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Abstract 

This study presents a reconfigurable optical convolutional neural network (CNN) architecture that 

integrates a crossbar switch network into a smart-pixel-based optical CNN (SPOCNN) framework. 

The SPOCNN leverages smart pixel light modulators (SPLMs), enabling high-speed and massively 

parallel optical computation. To address the challenge of data rearrangement between CNN layers—

especially in multi-channel and deep-layer processing—a crossbar switch network is introduced to 

perform dynamic spatial permutation and multicast operations efficiently. This integration 

significantly reduces the number of processing steps required for core operations such as 

convolution, max pooling, and local response normalization, enhancing throughput and scalability. 

The architecture also supports bidirectional data flow and modular expansion, allowing the 

simulation of deeper networks within limited hardware layers. Performance analysis based on an 

AlexNet-style CNN indicates that the proposed system can complete inference in fewer than 100 

instruction cycles, achieving processing speeds of over 1 million frames per second. The proposed 

architecture offers a promising solution for real-time optical AI applications. Further development of 

hardware prototypes and co-optimization strategies between algorithms and optical hardware is 

suggested to fully harness its capabilities. 

Keywords: optical neural network; convolution; smart pixel; crossbar switch 

 

1. Introduction 

In recent years, convolutional neural networks (CNNs) have achieved remarkable progress in 

various fields such as image recognition, audio processing, and natural language understanding, 

owing to their powerful pattern recognition capabilities and hierarchical feature extraction 

mechanisms [1,2]. CNNs operate by applying a series of convolutional kernels to input data, allowing 

the network to extract spatial and temporal features [3]. As the demand for more complex CNN 

architectures grows, challenges related to computational speed, scalability, and energy consumption 

have become increasingly significant, especially in real-time inference scenarios and edge computing 

environments. 

Conventional electronic processors such as graphics processing units and tensor processing 

units (TPUs) have been widely used to accelerate CNN operations [4]. However, these electronic 

systems often face inherent limitations, including high power consumption [5], restricted memory 

bandwidth [6], and latency caused by data transfers and synchronization processes [7]. Additionally, 

scaling large CNN models across multiple processing units introduces significant interconnect 

bottlenecks, leading to further inefficiencies in real-time processing tasks [8]. Consequently, 

alternative computing architectures have been actively explored to address these challenges. 

One promising alternative is optical computing, which leverages the inherent parallelism and 

high bandwidth of light to perform computations at the speed of light while significantly reducing 

power consumption. Traditional optical CNN implementations have primarily employed 4f 
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correlator systems [9–12] that utilize Fourier optics to perform convolutions [13]. Despite their ability 

to execute parallel convolutions, 4f correlator-based systems face several drawbacks, including 

limited scalability imposed by the finite space-bandwidth product of optical components [9], 

geometric aberrations, and the slow refresh rates of spatial light modulators (SLMs) used for kernel 

pattern generation. 

To overcome these limitations, previous studies have introduced scalable optical convolutional 

neural network (SOCNN) architectures based on free-space optics using lens arrays and spatial light 

modulators [14–16]. These architectures allow for scalable input sizes and direct kernel 

representation, mitigating some challenges of the 4f correlator systems. However, SLM-based 

systems still suffer from slow refresh rates, typically operating in the kilohertz range [17,18], which 

restricts their ability to support real-time weight updates and dynamic kernel reconfiguration. 

Smart-pixel-based optical convolutional neural networks (SPOCNNs) have been proposed as a 

further advancement, replacing SLMs with smart pixel light modulators (SPLMs) that integrate 

photodetectors, electronic processors, and light-emitting diodes within each pixel [19–21]. The 

inclusion of electronic processors and memory within SPLMs enables rapid weight updates, reaching 

refresh rates in the hundreds of megahertz, while maintaining optical parallelism. SPOCNNs not 

only enhance reconfigurability and scalability but also simplify the optical design by reducing 

alignment complexities and eliminating the need for coherent light sources. 

While SPOCNNs provide significant improvements, one remaining challenge lies in efficiently 

managing data rearrangement between convolutional layers, particularly when dealing with multi-

page data formats such as color image channels or high-dimensional feature maps. The conventional 

SPOCNN architecture may require multiple sequential steps or complex spatial transformations to 

reorganize data for the subsequent convolutional layers, leading to additional latency and 

diminished parallel processing benefits. 

To address this challenge, this study proposes a novel conceptual architecture that integrates a 

crossbar switching network into the smart-pixel-based optical CNN framework. The crossbar switch 

enables multicast and efficient spatial permutation of data between layers, allowing arbitrary 

reorganization of output data to align with the input format of subsequent convolutional layers. This 

integration significantly reduces the number of sequential processing steps required for data 

reorganization and enhances the overall parallel processing capability of the system. 

By leveraging the high-speed reconfigurability of SPLMs and the flexible connectivity of 

crossbar switches, the proposed architecture offers a promising pathway toward highly scalable and 

efficient optical CNNs capable of handling complex multi-layer structures with minimal latency. The 

following sections will present a detailed conceptual design of the proposed system, analyze its 

operational principles, and discuss its potential advantages over existing architectures. 

2. Materials and Methods 

To explain the architecture of the SPOCNN incorporating crossbar switches, it is essential to first 

examine the structure and operation of a typical CNN. We aim to demonstrate how the SPOCNN, 

along with crossbar switches, can be employed to implement conventional CNN procedures. The 

general CNN architecture is illustrated in Figure 1, and the detailed layer specifications—including 

input, output, and kernel array sizes—are summarized in Table 1 [22]. This layer configuration 

closely resembles that of AlexNet. 
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Figure 1. Schematic representation of a typical CNN architecture, including fully connected (FC) layers and local 

response normalization (LRN). 

Table 1. Summary of the full layer architecture of the AlexNet model [22], including input size, convolutional, 

pooling, normalization, and fully connected layers, along with their respective kernel sizes, strides, paddings, 

and output dimensions. 

Layer Type Kernel Size / Stride Padding Output Size Remarks 

Input Input Image - - 227×227×3 RGB image 

Conv1 Convolution 11×11×3 / 4 0 55×55×96  

LRN1 Normalization - - 55×55×96 Window size =5 

Pool1 Max Pooling 3×3 / 2 0 27×27×96  

Conv2 Convolution 5×5×48 / 1 2 27×27×256 Group split 

LRN2 Normalization - - 27×27×256 Window size =5 

Pool2 Max Pooling 3×3 / 2 0 13×13×256  

Conv3 Convolution 3×3×128 / 1 1 13×13×384  

Conv4 Convolution 3×3×192 / 1 1 13×13×384 Group split 

Conv5 Convolution 3×3×192 / 1 1 13×13×256 Group split 

Pool5 Max Pooling 3×3 / 2 0 6×6×256  

FC6 Fully Connected - - 4096 
Flattened input size: 

6×6×256 = 9216 

FC7 Fully Connected - - 4096  

FC8 Fully Connected - - 1000 Softmax output 

Suppose that the SPOCNN architecture shown in Figure 2 is used to implement the layer 

structure described in Table 1. The first convolutional layer, Conv1, receives three input images (R, 

G, B), each with a resolution of 227 × 227, and produces 96 output feature maps of size 55 × 55 when 

using an 11 × 11 kernel with a stride of 4. One approach to performing convolution with SPOCNN is 

to process one image at a time, storing the outputs for all 96 filters. After processing the R image, the 

same procedure is applied to the G and B images. This results in a total of 96 × 3 sequential steps for 

the Conv1 layer. 

The number of operations per step is (227 × 227) × (11 × 11), requiring a minimum SPLM array 

size of 2,497 × 2,497 to process the entire input image without fragmentation. If such a large SPLM 

array is unavailable, the input must be divided into smaller patches and recombined, as described in 

the transverse scaling method using SPLM memory [21], which increases the number of steps and 

introduces processing delays. 

Although this method leverages the optical parallelism of SPOCNN, it does not fully exploit its 

potential. One of SPOCNN’s key advantages is its ability to handle arbitrarily large input and output 

arrays. However, the method above limits the input size to 227 × 227. This limitation becomes more 
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pronounced in subsequent layers, such as Conv2. The Conv2 layer receives input of size 27 × 27 × 96 

and produces output of size 27 × 27 × 256 using 5 × 5 kernels. In this case, the required SPLM array 

size is only 135 × 135—significantly smaller than the 2,497 × 2,497 needed for Conv1. 

If an SPLM array of 2,497 × 2,497 is allocated for Conv1, most of the array would remain idle 

during Conv2. To improve resource utilization and parallel throughput, feature maps from the 27 × 

27 input array can be duplicated and tiled into a larger 2,497 × 2,497 array. For example, 96 feature 

maps can be arranged in a 12 × 8 macro-array, where each sub-array is 27 × 27. This results in a 

composite array of size 324 × 216 pixels, requiring a 1,620 × 1,080 SPLM array when accounting for 

the 5 × 5 kernel size. Tiling in this way significantly improves SPLM utilization and throughput. 

However, transferring data from the original 27 × 27 input to the 324 × 216 tiled output is feasible 

but inefficient in SPOCNN. As shown in Figure 2, the maximum data transfer range is limited by half 

the kernel size. If the maximum kernel size is 11, the step size is only 5, requiring 30 sequential moves 

to shift the data to the farthest tile. Moreover, data replication and movement are not inherently 

parallel operations and demand additional algorithmic complexity. This issue of data rearrangement 

commonly arises between layers—especially when the data format changes substantially. 

 

Figure 2. Example schematic of a multilayer SPOCNN illustrating its layer-wise optical computing framework. 

Example schematic of a multilayer SPOCNN illustrating its layer-wise optical computing framework. LD, PD, 

EP, and SPLM represent the light source, photodetector, electronic processor, and smart pixel light modulator, 

respectively. The superscript denotes the layer number, and LD′ indicates the backward light source. 𝑎𝑖
(𝑗)

 

indicates the i-th neural network node in the j-th layer [21]. 

To address the issue of data rearrangement between layers, we introduce a crossbar switch 

network positioned either between convolutional layers or directly after the output nodes, as 

illustrated in Figure 3(a). The crossbar switch is a well-established component in communication and 

computer network systems, and it exists in both electronic and optical forms [23–26]. When a switch 

is turned ON, the corresponding horizontal line connects electrically to the vertical line at the crossing 

point. Since the crossbar switch forms a two-dimensional matrix, each crossing point can be 

individually turned ON or OFF, with its state programmable through data stored in memory. 

For example, if the output node 𝑎𝑖
(1)

 is connected to a horizontal wire and the crossbar switch 

at position (i, j) is ON, then 𝑎𝑖
(1)

 is routed to 𝑎𝑗
(2)

. If multiple switches in a row are ON while others 

remain OFF, the input signal is sent to multiple outputs simultaneously—this is referred to as 

multicast [24–26]. If only one switch in a row is ON, the signal is routed to a single output—this is 

called unicast. When multiple switches in the same column are ON, it results in contention or an 

output conflict, which is typically undesirable and requires scheduling or arbitration mechanisms. 
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In cases where the output is treated as current, simultaneous activation of multiple switches in 

a column may be interpreted as a summation operation. However, this current-based addition is 

excluded from consideration for now. Such scenarios are better managed using merge connections, 

where inputs are sequentially linked to a shared output via unicast operations. Although this 

approach introduces delays due to serialization, merge operations can still be useful for 

implementing certain algorithms. 

A particularly valuable case is when N input lines are connected to N output lines via unicast 

connections exclusively. In this configuration, the crossbar switch effectively performs a permutation, 

enabling arbitrary rearrangement of input data at the output. This is highly beneficial for 

reformatting data between layers in the SPOCNN architecture. 

The physical layout of the SPOCNN integrated with a crossbar switch network is shown in 

Figure 3(b), and a 3D view of the configuration is presented in Figure 3(c). The 3D schematic 

illustrates how horizontal and vertical crossbar switch planes interconnect to support the 

rearrangement of two-dimensional arrays of neural network nodes. Each horizontal plane receives 

inputs from a row of output nodes in the previous layer and reorganizes the data sequence, while 

each vertical plane performs vertical rearrangement. 

Buffers or bypass circuits can be placed between these planes or at their endpoints to store 

intermediate data. These buffers can also enable reverse data transmission to the input nodes, 

leveraging the bidirectional nature of the crossbar switch. This is particularly useful for bidirectional 

SPOCNN architectures, such as the two-mirror-like SPOCNN [21], where data flows back and forth 

between two physical layers. This design allows the emulation of an arbitrary number of virtual 

layers using only two physical hardware layers. 

 
(a) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202507.1851.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 14 

 

 
(b) 

 
(c) 

Figure 3. Optical CNN (OCNN) with integrated crossbar switch network. (a) Schematic of a CNN incorporating 

a crossbar switch network. The yellow square in the crossbar switch represents memory; (b) Smart-pixel-based 

optical CNN (SPOCNN) with a crossbar switch network; (c) Three-dimensional view of the SPOCNN 

architecture illustrating crossbar switch integration. The horizontal and vertical crossbar planes are 

interconnected via bypass circuits or intermediate buffers, with additional buffer arrays positioned at their 

endpoints. 

An advanced configuration that leverages the bidirectional nature of both the SPOCNN and the 

crossbar switch network is illustrated in Figure 4. To control data flow between layers, additional 

switches are incorporated both after the preceding layer and before the subsequent one. When the 

rearranged data stored in the output buffer of the crossbar switch is routed backward to the neural 

network nodes, these switches determine whether the data flows to the previous or the next layer. 

Specifically, if Switch 1 is ON and Switch 2 is OFF, the data flows to the previous layer; 

conversely, if Switch 1 is OFF and Switch 2 is ON, the data proceeds to the next layer. Additionally, 

when all crossbar switches are OFF, the network functions in bypass mode. As a result, the crossbar 

switch network in Figure 4 effectively operates as a three-way switch. In the 3D configuration, the 

outputs of the next layer are connected to the horizontal crossbar switch plane through the bypass 

output channels. 
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Figure 4. Schematic diagram of a cascaded OCNN with a crossbar switch network, featuring auxiliary switches 

and buffers for managing three-way data flow. 

Another advantage of the switch configuration shown in Figure 4 is that it can be placed between 

layers in a cascading manner along a straight path, without requiring a 90-degree change in direction. 

The multilayer SPOCNN architecture incorporating crossbar switches is illustrated in Figure 5. This 

configuration serves as a fundamental building block that can be repeated to form multiple physical 

layers to enhance parallelism, although it can also simulate additional layers by allowing data to flow 

back and forth within the same module. 

In this architecture, the first layer 𝑎𝑖
(1)

, consisting of photodetectors and electronic processors 

(EPs), receives input data in real time from an optical imaging device and sends its output to the first 

crossbar switch (crossbar1). Crossbar1 rearranges the data and routes it to the second layer 𝑎𝑖
(2)

. The 

second and third layers perform optical convolution and other operations with dense 

interconnections. The resulting output is then passed through the second crossbar switch (crossbar2), 

which reorganizes the data and routes it to 𝑎𝑖
(3)

. At this stage, 𝑎𝑖
(3)

 effectively becomes 𝑎𝑖
(4)

, now 

using updated weights stored in memory. 

Layer 𝑎𝑖
(4)

 executes another convolution or function in the reverse direction, and the resulting 

output is stored on the opposite side—originally 𝑎𝑖
(2)

, now serving as 𝑎𝑖
(5)

. In this manner, the 

SPOCNN architecture combined with crossbar switches can emulate a deep multilayer neural 

network, enabling flexible data flow and repeated processing within a compact physical system. 

In Figure 5, the core optical component is the SPOCNN architecture; however, it can be 

substituted with other types of optical neural network structures, such as SPLM-based bidirectional 

optical neural network (SPBONN) [27,28], which features fully connected layers rather than partially 

connected ones. Multiple modules incorporating different optical cores can be cascaded to form a 

more efficient system, capable of handling varying data sizes or performing diverse functions. 
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(a) 

 
(b) 

Figure 5. Illustration of a multilayer OCNN architecture incorporating a crossbar switch network with auxiliary 

switches and buffers. (a) Schematic diagram with neural network nodes. (b) Schematic diagram showing the 

corresponding SPOCNN hardware implementation. 

3. Results 

An investigation of the layer architecture, as shown in Table 1, reveals that the CNN primarily 

consists of convolution, max pooling, and local response normalization (LRN) operations applied to 

feature maps of varying sizes. Consequently, understanding how these operations can be 

implemented within the SPOCNN environment using crossbar switches is essential for evaluating 

the efficiency of the proposed architecture. 

Figure 6 illustrates how convolution is applied to feature maps in this system. This form of 

convolution differs from the standard 2D convolution typically performed by SPOCNN [21]. While 

SPOCNN generally processes two-dimensional data arrays, convolution on feature maps involves 

depth, with both the data and kernel represented as three-dimensional arrays. In this case, 

convolution must be applied to each feature map independently, and the results at corresponding 

spatial coordinates must be summed across the entire depth. 

In the example shown in Figure 6, the input consists of 16 feature maps, each of size 4 × 4. These 

feature maps are duplicated and tiled into a 4 × 4 macro-array using the multicast function of the 

crossbar switch, as depicted in the second step. A 3 × 3 kernel is then applied to each feature map, 

reducing each to a 2 × 2 array while preserving the 4 × 4 macro-array structure. The crossbar switch 

then uses its permutation capability to reorganize the convolution outputs into four colored sections, 
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where each section aggregates results from different feature maps corresponding to a specific output 

coordinate. 

In the final step, data within each color group is summed by a convolution operation—

effectively performing a summation across the depth of the feature maps. Without this tiling and 

reorganization, convolution would need to be performed separately for each feature map, followed 

by 16 summations (equal to the number of feature maps). The conventional approach would require 

a total of 32 steps. In contrast, the proposed method completes the same process in just four steps, 

assuming the input data is pre-arranged into a tiled macro-array, as provided by the preceding layer 

in this architecture. Furthermore, in the proposed architecture, the number of processing steps 

remains constant regardless of the number of feature maps, whereas the conventional method scales 

linearly with depth. 

 

Figure 6. Illustration of a convolution operation on feature maps using a SPOCNN integrated with a crossbar 

switch network, demonstrating the application of a single kernel across all feature maps. 

The max pooling operation on feature maps using the SPOCNN with a crossbar switch is 

illustrated in Figure 7. In this example, the pooling window size is 3 × 3, and the stride is 2. As a result, 

the output appears every two pixels, with the gray pixels in Figure 7 representing the resulting pooled 

values. 

The sequence of operations is indicated by arrows of different colors. In each step, data is moved 

and the max function is applied between the incoming pixel value and the current target pixel. The 

numbers in parentheses indicate the sets of data involved in the max operations performed up to that 

point. After four steps, all values within the 3 × 3 window are compared to determine the maximum 

output. 

This process is highly parallelizable. When applied to a tiled feature map, the total number of 

steps remains constant at four, regardless of the input array size. 
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Figure 7. Illustration of a max pooling operation on feature maps using a SPOCNN integrated with a crossbar 

switch network. The numbers in parentheses indicate the sets of data involved in the cumulative max operations 

performed up to that point. The pooling window size is 3 × 3. 

The LRN operation using the SPOCNN with a crossbar switch is illustrated in Figure 8. Like 

depth-wise convolution, LRN is also performed across feature maps. In the example shown in Figure 

8, the normalization window size is 3. 

When feature maps are tiled in a two-dimensional macro-array, the LRN operation requires 

accessing pixelwise data from both the preceding and succeeding feature maps. This is achieved by 

shifting each pixel’s data one map forward and one map backward within the macro-array, requiring 

only two steps. This movement is made possible through the permutation functionality of the 

crossbar switch. 

If the normalization window size increases to 5, the number of required steps also increases 

accordingly to four. In this way, LRN operations can be efficiently performed with high parallelism 

using the SPOCNN architecture combined with crossbar switching. 

 

Figure 8. Illustration of an LRN operation on feature maps using a SPOCNN integrated with a crossbar switch 

network. The normalization window size is 3. 

4. Discussion 

In the previous sections, we described the functions of the crossbar switch and the methods for 

applying it within the SPOCNN architecture to implement the three core layer operations: 

convolution, max pooling, and LRN. We now analyze how many steps or instruction cycles are 

required to complete the full layer architecture, as summarized in Table 1. The analysis assumes a 

hardware configuration based on the schematic in Figure 5. 
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The program begins with the first layer, which receives data in real time from an optical imaging 

device. The data acquired by the detector array in the first layer is processed through electronic 

processors and routed to the first crossbar switch (crossbar1). Each node in the first layer stores RGB 

image data with a resolution of 227 × 227. The three color channels are multicast to form a 227 × 681 

array. This array is processed simultaneously as a regional block in the convolution layer, as 

illustrated in Figure 6. The process illustrated in Figure 6 corresponds to applying a single kernel 

across all feature maps. 

To further increase parallel throughput, multiple kernel blocks are tiled within the convolution 

layer. For instance, if 96 blocks (arranged in a 12 × 8 grid) are tiled in the second layer, the entire 

dataset can be processed simultaneously. Accommodating these tiled maps in two dimensions 

requires an SPLM array of 29,964 × 59,928. Although this size is extremely large, we assume its 

feasibility, as the SPOCNN framework does not impose a theoretical limit on array size. Multicasting 

the three color maps to 96 kernel sets takes six instruction cycles—two for each color channel. 

Once the tiled maps are ready, Conv1 is executed with an 11 × 11 kernel and a stride of 4, yielding 

a 55 × 55 × 96 output array. This convolution layer requires three instruction cycles, as shown in Figure 

6. The LRN1 layer performs normalization with a window size of 5, requiring four steps and five 

instruction cycles—the additional cycle accounts for final computations using accumulated data. The 

Pool1 layer performs max pooling using a 3 × 3 window and a stride of 2, following a process similar 

to that shown in Figure 4. This step requires four iterations and eight instruction cycles, as each step 

involves both data shifting and a max operation. Rearranging the data format after Pool1 requires a 

multicast operation, which takes two additional instruction cycles. 

Similarly, Conv2, LRN2, and Pool2 follow the same procedures and together require a total of 

16 instruction cycles. Conv3, Conv4, and Conv5 collectively require 12 instruction cycles, as feature 

maps with depths exceeding 11 × 11 require an additional cycle to perform the final summation. Pool5 

requires eight instruction cycles. Including four intermediate data rearrangement operations adds 

another eight instruction cycles. 

Following the convolutional layers, three fully connected layers are executed. If the output nodes 

from Figure 5 are connected to another module—identical in structure but incorporating an SPBONN 

[28] core that performs full connectivity—with an input/output array of 128 × 128, then the FC6, FC7, 

and FC8 layers can be completed in just three steps, without requiring any data rearrangement. 

In total, completing the CNN described in Table 1 requires approximately 71 instruction cycles. 

While this is a rough estimate, the total is expected to remain under 100 cycles. Assuming each 

instruction cycle takes approximately 10 ns, the processing time for a single image frame is about 1 

µs, corresponding to a throughput of 1 million frames per second. Further system optimization and 

reduction of instruction cycle duration could result in even higher throughput. The analysis of 

instruction cycles is summarized in Table 2. 

Table 2. Instruction cycle breakdown for each stage of the AlexNet architecture implemented using the SPOCNN 

framework with integrated crossbar switch networks. 

Layer / Operation Description Instruction Cycles 

RGB Multicast Multicast RGB images to 96 kernels (2 per channel × 3) 6 

Conv1 Convolution with 11×11 kernel, stride 4 3 

LRN1 Local Response Normalization, window size 5 5 

Pool1 Max pooling with 3×3 window, stride 2 8 

Rearrangement after Pool1 Data formatting using multicast (2 instructions) 2 

Conv2 to Pool2 Conv2, LRN2, and Pool2 combined 16 

Conv3 to Conv5 Convolution layers 3 to 5 12 

Pool5 Max pooling layer 8 

Intermediate Rearrangements 4 rearrangement operations (2 cycles each) 8 

FC6 to FC8 Three fully connected layers (SPBONN) 3 

Total Total instruction cycles required 71 
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5. Conclusions 

This study introduces a reconfigurable optical convolutional neural network (CNN) 

architecture—SPOCNN—enhanced by a crossbar switch network. The SPOCNN utilizes SPLMs that 

integrate light sources, photodetectors, and electronic processors within each pixel. This integration 

allows rapid weight updates and high-speed optical computation. While SPOCNN already improves 

upon traditional optical CNNs by enabling greater scalability and speed, its data rearrangement 

between layers remains a challenge—especially for multi-channel inputs and deep-layer 

architectures. 

To overcome this limitation, a novel integration of crossbar switches is proposed. Crossbar 

switches enable efficient, programmable spatial permutation and multicast of data across neural 

layers, significantly reducing the number of sequential operations required for data reformatting. The 

study explores how core CNN operations—convolution, max pooling, and LRN—can be 

implemented in this architecture with high parallelism. Specific examples show that complex feature 

map operations traditionally requiring dozens of steps can now be completed in as few as four steps 

using the crossbar-enhanced SPOCNN. 

The architecture also supports bidirectional data flow and modular stacking, enabling the 

simulation of deeper networks using fewer physical layers. This reconfigurable structure can 

accommodate various optical cores, including fully connected optical networks such as SPBONNs, 

and can efficiently handle diverse data formats and operations. 

Simulation of an AlexNet-style CNN indicates that the entire network can be executed in 

approximately 71 instruction cycles—potentially under 100 in worst-case scenarios—with each cycle 

lasting around 10 ns. This results in an estimated processing speed of 1 million frames per second. 

In conclusion, the integration of a crossbar switch network into the SPOCNN framework 

provides a compelling solution to the longstanding challenge of data reorganization in optical CNNs. 

This enhancement enables high-throughput, scalable, and reconfigurable deep neural network 

computation in the optical domain. By efficiently implementing convolution, pooling, and 

normalization operations—and leveraging the programmable, bidirectional capabilities of crossbar 

switches—the proposed architecture offers a promising pathway toward real-time, low-latency 

optical AI systems capable of processing frame rates exceeding 1 million frames per second. Future 

work involving hardware prototyping and algorithm–hardware co-optimization will be essential to 

fully realize the potential of this approach. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

CNN Convolutional neural network 

EP Electronic processor 

LD Laser diode 

LED Light-emitting diode 

LRN Local response normalization 

OCNN Optical convolutional neural network 

PD Photo detector 
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SPBONN Smart-pixel-based bidirectional optical neural network 

SPLM Spatial light modulator 

SLM Smart pixel light modulator 

SPOCNN Smart-pixel-based optical convolutional neural network 
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