of Appendix B. Curved indices p,v =0, ..., 3 carry mass dimension +1;

internal quaternion indices a,b = 1, 2, 3 are dimensionless.

10 We use units in whichc =# = 1.
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Symbol Meaning / Definition Dim. PT
ary Seeley-DeWitt densities of D? 2—2n +
aSQ) Linear—quaternion slice of a4 -2 +
Ay World-volume U (1) gauge field 1 -
o Regge slope () -2 +
By Background NS-NS two—-form 0 +
B Monopole strength in B;; 0 +
X Cut—off profile in the spectral action 0 +
Cons Bon One-loop coefficients / renormalisation constants 0 +
D Full Dirac operator (Dg + dD) 1 +
Dy Background Dirac operator (no noise) 1 +
6D Stochastic correction (Appendix D) 1 +
€0,1,2,3 Quaternion basis { 1,1,j,k } 0 e1p: +/e3: —
€0 Temporal activator amplitude 0 +
€] Radial activator amplitude 0 +
e(t) €p cos(wt) —— “spring” 0 +
e(r) €1/r —— “vortex” 0 +
i Krein metric (7°) 0 +
fn Spectral-action couplings 4—n +
o Flat-space Dirac matrices 1 -
Ty Enlarged Clifford generators (see Equation (17)) 1 —
Suv Closed-string (bulk) metric 0 +
Guv Open-string metric (see Equation (7)) 0 +
Gs Open-string coupling 0 +
" Quaternionic Noether currents 3 +
Ky (x) Noise kernel (see Equation (48)) —4 +
A Spectral UV cut-off 1 +
Ue Coarse—graining scale in influence functional 1 +
Quv Spin—-connection “field strength” 2 +
P Endomorphism in D? decomposition 2 +
PT Combined parity—time operator 0 —
o Pauli matrices (internal SU(2)) 0 +
Sy Spectral action 0 +
Sa Linear—quaternion source term (see Equation (38)) 4 +
(e Non-commutativity tensor -2 +
w Oscillation frequency of €(t) 1 +

Legend. “Dim.” denotes canonical mass dimension in natural units. The “P7T” column shows
each symbol’s intrinsic behavior under the global P7T prescription of Table 1: + (even), — (odd), or
“—" if the entry is itself the transformation operator.
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