
Article Not peer-reviewed version

Reconfigurable Smart-Pixel-Based

Optical Convolutional Neural Networks

Using Crossbar Switches: A Conceptual

Study

Young-Gu Ju *

Posted Date: 22 July 2025

doi: 10.20944/preprints202507.1851.v1

Keywords: optical neural network; convolution; smart pixel; crossbar switch

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1754582

Article

Reconfigurable Smart-Pixel-Based Optical

Convolutional Neural Networks Using Crossbar

Switches: A Conceptual Study

Young-Gu Ju

Department of Physics Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566,

Republic of Korea; ygju@knu.ac.kr; Tel.: 82-53-950-5894

Abstract

This study presents a reconfigurable optical convolutional neural network (CNN) architecture that

integrates a crossbar switch network into a smart-pixel-based optical CNN (SPOCNN) framework.

The SPOCNN leverages smart pixel light modulators (SPLMs), enabling high-speed and massively

parallel optical computation. To address the challenge of data rearrangement between CNN layers—

especially in multi-channel and deep-layer processing—a crossbar switch network is introduced to

perform dynamic spatial permutation and multicast operations efficiently. This integration

significantly reduces the number of processing steps required for core operations such as

convolution, max pooling, and local response normalization, enhancing throughput and scalability.

The architecture also supports bidirectional data flow and modular expansion, allowing the

simulation of deeper networks within limited hardware layers. Performance analysis based on an

AlexNet-style CNN indicates that the proposed system can complete inference in fewer than 100

instruction cycles, achieving processing speeds of over 1 million frames per second. The proposed

architecture offers a promising solution for real-time optical AI applications. Further development of

hardware prototypes and co-optimization strategies between algorithms and optical hardware is

suggested to fully harness its capabilities.

Keywords: optical neural network; convolution; smart pixel; crossbar switch

1. Introduction

In recent years, convolutional neural networks (CNNs) have achieved remarkable progress in

various fields such as image recognition, audio processing, and natural language understanding,

owing to their powerful pattern recognition capabilities and hierarchical feature extraction

mechanisms [1,2]. CNNs operate by applying a series of convolutional kernels to input data, allowing

the network to extract spatial and temporal features [3]. As the demand for more complex CNN

architectures grows, challenges related to computational speed, scalability, and energy consumption

have become increasingly significant, especially in real-time inference scenarios and edge computing

environments.

Conventional electronic processors such as graphics processing units and tensor processing

units (TPUs) have been widely used to accelerate CNN operations [4]. However, these electronic

systems often face inherent limitations, including high power consumption [5], restricted memory

bandwidth [6], and latency caused by data transfers and synchronization processes [7]. Additionally,

scaling large CNN models across multiple processing units introduces significant interconnect

bottlenecks, leading to further inefficiencies in real-time processing tasks [8]. Consequently,

alternative computing architectures have been actively explored to address these challenges.

One promising alternative is optical computing, which leverages the inherent parallelism and

high bandwidth of light to perform computations at the speed of light while significantly reducing

power consumption. Traditional optical CNN implementations have primarily employed 4f

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 14

correlator systems [9–12] that utilize Fourier optics to perform convolutions [13]. Despite their ability

to execute parallel convolutions, 4f correlator-based systems face several drawbacks, including

limited scalability imposed by the finite space-bandwidth product of optical components [9],

geometric aberrations, and the slow refresh rates of spatial light modulators (SLMs) used for kernel

pattern generation.

To overcome these limitations, previous studies have introduced scalable optical convolutional

neural network (SOCNN) architectures based on free-space optics using lens arrays and spatial light

modulators [14–16]. These architectures allow for scalable input sizes and direct kernel

representation, mitigating some challenges of the 4f correlator systems. However, SLM-based

systems still suffer from slow refresh rates, typically operating in the kilohertz range [17,18], which

restricts their ability to support real-time weight updates and dynamic kernel reconfiguration.

Smart-pixel-based optical convolutional neural networks (SPOCNNs) have been proposed as a

further advancement, replacing SLMs with smart pixel light modulators (SPLMs) that integrate

photodetectors, electronic processors, and light-emitting diodes within each pixel [19–21]. The

inclusion of electronic processors and memory within SPLMs enables rapid weight updates, reaching

refresh rates in the hundreds of megahertz, while maintaining optical parallelism. SPOCNNs not

only enhance reconfigurability and scalability but also simplify the optical design by reducing

alignment complexities and eliminating the need for coherent light sources.

While SPOCNNs provide significant improvements, one remaining challenge lies in efficiently

managing data rearrangement between convolutional layers, particularly when dealing with multi-

page data formats such as color image channels or high-dimensional feature maps. The conventional

SPOCNN architecture may require multiple sequential steps or complex spatial transformations to

reorganize data for the subsequent convolutional layers, leading to additional latency and

diminished parallel processing benefits.

To address this challenge, this study proposes a novel conceptual architecture that integrates a

crossbar switching network into the smart-pixel-based optical CNN framework. The crossbar switch

enables multicast and efficient spatial permutation of data between layers, allowing arbitrary

reorganization of output data to align with the input format of subsequent convolutional layers. This

integration significantly reduces the number of sequential processing steps required for data

reorganization and enhances the overall parallel processing capability of the system.

By leveraging the high-speed reconfigurability of SPLMs and the flexible connectivity of

crossbar switches, the proposed architecture offers a promising pathway toward highly scalable and

efficient optical CNNs capable of handling complex multi-layer structures with minimal latency. The

following sections will present a detailed conceptual design of the proposed system, analyze its

operational principles, and discuss its potential advantages over existing architectures.

2. Materials and Methods

To explain the architecture of the SPOCNN incorporating crossbar switches, it is essential to first

examine the structure and operation of a typical CNN. We aim to demonstrate how the SPOCNN,

along with crossbar switches, can be employed to implement conventional CNN procedures. The

general CNN architecture is illustrated in Figure 1, and the detailed layer specifications—including

input, output, and kernel array sizes—are summarized in Table 1 [22]. This layer configuration

closely resembles that of AlexNet.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 14

Figure 1. Schematic representation of a typical CNN architecture, including fully connected (FC) layers and local

response normalization (LRN).

Table 1. Summary of the full layer architecture of the AlexNet model [22], including input size, convolutional,

pooling, normalization, and fully connected layers, along with their respective kernel sizes, strides, paddings,

and output dimensions.

Layer Type Kernel Size / Stride Padding Output Size Remarks

Input Input Image - - 227×227×3 RGB image

Conv1 Convolution 11×11×3 / 4 0 55×55×96

LRN1 Normalization - - 55×55×96 Window size =5

Pool1 Max Pooling 3×3 / 2 0 27×27×96

Conv2 Convolution 5×5×48 / 1 2 27×27×256 Group split

LRN2 Normalization - - 27×27×256 Window size =5

Pool2 Max Pooling 3×3 / 2 0 13×13×256

Conv3 Convolution 3×3×128 / 1 1 13×13×384

Conv4 Convolution 3×3×192 / 1 1 13×13×384 Group split

Conv5 Convolution 3×3×192 / 1 1 13×13×256 Group split

Pool5 Max Pooling 3×3 / 2 0 6×6×256

FC6 Fully Connected - - 4096
Flattened input size:

6×6×256 = 9216

FC7 Fully Connected - - 4096

FC8 Fully Connected - - 1000 Softmax output

Suppose that the SPOCNN architecture shown in Figure 2 is used to implement the layer

structure described in Table 1. The first convolutional layer, Conv1, receives three input images (R,

G, B), each with a resolution of 227 × 227, and produces 96 output feature maps of size 55 × 55 when

using an 11 × 11 kernel with a stride of 4. One approach to performing convolution with SPOCNN is

to process one image at a time, storing the outputs for all 96 filters. After processing the R image, the

same procedure is applied to the G and B images. This results in a total of 96 × 3 sequential steps for

the Conv1 layer.

The number of operations per step is (227 × 227) × (11 × 11), requiring a minimum SPLM array

size of 2,497 × 2,497 to process the entire input image without fragmentation. If such a large SPLM

array is unavailable, the input must be divided into smaller patches and recombined, as described in

the transverse scaling method using SPLM memory [21], which increases the number of steps and

introduces processing delays.

Although this method leverages the optical parallelism of SPOCNN, it does not fully exploit its

potential. One of SPOCNN’s key advantages is its ability to handle arbitrarily large input and output

arrays. However, the method above limits the input size to 227 × 227. This limitation becomes more

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 14

pronounced in subsequent layers, such as Conv2. The Conv2 layer receives input of size 27 × 27 × 96

and produces output of size 27 × 27 × 256 using 5 × 5 kernels. In this case, the required SPLM array

size is only 135 × 135—significantly smaller than the 2,497 × 2,497 needed for Conv1.

If an SPLM array of 2,497 × 2,497 is allocated for Conv1, most of the array would remain idle

during Conv2. To improve resource utilization and parallel throughput, feature maps from the 27 ×

27 input array can be duplicated and tiled into a larger 2,497 × 2,497 array. For example, 96 feature

maps can be arranged in a 12 × 8 macro-array, where each sub-array is 27 × 27. This results in a

composite array of size 324 × 216 pixels, requiring a 1,620 × 1,080 SPLM array when accounting for

the 5 × 5 kernel size. Tiling in this way significantly improves SPLM utilization and throughput.

However, transferring data from the original 27 × 27 input to the 324 × 216 tiled output is feasible

but inefficient in SPOCNN. As shown in Figure 2, the maximum data transfer range is limited by half

the kernel size. If the maximum kernel size is 11, the step size is only 5, requiring 30 sequential moves

to shift the data to the farthest tile. Moreover, data replication and movement are not inherently

parallel operations and demand additional algorithmic complexity. This issue of data rearrangement

commonly arises between layers—especially when the data format changes substantially.

Figure 2. Example schematic of a multilayer SPOCNN illustrating its layer-wise optical computing framework.

Example schematic of a multilayer SPOCNN illustrating its layer-wise optical computing framework. LD, PD,

EP, and SPLM represent the light source, photodetector, electronic processor, and smart pixel light modulator,

respectively. The superscript denotes the layer number, and LD′ indicates the backward light source. 𝑎𝑖
(𝑗)

indicates the i-th neural network node in the j-th layer [21].

To address the issue of data rearrangement between layers, we introduce a crossbar switch

network positioned either between convolutional layers or directly after the output nodes, as

illustrated in Figure 3(a). The crossbar switch is a well-established component in communication and

computer network systems, and it exists in both electronic and optical forms [23–26]. When a switch

is turned ON, the corresponding horizontal line connects electrically to the vertical line at the crossing

point. Since the crossbar switch forms a two-dimensional matrix, each crossing point can be

individually turned ON or OFF, with its state programmable through data stored in memory.

For example, if the output node 𝑎𝑖
(1)

 is connected to a horizontal wire and the crossbar switch

at position (i, j) is ON, then 𝑎𝑖
(1)

 is routed to 𝑎𝑗
(2)

. If multiple switches in a row are ON while others

remain OFF, the input signal is sent to multiple outputs simultaneously—this is referred to as

multicast [24–26]. If only one switch in a row is ON, the signal is routed to a single output—this is

called unicast. When multiple switches in the same column are ON, it results in contention or an

output conflict, which is typically undesirable and requires scheduling or arbitration mechanisms.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 14

In cases where the output is treated as current, simultaneous activation of multiple switches in

a column may be interpreted as a summation operation. However, this current-based addition is

excluded from consideration for now. Such scenarios are better managed using merge connections,

where inputs are sequentially linked to a shared output via unicast operations. Although this

approach introduces delays due to serialization, merge operations can still be useful for

implementing certain algorithms.

A particularly valuable case is when N input lines are connected to N output lines via unicast

connections exclusively. In this configuration, the crossbar switch effectively performs a permutation,

enabling arbitrary rearrangement of input data at the output. This is highly beneficial for

reformatting data between layers in the SPOCNN architecture.

The physical layout of the SPOCNN integrated with a crossbar switch network is shown in

Figure 3(b), and a 3D view of the configuration is presented in Figure 3(c). The 3D schematic

illustrates how horizontal and vertical crossbar switch planes interconnect to support the

rearrangement of two-dimensional arrays of neural network nodes. Each horizontal plane receives

inputs from a row of output nodes in the previous layer and reorganizes the data sequence, while

each vertical plane performs vertical rearrangement.

Buffers or bypass circuits can be placed between these planes or at their endpoints to store

intermediate data. These buffers can also enable reverse data transmission to the input nodes,

leveraging the bidirectional nature of the crossbar switch. This is particularly useful for bidirectional

SPOCNN architectures, such as the two-mirror-like SPOCNN [21], where data flows back and forth

between two physical layers. This design allows the emulation of an arbitrary number of virtual

layers using only two physical hardware layers.

(a)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 14

(b)

(c)

Figure 3. Optical CNN (OCNN) with integrated crossbar switch network. (a) Schematic of a CNN incorporating

a crossbar switch network. The yellow square in the crossbar switch represents memory; (b) Smart-pixel-based

optical CNN (SPOCNN) with a crossbar switch network; (c) Three-dimensional view of the SPOCNN

architecture illustrating crossbar switch integration. The horizontal and vertical crossbar planes are

interconnected via bypass circuits or intermediate buffers, with additional buffer arrays positioned at their

endpoints.

An advanced configuration that leverages the bidirectional nature of both the SPOCNN and the

crossbar switch network is illustrated in Figure 4. To control data flow between layers, additional

switches are incorporated both after the preceding layer and before the subsequent one. When the

rearranged data stored in the output buffer of the crossbar switch is routed backward to the neural

network nodes, these switches determine whether the data flows to the previous or the next layer.

Specifically, if Switch 1 is ON and Switch 2 is OFF, the data flows to the previous layer;

conversely, if Switch 1 is OFF and Switch 2 is ON, the data proceeds to the next layer. Additionally,

when all crossbar switches are OFF, the network functions in bypass mode. As a result, the crossbar

switch network in Figure 4 effectively operates as a three-way switch. In the 3D configuration, the

outputs of the next layer are connected to the horizontal crossbar switch plane through the bypass

output channels.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 14

Figure 4. Schematic diagram of a cascaded OCNN with a crossbar switch network, featuring auxiliary switches

and buffers for managing three-way data flow.

Another advantage of the switch configuration shown in Figure 4 is that it can be placed between

layers in a cascading manner along a straight path, without requiring a 90-degree change in direction.

The multilayer SPOCNN architecture incorporating crossbar switches is illustrated in Figure 5. This

configuration serves as a fundamental building block that can be repeated to form multiple physical

layers to enhance parallelism, although it can also simulate additional layers by allowing data to flow

back and forth within the same module.

In this architecture, the first layer 𝑎𝑖
(1)

, consisting of photodetectors and electronic processors

(EPs), receives input data in real time from an optical imaging device and sends its output to the first

crossbar switch (crossbar1). Crossbar1 rearranges the data and routes it to the second layer 𝑎𝑖
(2)

. The

second and third layers perform optical convolution and other operations with dense

interconnections. The resulting output is then passed through the second crossbar switch (crossbar2),

which reorganizes the data and routes it to 𝑎𝑖
(3)

. At this stage, 𝑎𝑖
(3)

 effectively becomes 𝑎𝑖
(4)

, now

using updated weights stored in memory.

Layer 𝑎𝑖
(4)

 executes another convolution or function in the reverse direction, and the resulting

output is stored on the opposite side—originally 𝑎𝑖
(2)

, now serving as 𝑎𝑖
(5)

. In this manner, the

SPOCNN architecture combined with crossbar switches can emulate a deep multilayer neural

network, enabling flexible data flow and repeated processing within a compact physical system.

In Figure 5, the core optical component is the SPOCNN architecture; however, it can be

substituted with other types of optical neural network structures, such as SPLM-based bidirectional

optical neural network (SPBONN) [27,28], which features fully connected layers rather than partially

connected ones. Multiple modules incorporating different optical cores can be cascaded to form a

more efficient system, capable of handling varying data sizes or performing diverse functions.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 14

(a)

(b)

Figure 5. Illustration of a multilayer OCNN architecture incorporating a crossbar switch network with auxiliary

switches and buffers. (a) Schematic diagram with neural network nodes. (b) Schematic diagram showing the

corresponding SPOCNN hardware implementation.

3. Results

An investigation of the layer architecture, as shown in Table 1, reveals that the CNN primarily

consists of convolution, max pooling, and local response normalization (LRN) operations applied to

feature maps of varying sizes. Consequently, understanding how these operations can be

implemented within the SPOCNN environment using crossbar switches is essential for evaluating

the efficiency of the proposed architecture.

Figure 6 illustrates how convolution is applied to feature maps in this system. This form of

convolution differs from the standard 2D convolution typically performed by SPOCNN [21]. While

SPOCNN generally processes two-dimensional data arrays, convolution on feature maps involves

depth, with both the data and kernel represented as three-dimensional arrays. In this case,

convolution must be applied to each feature map independently, and the results at corresponding

spatial coordinates must be summed across the entire depth.

In the example shown in Figure 6, the input consists of 16 feature maps, each of size 4 × 4. These

feature maps are duplicated and tiled into a 4 × 4 macro-array using the multicast function of the

crossbar switch, as depicted in the second step. A 3 × 3 kernel is then applied to each feature map,

reducing each to a 2 × 2 array while preserving the 4 × 4 macro-array structure. The crossbar switch

then uses its permutation capability to reorganize the convolution outputs into four colored sections,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 14

where each section aggregates results from different feature maps corresponding to a specific output

coordinate.

In the final step, data within each color group is summed by a convolution operation—

effectively performing a summation across the depth of the feature maps. Without this tiling and

reorganization, convolution would need to be performed separately for each feature map, followed

by 16 summations (equal to the number of feature maps). The conventional approach would require

a total of 32 steps. In contrast, the proposed method completes the same process in just four steps,

assuming the input data is pre-arranged into a tiled macro-array, as provided by the preceding layer

in this architecture. Furthermore, in the proposed architecture, the number of processing steps

remains constant regardless of the number of feature maps, whereas the conventional method scales

linearly with depth.

Figure 6. Illustration of a convolution operation on feature maps using a SPOCNN integrated with a crossbar

switch network, demonstrating the application of a single kernel across all feature maps.

The max pooling operation on feature maps using the SPOCNN with a crossbar switch is

illustrated in Figure 7. In this example, the pooling window size is 3 × 3, and the stride is 2. As a result,

the output appears every two pixels, with the gray pixels in Figure 7 representing the resulting pooled

values.

The sequence of operations is indicated by arrows of different colors. In each step, data is moved

and the max function is applied between the incoming pixel value and the current target pixel. The

numbers in parentheses indicate the sets of data involved in the max operations performed up to that

point. After four steps, all values within the 3 × 3 window are compared to determine the maximum

output.

This process is highly parallelizable. When applied to a tiled feature map, the total number of

steps remains constant at four, regardless of the input array size.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 14

Figure 7. Illustration of a max pooling operation on feature maps using a SPOCNN integrated with a crossbar

switch network. The numbers in parentheses indicate the sets of data involved in the cumulative max operations

performed up to that point. The pooling window size is 3 × 3.

The LRN operation using the SPOCNN with a crossbar switch is illustrated in Figure 8. Like

depth-wise convolution, LRN is also performed across feature maps. In the example shown in Figure

8, the normalization window size is 3.

When feature maps are tiled in a two-dimensional macro-array, the LRN operation requires

accessing pixelwise data from both the preceding and succeeding feature maps. This is achieved by

shifting each pixel’s data one map forward and one map backward within the macro-array, requiring

only two steps. This movement is made possible through the permutation functionality of the

crossbar switch.

If the normalization window size increases to 5, the number of required steps also increases

accordingly to four. In this way, LRN operations can be efficiently performed with high parallelism

using the SPOCNN architecture combined with crossbar switching.

Figure 8. Illustration of an LRN operation on feature maps using a SPOCNN integrated with a crossbar switch

network. The normalization window size is 3.

4. Discussion

In the previous sections, we described the functions of the crossbar switch and the methods for

applying it within the SPOCNN architecture to implement the three core layer operations:

convolution, max pooling, and LRN. We now analyze how many steps or instruction cycles are

required to complete the full layer architecture, as summarized in Table 1. The analysis assumes a

hardware configuration based on the schematic in Figure 5.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 14

The program begins with the first layer, which receives data in real time from an optical imaging

device. The data acquired by the detector array in the first layer is processed through electronic

processors and routed to the first crossbar switch (crossbar1). Each node in the first layer stores RGB

image data with a resolution of 227 × 227. The three color channels are multicast to form a 227 × 681

array. This array is processed simultaneously as a regional block in the convolution layer, as

illustrated in Figure 6. The process illustrated in Figure 6 corresponds to applying a single kernel

across all feature maps.

To further increase parallel throughput, multiple kernel blocks are tiled within the convolution

layer. For instance, if 96 blocks (arranged in a 12 × 8 grid) are tiled in the second layer, the entire

dataset can be processed simultaneously. Accommodating these tiled maps in two dimensions

requires an SPLM array of 29,964 × 59,928. Although this size is extremely large, we assume its

feasibility, as the SPOCNN framework does not impose a theoretical limit on array size. Multicasting

the three color maps to 96 kernel sets takes six instruction cycles—two for each color channel.

Once the tiled maps are ready, Conv1 is executed with an 11 × 11 kernel and a stride of 4, yielding

a 55 × 55 × 96 output array. This convolution layer requires three instruction cycles, as shown in Figure

6. The LRN1 layer performs normalization with a window size of 5, requiring four steps and five

instruction cycles—the additional cycle accounts for final computations using accumulated data. The

Pool1 layer performs max pooling using a 3 × 3 window and a stride of 2, following a process similar

to that shown in Figure 4. This step requires four iterations and eight instruction cycles, as each step

involves both data shifting and a max operation. Rearranging the data format after Pool1 requires a

multicast operation, which takes two additional instruction cycles.

Similarly, Conv2, LRN2, and Pool2 follow the same procedures and together require a total of

16 instruction cycles. Conv3, Conv4, and Conv5 collectively require 12 instruction cycles, as feature

maps with depths exceeding 11 × 11 require an additional cycle to perform the final summation. Pool5

requires eight instruction cycles. Including four intermediate data rearrangement operations adds

another eight instruction cycles.

Following the convolutional layers, three fully connected layers are executed. If the output nodes

from Figure 5 are connected to another module—identical in structure but incorporating an SPBONN

[28] core that performs full connectivity—with an input/output array of 128 × 128, then the FC6, FC7,

and FC8 layers can be completed in just three steps, without requiring any data rearrangement.

In total, completing the CNN described in Table 1 requires approximately 71 instruction cycles.

While this is a rough estimate, the total is expected to remain under 100 cycles. Assuming each

instruction cycle takes approximately 10 ns, the processing time for a single image frame is about 1

µs, corresponding to a throughput of 1 million frames per second. Further system optimization and

reduction of instruction cycle duration could result in even higher throughput. The analysis of

instruction cycles is summarized in Table 2.

Table 2. Instruction cycle breakdown for each stage of the AlexNet architecture implemented using the SPOCNN

framework with integrated crossbar switch networks.

Layer / Operation Description Instruction Cycles

RGB Multicast Multicast RGB images to 96 kernels (2 per channel × 3) 6

Conv1 Convolution with 11×11 kernel, stride 4 3

LRN1 Local Response Normalization, window size 5 5

Pool1 Max pooling with 3×3 window, stride 2 8

Rearrangement after Pool1 Data formatting using multicast (2 instructions) 2

Conv2 to Pool2 Conv2, LRN2, and Pool2 combined 16

Conv3 to Conv5 Convolution layers 3 to 5 12

Pool5 Max pooling layer 8

Intermediate Rearrangements 4 rearrangement operations (2 cycles each) 8

FC6 to FC8 Three fully connected layers (SPBONN) 3

Total Total instruction cycles required 71

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 14

5. Conclusions

This study introduces a reconfigurable optical convolutional neural network (CNN)

architecture—SPOCNN—enhanced by a crossbar switch network. The SPOCNN utilizes SPLMs that

integrate light sources, photodetectors, and electronic processors within each pixel. This integration

allows rapid weight updates and high-speed optical computation. While SPOCNN already improves

upon traditional optical CNNs by enabling greater scalability and speed, its data rearrangement

between layers remains a challenge—especially for multi-channel inputs and deep-layer

architectures.

To overcome this limitation, a novel integration of crossbar switches is proposed. Crossbar

switches enable efficient, programmable spatial permutation and multicast of data across neural

layers, significantly reducing the number of sequential operations required for data reformatting. The

study explores how core CNN operations—convolution, max pooling, and LRN—can be

implemented in this architecture with high parallelism. Specific examples show that complex feature

map operations traditionally requiring dozens of steps can now be completed in as few as four steps

using the crossbar-enhanced SPOCNN.

The architecture also supports bidirectional data flow and modular stacking, enabling the

simulation of deeper networks using fewer physical layers. This reconfigurable structure can

accommodate various optical cores, including fully connected optical networks such as SPBONNs,

and can efficiently handle diverse data formats and operations.

Simulation of an AlexNet-style CNN indicates that the entire network can be executed in

approximately 71 instruction cycles—potentially under 100 in worst-case scenarios—with each cycle

lasting around 10 ns. This results in an estimated processing speed of 1 million frames per second.

In conclusion, the integration of a crossbar switch network into the SPOCNN framework

provides a compelling solution to the longstanding challenge of data reorganization in optical CNNs.

This enhancement enables high-throughput, scalable, and reconfigurable deep neural network

computation in the optical domain. By efficiently implementing convolution, pooling, and

normalization operations—and leveraging the programmable, bidirectional capabilities of crossbar

switches—the proposed architecture offers a promising pathway toward real-time, low-latency

optical AI systems capable of processing frame rates exceeding 1 million frames per second. Future

work involving hardware prototyping and algorithm–hardware co-optimization will be essential to

fully realize the potential of this approach.

Funding: This research received no external funding

Data Availability Statement: The datasets generated during and/or analyzed during the current study are

available from the corresponding author on reasonable request.

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the author

contribution or funding sections. This may include administrative and technical support, or donations in kind

(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network

EP Electronic processor

LD Laser diode

LED Light-emitting diode

LRN Local response normalization

OCNN Optical convolutional neural network

PD Photo detector

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 14

SPBONN Smart-pixel-based bidirectional optical neural network

SPLM Spatial light modulator

SLM Smart pixel light modulator

SPOCNN Smart-pixel-based optical convolutional neural network

References

1. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.;

Sainath, T.N.; Kingsbury, B. Deep neural networks for acoustic modeling in speech recognition: The shared

views of four research groups IEEE Signal processing magazine 29, 82-97 (2012)

2. LeCun Y.; Bengio Y.; Hinton G. Deep learning, Nature 521, 436–444 (2015).

3. Lecun L.; Bottou L.; Bengio Y.; Haffner P. Gradient-based learning applied to document recognition

Proceedings of the IEEE 86 2278-2324 (1998)

4. Chetlur S.; Woolley C.; Vandermersch P.; Cohen J.; Tran J.; Catanzaro B.; Shelhamer E. cuDNN: efficient

primitives for deep learning, arXiv:1410.0759v3 (2014).

5. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network.

Advances in Neural Information Processing Systems, 28 (2015).

6. Rhu, M.; Gimelshein, N.; Clemons, J.; Zulfiqar, A.; Keckler, S.W. vDNN: Virtualized deep neural networks

for scalable, memory-efficient neural network design. In 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 1-13 (2016).

7. Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Shen, H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; Guestrin,

C. TVM: An au-tomated end-to-end optimizing compiler for deep learning. In 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18), 578-594 (2018).

8. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.;

Borchers, A.; Boyle, R. In-datacenter performance analysis of a tensor processing unit. In Proceedings of

the 44th Annual International Symposium on Computer Architecture, 1-12 (2017).

9. Colburn, S.; Chu, Y.; Shilzerman, E.; Majumdar, A. Optical frontend for a convolutional neural network.

Applied optics, 58 3179-3186 (2019)

10. Chang, J.; Sitzmann, V.; Dun, X.; Heidrich, W.; Wetzstein, G. Hybrid optical-electronic convolutional neural

networks with optimized diffractive optics for image classification, Scientific reports 8, 12324 (2018)

11. Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning

using diffractive deep neural networks, Science 361, 1004-1008 (2018)

12. Sui, X.; Wu, Q.; Liu, J.; Chen, Q.; Gu, G. A review of optical neural networks, IEEE Access 8, 70773-70783

(2020)

13. Goodman, J.W. Introduction to Fourier optics. Roberts and Company publishers (2005).

14. Glaser, I. Lenslet array processors, Applied Optics 21, 1271-1280 (1982)

15. Ju, Y.G. A scalable optical computer based on free-space optics using lens arrays and a spatial light

modulator. Optical and Quantum Electronics, 55, 1-21 (2023)

16. Ju, Y.G. Scalable Optical Convolutional Neural Networks Based on Free-Space Optics Using Lens Arrays

and a Spatial Light Modulator. Journal of Imaging, 2023, 9(11), p.241.

17. Cox, M.A.; Cheng, L.; Forbes, A. Digital micro-mirror devices for laser beam shaping, Proc. SPIE 11043,

Fifth Conference on Sensors, MEMS, and Electro-Optic Systems, 110430Y (2019).

18. Mihara, K.; Hanatani, K.; Ishida, T.; Komaki, K.; Takayama, R. High Driving Frequency (> 54 kHz) and

Wide Scanning An-gle (> 100 Degrees) MEMS Mirror Applying Secondary Resonance For 2K Resolution

AR/MR Glasses. 2022 IEEE 35th In-ter-national Conference on Micro Electro Mechanical Systems

Conference (MEMS), 477-482 (2022)

19. Seitz, P. Smart Pixels, PROCEEDINGS EDMO 2001 / VIENNA, 229-234 (2001)

20. Hinton, H.S., 1996. Progress in the smart pixel technologies. IEEE journal of selected topics in quantum

electronics, 2(1), pp.14-23.

21. Ju, Y.-G. A Conceptual Study of Rapidly Reconfigurable and Scalable Optical Convolutional Neural

Networks Based on Free-Space Optics Using a Smart Pixel Light Modulator. Computers 2025, 14, 111.

https://doi.org/10.3390/computers14030111

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

 14 of 14

22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural

Networks. Advances in Neural Information Processing Systems 2012, 25, 1097–1105.

23. Jahns, J., 1998. VI: Free-Space Optical Digital Computing and Interconnection. Progress in optics, 38,

pp.419-513.

24. Dally, W.J. and Towles, B.P., 2004. Principles and practices of interconnection networks. Elsevier. p. 113

25. McKeown, N., 1997. A fast switched backplane for a gigabit switched router. Business Communications

Review, 27(12), pp.1-30.

26. A. S. Hamza, J. S. Deogun and D. R. Alexander, "Free space optical multicast crossbar," in Journal of Optical

Communications and Networking, vol. 8, no. 1, pp. 1-10, 1 January 2016, doi: 10.1364/JOCN.8.000001

27. Ju, Y.G. Bidirectional Optical Neural Networks Based on Free-Space Optics Using Lens Arrays and Spatial

Light Modulator. Micromachines 2024, 15, 701. https://doi.org/10.3390/mi15060701

28. Ju, Y.-G. A Conceptual Study of Rapidly Reconfigurable and Scalable Bidirectional Optical Neural

Networks Leveraging a Smart Pixel Light Modulator. Photonics 2025, 12, 132.

https://doi.org/10.3390/photonics12020132

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

