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Abstract

The Online Droplet Inspection plays a vital role in close-loop control for OLED inkjet printing. However,
generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet
parameters remains challenging due to the complex, multi-factor degradation inherent to microscale
droplet imaging. To address this, we propose a physics-informed degradation model, Diffraction-
Gaussian-Motion-Noise (DGMN), that integrates Fraunhofer diffraction, defocus blur, motion blur, and
adaptive noise to replicate real-world degradation in droplet images. To optimize the multi-parameter
configuration of DGMN, we introduce MISABO (Multi-strategy Improved Subtraction-Average-Based
Optimizer), which incorporates Sobol sequence initialization for search diversity, lens opposition-
based learning (LensOBL) for enhanced accuracy, and dimension learning-based hunting (DLH)
for balanced global-local optimization. Benchmark function evaluations demonstrate that MISABO
achieves superior convergence speed and accuracy. When applied to generate synthetic droplet images
based on real droplet images captured from a self-developed OLED inkjet printer, the proposed
MISABO-optimized DGMN framework significantly improves realism, enhancing synthesis quality by
37.7% over traditional manually configured model. This work lays a solid foundation for generating
high-quality synthetic data to support droplet image restoration and downstream inkjet printing
process.

Keywords: Inkjet Printing; Physically-Informed Image Degradation; Synthetic Droplet Image Genera-
tion; Subtraction-Average-Based Optimizer; Metaheuristic; Optimization.

1. Introduction
Organic light-emitting diodes (OLEDs) have emerged as a leading innovation in modern display

technology, offering benefits including wide viewing angles, high contrast, and rapid response time,
as well as mechanical advantages such as flexibility and rollability [1]. Inkjet printing [2] stands out
as a high-potential technology for OLED manufacturing due to its cost-effectiveness, high resolution,
adaptability to diverse materials, and strong potential for producing large-area panels [3,4]. However,
a major barrier to large-scale production is the high defect rate, often caused by nozzle failures and
variations in droplet volume, which lead to Mura defects in printed panels [5]. To achieve zero-defect
manufacturing [6] in OLED inkjet printing, significant efforts have been dedicated in print planning
[7], droplet volume measurement [8], forming control [9], droplet volume control by waveform
[10], deposited droplet volume measurement [11] and other related aspects. Among these, precise
measurement of in-flight droplets is crucial for improving yield rates and minimizing defects.

Specifically, as shown in Figure 1, a closed-loop control is employed to achieve zero-defect
inkjet printing. First, the nozzles on the printhead modules eject droplets according to the planned
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printing pattern and the corresponding driving waveform. The embedded Online Droplet Inspection
System (ODIS) then inspects the in-flight droplets to assess injection status, droplet volume, velocity,
and ejection angle across all nozzles involved in the inkjet process. The measured volume of each
nozzle enables precise regulation of the inkjet driving waveform. In addition, ODIS identifies and
disables abnormal nozzles based on measured droplet parameters and provides feedback for print
planning. Together, these functions establish a vision-based closed-loop decision-making system for
the zero-defect inkjet printing process [12,13].

Figure 1. Closed-loop control for OLED inkjet printing.

Visual inspection and measurement approaches are widely deployed in the display fabrication
industry due to its visibility, precision, and reliability [8]. The commonly droplets regulated for
OLED inkjet printing are typically 1–10 pL in volume with diameters ranging from 12–26 µm and
velocities of 3–8 m/s [10], as illustrated in Figure 2. However, online droplet imaging under industrial
conditions faces multiple challenges due to limited space for optics, restricted light source power, and
strict temperature control. High-magnification systems with narrow depth of field (DOF) inherently
introduce defocus blur [14], while low light power requires longer exposure, leading to motion
blur. Increased magnification also amplifies diffraction effects, reducing resolution and introducing
diffraction blur [15]. Figure 2(c) and (d) show that the blurred edges of the droplets exceed 30 pixels
in width, indicating a complex degradation process affecting droplet detail. Therefore, advanced
deep learning-based image restoration techniques, such as denoising [16], deblurring [15] and super-
resolution [17], are essential for reconstructing droplet details, thereby enabling accurate image
segmentation and precise measurement of droplet parameters. However, training such models requires
a large volume of high-quality images, which are expensive and time-consuming to acquire. To address
this limitation, generating realistic synthetic images for data augmentation and incorporating public
datasets for training are crucial to improve restoration performance.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 July 2025 doi:10.20944/preprints202507.1872.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1872.v1
http://creativecommons.org/licenses/by/4.0/


3 of 19

Figure 2. Gray value distribution of in-flight droplet image. (a) Inkjeted droplets. (b) Zoom-in view of the droplet
size. (c) Horizontal gray value distribution of the droplet image. (d) Vertical gray value distribution of the droplet
image.

Although public datasets such as DIV2K [18], Set14 [19], and ImageNet [20] are widely used in
image restoration research, they typically simulate degradation through limited, deterministic methods
like bicubic down-sampling, blurring, or noise addition, introducing only mild distortions [21,22].
However, these solutions fail to replicate the complex and severe degradation observed in microscale
in-flight droplet images, which are influenced by multiple interacting distortion factors under unique
imaging conditions. Moreover, the absence of sharp reference images in real experimental settings
limits the direct application of supervised learning methods. Consequently, models trained solely
on public datasets often perform poorly on real droplet images. To overcome this, it is essential to
improve the realism of synthetic paired degraded images, ensuring them closely resemble actual
droplet degradation. This would enable more effective use of public datasets for training restoration
models. Nevertheless, accurately modelling such complex, multi-parameter degradation remains a
significant optimization challenge.

Metaheuristic methods are well-suited for high-dimensional optimization problems like image
degradation modelling, offering high-quality solutions and stable convergence in complex search
spaces. Various metaheuristic methods have been developed to enhance global search in engineering
[23–26], but they often face issues like local optima, slow or unstable convergence, and limited agent
diversity [27]. Premature convergence [28] and poor exploration–exploitation balance [29] further
hinder their effectiveness in complex synthetic image generation, leaving room for further research.

This study proposes the physically-informed Diffraction-Gaussian-Motion-Noise (DGMN) model
for realistic droplet image degradation, integrating Fraunhofer diffraction, Gaussian mixtures, motion
blur, and adaptive noise, specifically tailored to in-flight droplet imaging. To optimize DGMN, we
introduce MISABO, an improved optimizer combining Sobol initialization, lens opposition-based
learning (LensOBL), and dimension learning-based hunting (DLH) for enhanced global search and
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stable convergence. Validated on benchmark functions, MISABO effectively tunes DGMN parameters
for realistic synthetic droplet image generation.

The main contributions of this research are summarized as below.
1) A novel physically-informed DGMN model is constructed by integrating the diffraction,

defocus, motion, and adaptive noise degradation components, providing an accurate representation of
real-world complex degradation in droplet imaging.

2) A new composite approach, named MISABO, is introduced based on the basic SABO algo-
rithm, incorporating multiple improvement strategies. Sobol sequence initialization provides broader
coverage of search space, the LensOBL strategy enhances the fitting accuracy, and the DLH strategy
balances the global and local search capabilities.

3) The proposed MISABO-optimized DGMN framework is applied to generate synthetic droplet
images based on actual droplet images from an OLED inkjet printer developed by us, achieving more
realistic images and improved convergence performance compared to competitive methods, with a
37.79% synthetic accuracy improvement from previous solution.

This article is organized as follows. Section II presented existing works relating the image
degradation models and meta-heuristic methods. In Section III, the DGMN model is introduced, and
each component of the proposed MISABO is elaborated in detail. Section IV presents the results on
benchmark functions and real droplet images captured from a self-developed OLED inkjet printer,
along with comparative analyses. Section V provides the overall conclusion of the paper.

2. Related Works
2.1. Degradation Methods for Synthetic Image Generation

Image degradation models are widely deployed in various computer vision tasks, playing a vital
role in achieving high-quality outcomes. In most existing image super-resolution cases, degradation is
typically performed using bicubic downsampling [21,22]. While a single bicubic blur kernel oversim-
plifies real-world corruption, creating a gap between synthesized and actual images. To address this,
more complicated settings which introduced multiple predefined blur kernels or Point Spread Func-
tion (PSF) and randomized noises into the degradation model, thereby enhancing its generalization
ability [30–33]. But these methods still cannot deliver acceptable performance due to their unfitting
into real-world scenarios with deterministic presetting. Recent frameworks estimate degradation
implicitly by learning representations between low- and high-quality image pairs. Pengliang et al. [34]
used iterative back-projection (IBP) to minimize reconstruction error between normal-light sharp and
low-light images. Generative Adversarial Network (GAN)-based methods also show great potential
to generate realistic images. Manuel et al. [35] designed a DownSampleGAN (DSGAN) to generate
LR images matching HR image characteristics without paired data. But it still requires high-quality
HR images with the same noise distribution, which is not applicable in our case. Changhee et al.
[36] generate multi-sequence brain magnetic resonance images from noise using two separate GANs.
However, their approach does not align our objective of generating paired images for high-quality
training.

2.2. Metaheuristic Algorithms for Optimization

Nowadays, various metaheuristic algorithms are developed for dealing with complex engineering
problems [37–39] with inspiration from biological populations and physical phenomena, etc. Such as
the genetic algorithm [40], Particle Swarm Optimization (PSO) [41,42]. Grey Wolf Optimization (GWO)
[43], and firefly algorithm [44]. Particularly in the field of computer vision, meta-heuristic algorithms
have been developed to deal with different image processing challenges. Mohamed et al. proposed a
new hybrid approach that combines the thresholding technique with the whale optimization algorithm
and slime mold algorithm (SMA) to segment the X-ray images [26]. El-Kenawy et al. suggested squirrel
optimization algorithm to classify different cases in the X-ray images [45]. Bourouis et al. employed
the GWO to tune a Wavelet Neural Network (WNN) for breast ultrasound images classification task.
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The GWO tuned WNN yields higher classification accuracy compared to other prevailing methods
[46]. In MH-COVIDNet, PSO and GWO algorithm are deployed to select the useful features extracted
from COVID-19 image dataset by deep learning models. The obtained features are then classified
using SVM [47] for early diagnosis of the disease [48]. Based on the No Free Lunch (NFL) Theorem, no
particular optimization algorithm excels universally, performing well on some problems but worse on
others [49]. The NFL theorem motivates us to propose better solutions for the degraded droplet image
generation. Differently from the methods mentioned above proposed for processing of an obtained
image, to the best our knowledge, this is the first Metaheuristic-based realistic in-flight droplet image
synthetic method aimed at degradation characteristics alignment and effective training.

3. Methodology
In this section, the proposed physically-informed DGMN model and MISABO algorithm are intro-

duced. First, the mathematical modelling of the realistic droplet image degradation is presented. Next,
the standard SABO approach is given as basis. Following this, the flowchart and each improvement
strategy of the MISABO algorithm is explained in detail.

3.1. Physically-Informed DGMN Model of Droplet Image

A Basic Droplet Degradation Framework (BDDF) with manually configured parameters has been
introduced in our previous work [15]. However, motion blur, a significant degradation component,
was neglected, particularly in the context of high-speed in-flight within the field of view. To further
accurately represent real-world droplet features, this study refines the current droplet degradation
framework by incorporating motion blur, represented through the application of a customized kernel
to the image.

Compared to the conventional assumption of fixed additive Gaussian noise in [15], our study
models the noise level σ as a function of pixel intensity more accurately reflects real-world imaging
conditions. This approach captures signal-dependent noise characteristics such as increased noise in
brighter regions due to photon shot or Poisson noise, and reduced noise in darker areas, thus more
realistically simulating sensor-related phenomena like non-uniform photoresponse, readout noise, and
illumination-dependent degradation. Here, a straightforward linear intensity-dependent noise model
is employed with a fixed maximum standard deviation σmax=0.031 and minimum of σmin=0.009, as the
imaging illumination conditions remain highly stable. The intensity-dependent noise model is defined
as follows:

σ(Im(x, y)) = σmin + (σmax − σmin) ·
Im(x, y)−min(Im)

max(Im)−min(Im)
(1)

As illustrated in Figure 3, the ideal droplet image Is is sequentially downgraded by diffraction,
defocus blur, motion blur, and adaptive noise, resulting in the degraded droplet image Id. The entire
DGMN model of droplet image can be represented as follows:

Id(x, y) = V ∗
(

M

∑
m=1

αmGm

)
∗ (D ∗ Is(x, y))

+ N
(

0, σ(Im(x, y))2
) (2)

In (2), ∗ denotes convolution operator, V is the motion kernel, Gm is the mth Gaussian kernel
among M mixed Gaussian kernels, and αm is the corresponding weight, D represents the diffraction
kernel, and N is the intensity-dependent noise.

Specifically, the motion kernel V is constructed as following steps: First, initialize a zero matrix V
of size N × N. Then, calculate the direction vector by (3) with defined motion direction angle θ.

dx = cos
( π

180
· θ
)

, dy = sin
( π

180
· θ
)

(3)
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Figure 3. Physically-Informed DGMN degradation model for droplet images.

Second, compute the corresponding position for the motion as follows:

x′ = round
(
xi · dx + yj · dy

)
y′ = round

(
yj · dy− xi · dx

) (4)

Where the xi, yi is the offset from the center of the kernel with xi = i− N−1
2 , yj = j− N−1

2 , i, j range
from 0 to N − 1.

After that, for each element V[i, j], set:

V[i, j] =

 1
N , if 0 ≤ x′ ≤ N and 0 ≤ y′ ≤ N

0, otherwise
(5)

Last, normalize the motion kernel V to maintain the brightness of the image during downgrade.

3.2. SABO Algorithm

The Subtraction-Average-Based Optimizer (SABO) is a novel metaheuristic algorithm that utilizes
the subtraction average to update the positions of search agents, enabling less control parameters and
efficient exploration [50]. However, SABO still has several limitations, including uneven initial agent
distribution that hinders global exploration, and random parameters that can cause instability. These
issues may lead to premature convergence and increase the risk of getting trapped in local optima,
particularly in complex or multimodal optimization tasks.

3.3. The Proposed MISABO Algorithm

To tackle the above issue, MISABO is proposed in this research by incorporating multiple im-
provement strategies. Specifically, the core structure of our approach involves the following steps:
Sobol sequence initialization, LensOBL, and the DLH search strategy.

3.3.1. Sobol Sequence Initialization

To enhance global search, our study uses Sobol sequences, also known as quasi-Monte Carlo,
for uncertainty and sensitivity analysis. These low-discrepancy samples improve sampling efficiency
within the search space, offering better performance, particularly in high-dimensional optimization
problems [51]. Sobol sequence initialization yields more evenly and broadly distributed points than
the points from random number initialization, enhancing coverage across the search space.

3.3.2. Lens Opposition Based Learning

In the population iteration phase of the SABO, it is susceptible to getting trapped in local optima,
leading to iteration stagnation. To address this, this paper introduces the LensOBL strategy, which
helps individuals escape local optima and improves the fitting accuracy [52]. Figure 4 illustrates the
concept of LensOBL strategy in a one-dimensional space.
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Figure 4. The schematic of LensOBL.

In Figure 4, AB represents the lens, and an object Q is positioned on the left side of the lens, whose
height is h. Through the lens, the Q has an opposite image Q* with height h∗, whose projection on the
X-axis is located at x∗. The positional relationship between Q and Q* is described by (6) as follows:

(lb + ub)/2− x
x∗ − (lb + ub)/2

=
h
h∗

(6)

Let k = h/h∗, the opposite point x∗ will be:

x∗ =
(lb + ub)/2− x

k
+ (lb + ub)/2 (7)

When k = 1, (7) can be simplified as following (8), which is the formula of basic Opposition-Based
Learning (OBL) strategy [53]:

x∗ = lb + ub− x (8)

Based on the above, OBL is a special case of LensOBL, which adaptively adjusts parameter k
to generate dynamic reverse solutions. This flexibility enhances the exploitation capability of search
agents compared to the fixed reverse solution in standard OBL. In our study, we define the parameter
k as being self-adaptively increased based on the number of iterations as follows:

k =

(
1 +

(
t
T

)0.5
)10

(9)

Where t is the current iteration, and T is the total iteration count.
If the new candidate calculated from LensOBL offers a better fitness value, Xi is replaced by it.

Otherwise, Xi holds.

Xi,Lens(t + 1) =

Xi,Lens(t), if Fiti,Lens ≤ Fiti

Xi(t), otherwise
(10)

3.3.3. DLH Search Strategy

DLH is an optimization strategy that enhances search efficiency by focusing on specific dimensions
and constructing local regions where agents share information about optimal or nearby solutions, thus
avoiding local optima [29]. First, the neighborhood Ni(t) of agent Xi(t) is defined as:

Ni(t) =
{

Xj(t)
∣∣ Di

(
Xi(t), Xj(t)

)
≤ Ri(t),

Xj(t) ∈ X
} (11)

Where Ri(t) is the Euclidean distance between Xi(t) and Xi(t + 1).
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Algorithm 1 MISABO Algorithm

1: Define the boundaries for D dimensions
2: Implement Sobel Sequence Initialization
3: while t < T do
4: Calculate the fitness of each Xi
5: for i = 1 to N do
6: Generate the new SABO candidate by [50]
7: Check the bounds
8: Apply SABO selection and get Xi,SABO(t + 1)
9: Apply LensOBL operator by (7) and (9)

10: Check the bounds
11: Apply LensOBL selection by (10)
12: Compute the neighborhood radius
13: Construct the neighborhood of Xi
14: for d = 1 to D do
15: Implement DLH search by (12)
16: end for
17: Check the bounds
18: Apply DLH selection by (13)
19: end for
20: Select the fittest agent from X as current position
21: t← t + 1
22: end while

Then, multi-dimensional neighborhood learning is carried out as:

Xi,DLH,d(t + 1) = Xi,d(t)

+ rand× (Xn,d(t)− Xr,d(t))
(12)

Where the Xi,DLH,d(t + 1) denotes the dth dimension of Xi,DLH, Xn,d(t) is the dth dimension of the
random agent from the corresponding neighborhood Ni(t), and Xr,d(t) is the dth dimension of the
random agent from the population X.

At last, update the search agents as follows:

Xi,DLH(t + 1) =

Xi,DLH(t), if Fiti,DLH ≤ Fiti

Xi(t), otherwise
(13)

3.3.4. MISABO Algorithm Flow

The pseudocode of MISABO algorithm is presented in Algorithm 1, where t is the current iteration
count, T is the maximum iteration, N is the population size, D is the population dimension.

4. Experiments and Results
This section verifies the performance of the proposed method through various benchmark evalua-

tions, experiments, and ablation studies, followed by comparisons with other competitive metaheuristic
methods, including the original SABO as baseline, SCA [54], and SFO [55]. All the experiments are
conducted on an ADVANTECH industrial PC with Intel Xeon E5 CPU and 32GB RAM.

4.1. Performance of MISABO on Benchmark Functions

A set of typical benchmark functions is employed, including unimodal functions (F1 - F4) and
multimodal functions (F5 - F8) as shown in Table 1, to evaluate the performance of the proposed
MISABO. Unimodal functions test convergence speed and accuracy, while multimodal functions assess
global search ability. Each method was independently run 50 times across all benchmark functions,
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with a population size of 50 and 500 iterations. The applied performance metrics include mean (average
performance), standard deviation (stability), and best/worst values (accuracy).

Table 1. Benchmark Functions Used in Evaluation

Function Range fmin
F1(x) = ∑n

i=1 x2
i [−100, 100] 0

F2(x) = ∑n
i=1 |xi|+ ∏n

i=1 |xi| [−10, 10] 0

F3(x) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 0
F5(x) = ∑n

i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 0

F6(x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e

[−32, 32] 0

F7(x) = 1
4000 ∑n

i=1 x2
i

−∏n
i=1 cos

(
xi√

i

)
+ 1

[−600, 600] 0

F8(x) = π
n

[
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2

×
(
1 + 10 sin2(πyi+1)

)
+ (yn − 1)2

]
+∑n

i=1 u(xi, 10, 100, 4)
where yi = 1 + xi+1

4 , and

u(xi, a, k, m) =


k(xi − a)m, xi > a
0, |xi| ≤ a
k(−xi − a)m, xi < −a

[−50, 50] 0

Table 2 shows that MISABO outperforms other competitive algorithms, reaching theoretical
optima on F1 - F5 and F7, and significantly improving accuracy over SABO on F6 and F8. Although not
optimal on F6 and F8, it achieves the closest results. MISABO also shows strong convergence stability,
with lower standard deviations than SFO, and SCA. Compared to SABO, it improves stability on F1 -
F4 and enhances F8 by three orders of magnitude, validating the effectiveness of the multi-strategy
design.
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Table 2. Optimization Results of Benchmark Functions

Function Metric MISABO SABO SCA SFO

F1

mean 0.00E+00 8.50E-201 4.36E+00 1.39E-18
std 0.00E+00 0.00E+00 6.97E+00 3.25E-18
best 0.00E+00 9.50E-204 4.24E-02 1.09E-21

worst 0.00E+00 9.45E-200 3.12E+01 1.66E-17

F2

mean 0.00E+00 1.38E-113 7.91E-03 1.52E-19
std 0.00E+00 4.04E-113 1.25E-02 6.80E-09
best 0.00E+00 4.14E-115 3.72E-04 7.52E-11

worst 0.00E+00 2.19E-112 5.67E-02 3.13E-08

F3

mean 0.00E+00 1.96E-30 5.49E+03 5.03E-16
std 0.00E+00 1.06E-29 4.15E+03 8.83E-16
best 0.00E+00 5.50E-83 4.25E+02 9.04E-20

worst 0.00E+00 5.83E-29 1.69E+04 4.04E-15

F4

mean 0.00E+00 9.36E-78 2.62E-01 2.11E-10
std 0.00E+00 1.32E-77 1.12E-01 2.60E-10
best 0.00E+00 5.62E-79 2.32E+00 3.62E-12

worst 0.00E+00 4.82E-77 4.43E+01 1.11E-09

F5

mean 0.00E+00 0.00E+00 3.09E+01 0.00E+00
std 0.00E+00 0.00E+00 3.14E+01 0.00E+00
best 0.00E+00 0.00E+00 6.07E-04 0.00E+00

worst 0.00E+00 0.00E+00 9.06E+01 0.00E+00

F6

mean 4.44E-16 3.99E-15 1.18E-01 5.87E-10
std 0.00E+00 0.00E+00 9.46E+00 6.32E-10
best 4.44E-16 3.99E-15 8.22E-03 9.52E-12

worst 4.44E-16 3.99E-15 2.04E-01 2.23E-09

F7

mean 0.00E+00 0.00E+00 7.78E-01 0.00E+00
std 0.00E+00 0.00E+00 2.28E-01 0.00E+00
best 0.00E+00 0.00E+00 2.72E-01 0.00E+00

worst 0.00E+00 0.00E+00 1.09E+00 0.00E+00

F8

mean 7.08E-04 1.72E-01 1.36E+01 3.62E-01
std 2.46E-04 7.08E-02 2.64E+01 3.53E-01
best 3.56E-04 5.88E-02 9.46E-01 7.91E-04

worst 1.50E-03 3.52E-01 1.43E+02 1.33E+00

To analyze the accuracy and convergence speed of MISABO, this study presents the convergence
curves across all benchmark functions in Figure 5, showing that the MISABO consistently achieves
the steepest convergence curves and highest accuracy across functions F1 to F8. It outperforms other
methods in both unimodal and multimodal functions, reaching optimal or near-optimal solutions
faster. Even when not ideal, MISABO maintains superior performance, making it the most effective
algorithm among all evaluated.
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Figure 5. Iterative results on benchmark functions.

4.2. Performance of Synthetic Droplet Image Generation
4.2.1. Experimental Setup

To evaluate the proposed method for high-quality droplet image generation, the proposed
MISABO-optimized DGMN framework is deployed on our NEJ-PTG6H OLED inkjet printer, jointly
developed by Huazhong University of Science & Technology and Wuhan National Innovation Tech-
nology Optoelectronics Equipment Co., Ltd (Figure 6). The printer features multiple Konica KM1800i
print heads with YZ degrees of freedom (DOFs), each containing 1776 nozzles, and an X-DOF platform
for panel placement. Through coordinated motion and control, the system prints functional OLED
layers, such as TFE and color filters.
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Figure 6. NEJ-PTG6H inkjet printing equipment. (a) Overview of the printing equipment; (b) Inside of the inkjet
printer; (c) Close view of the ODIS system.

An ODIS, equipped with X DOF, includes a HIKROBOT industrial camera (MV-CH120-10GM,
4096× 3000 resolution), a Navitar 12× zoom lens, and a high-power LED. The camera uses a 1 µs
exposure time with constant backlighting to capture high-speed shadowgraph images of droplets in
flight, as shown in Figure 7. Utilizing known nozzle coordinates and DOF cooperation, all nozzles are
inspected to measure droplet volume and speed, and to identify abnormal nozzles for print planning
and nozzle waveform regulation. Based on this setup, each print head is moved to the ODIS system
for inspection. Nozzles eject droplets at 14kHz, and multiple droplets are captured for measurement.
After the current nozzle set is inspected, the remaining nozzles are scanned sequentially along the XY
DOF to complete the droplet image collection.

4.2.2. Evaluation Metrics

In our study, the Deep Image Structure and Texture Similarity (DISTS) [56] Metric is adopted to
assess the synthetic image quality for degradation pattern alignment. Unlike traditional pixel-level
metrics, DISTS evaluates perceptual similarity by comparing structural and textural information in the
deep feature space between two images, yielding values in [0, 1], which are converted such that lower
scores indicate better alignment in our study.

4.2.3. Experimental Results

Experiments were conducted on 10 real droplet images (230× 230), labeled X1 to X9 in Figure 7.
MISABO and other algorithms optimized the DGMN model using paired synthetic and real droplet
images. All search agents were normalized to (0, 100) before optimization and denormalized for DISTS
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Figure 7. Examples of captured in-flight droplets image.

evaluation. Each algorithm ran independently on all images with 15 agents over 50 iterations. Table 3
details the DGMN control parameters and their levels.

Table 3. Control Parameters and Their Value Ranges in the DGMN Model

Parameter Value Range
Lense NA [0.028, 0.151]
Diffraction kernel size kd [11, 131]
Diffraction kernel scale ks [0.08, 1]
Mixed Gaussian kernel size Gk [21, 121]
Mixed Gaussian kernel sigma Gs [1, 10]
Motion kernel size kv [35, 50]
Droplet flying angle θ [80◦, 100◦]

Figure 8 illustrates the convergence performance of the proposed MISABO algorithm in com-
parison with other optimization methods applied to the DGMN model for synthetic droplet image
generation. As shown, MISABO consistently outperforms its competitors in final DISTS values across
all image cases and presents better convergence speed in most images. For instance, in images X1 and
X7, MISABO minimizes the distribution error within approximately 20 iterations. In images X3, X4,
and X8, it achieves the lowest DISTS among all methods in just 5 iterations. For images X5 and X6,
MISABO demonstrates effective multi-step convergence, producing the best degradation simulations
after 40 iterations. In image X9, MISABO yields a significantly lower final DISTS after 50 iterations
compared to other algorithms. The optimization results across all image cases, summarized in Table 4,
further confirms that MISABO delivers superior performance in synthetic droplet image generation.

Table 4. DISTS of Each Algorithm in Synthetic Droplet Image Generation, *Method in [15]

Image MISABO SABO SCA SFO Baseline*
X1 0.1665 0.1681 0.1669 0.1686 0.2806
X2 0.1658 0.1668 0.1664 0.1669 0.2703
X3 0.1895 0.1901 0.1905 0.1908 0.2734
X4 0.2049 0.2056 0.2060 0.2071 0.2714
X5 0.1777 0.1782 0.1784 0.1812 0.2831
X6 0.2195 0.2200 0.2211 0.2198 0.2780
X7 0.1559 0.1563 0.1566 0.1570 0.2854
X8 0.1781 0.1792 0.1785 0.1790 0.2758
X9 0.0992 0.1004 0.1016 0.1008 0.2851

Average 0.1730 0.1739 0.1740 0.1746 0.2781
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Figure 8. Convergence trends by the proposed MISABO and its competitors applied to DGMN for synthetic
droplet image generation.

4.3. Ablation study

In this subsection, we validate the impact of the integrated strategies on the synthetic droplet
image generation. For the degradation model ablation study, BDDF [15] serves as the baseline (M1).
M2 augments M1 with motion blur, while M3 replaces M1’s fixed Gaussian noise with intensity-
dependent noise. M4, the proposed DGMN model, combines both improvements from M2 and M3.
For the optimization method ablation, the SABO [50] is used as the baseline. V1 integrates Sobol
initialization into SABO, V2 builds on V1 by incorporating LensOBL, and V3 (MISABO) further adds
DLH to V2.

4.3.1. Effectiveness of the Proposed DGMN Model

We verified the effectiveness of the DGMN formulation with parameters optimized by our
proposed MISABO in Table 5. It shows that adding motion blur (M2) to M1 results in a 0.0021
reduction in DISTS. Replacing the fixed Gaussian noise with intensity-dependent noise (M3) also
yields a 0.0134 DISTS decrease, demonstrating the value of adaptive noise for improved degradation
alignment. The combined model, M4 (DGMN), achieves the lowest DISTS with a total reduction of
0.0175, confirming the synergistic benefit of integrating both strategies. In summary, our method
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(DGMN-MISABO) achieves the most accurate degradation alignment, outperforming the BDDF with
manually configured parameters and BDDF optimized by MISABO by 37.79% and 9.19%, respectively.

Table 5. Ablation Studies of the Proposed MISABO-optimized DGMN Model. M1: (B) Basic Droplet Degradation
Framework; M2: M1 + Motion Blur; M3: M1 + Adaptive Noise; M4: (D) DGMN; *M1 with manually configured
parameters in [15].

Methods M1 M2 M3 M4 (Ours)
B ✓ ✓ ✓ ✓

Motion Blur ✓ ✓

Adaptive Noise ✓ ✓

DISTS 0.2781∗/0.1905 0.1884 0.1771 0.1730

Figure 9 presents synthetic images generated by the BDDF and DGMN models using the best-
performing parameter sets obtained either manually or via MISABO, with corresponding DISTS scores
shown at the bottom right of each image. The close visual similarity between the DGMN-MISABO
results and real droplet images demonstrates the effectiveness of the proposed framework.

Figure 9. Examples of Synthetic Droplet Images and Real droplet Images (right).

4.3.2. Effectiveness of Integrated Strategies in MISABO

Table 6 shows performance improvements after each strategy integrated for optimization when
applied to our proposed DGMN. Comparing V1 (SABO) and V2, Sobol initialization leads to a 0.0002
DISTS reduction based on M3. Adding LensOBL (V2 to V3) brings an additional 0.0004 DISTS
decrement, showing its effectiveness in avoiding local optima. Further integrating DLH (V3 to V4)
results in a DISTS decrease of 0.0003, highlighting its role in balancing global and local searches for
better degradation alignment and providing more realistic synthetic images.
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Table 6. Ablation Studies of Integrated Strategies in MISABO. V1: (S) SABO; V2: V1 + Sobol Initialization; V3: V2
+ LensOBL; V4: V3 + DLH.

Methods V1 V2 V3 V4
S ✓ ✓ ✓ ✓

Sobol ✓ ✓ ✓

LensOBL ✓ ✓

DLH ✓

DISTS 0.1739 0.1737 0.1733 0.1730

5. Conclusion
This paper presents a physically-informed DGMN model for generating realistically degraded

droplet images by integrating diffraction, defocus, motion, and adaptive noise, tailored to the ODIS’s
imaging conditions. To optimize DGMN parameters, we develop MISABO, which incorporates Sobol
initialization, LensOBL, and DLH to enhance diversity, avoid local optima, and balance search strate-
gies. Benchmark results demonstrate MISABO’s superior convergence and accuracy. Experiments
show that MISABO-optimized DGMN framework improves synthetic accuracy by 37.79% over manu-
ally configured BDDF. Ablation studies confirm the effectiveness of each integrated strategy. This study
focuses on realistic droplet image generation, and future work will involve constructing a synthetic
dataset using MISABO-optimized DGMN to train image restoration models, ultimately improving the
accuracy of ODIS and inkjet printing performance.
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