Pre prints.org

Article Not peer-reviewed version

Reconfigurable Smart-Pixel-Based
Optical Convolutional Neural Networks
Using Crossbar Switches: A Conceptual
Study

Young-Gu Ju .
Posted Date: 22 July 2025
doi: 10.20944/preprints202507.1851.v1

Keywords: optical neural network; convolution; smart pixel; crossbar switch

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/1754582

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Reconfigurable Smart-Pixel-Based Optical
Convolutional Neural Networks Using Crossbar
Switches: A Conceptual Study

Young-Gu Ju

Department of Physics Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566,
Republic of Korea; ygju@knu.ac.kr; Tel.: 82-53-950-5894

Abstract

This study presents a reconfigurable optical convolutional neural network (CNN) architecture that
integrates a crossbar switch network into a smart-pixel-based optical CNN (SPOCNN) framework.
The SPOCNN leverages smart pixel light modulators (SPLMs), enabling high-speed and massively
parallel optical computation. To address the challenge of data rearrangement between CNN layers—
especially in multi-channel and deep-layer processing—a crossbar switch network is introduced to
perform dynamic spatial permutation and multicast operations efficiently. This integration
significantly reduces the number of processing steps required for core operations such as
convolution, max pooling, and local response normalization, enhancing throughput and scalability.
The architecture also supports bidirectional data flow and modular expansion, allowing the
simulation of deeper networks within limited hardware layers. Performance analysis based on an
AlexNet-style CNN indicates that the proposed system can complete inference in fewer than 100
instruction cycles, achieving processing speeds of over 1 million frames per second. The proposed
architecture offers a promising solution for real-time optical Al applications. Further development of
hardware prototypes and co-optimization strategies between algorithms and optical hardware is
suggested to fully harness its capabilities.

Keywords: optical neural network; convolution; smart pixel; crossbar switch

1. Introduction

In recent years, convolutional neural networks (CNNs) have achieved remarkable progress in
various fields such as image recognition, audio processing, and natural language understanding,
owing to their powerful pattern recognition capabilities and hierarchical feature extraction
mechanisms [1,2]. CNNs operate by applying a series of convolutional kernels to input data, allowing
the network to extract spatial and temporal features [3]. As the demand for more complex CNN
architectures grows, challenges related to computational speed, scalability, and energy consumption
have become increasingly significant, especially in real-time inference scenarios and edge computing
environments.

Conventional electronic processors such as graphics processing units and tensor processing
units (TPUs) have been widely used to accelerate CNN operations [4]. However, these electronic
systems often face inherent limitations, including high power consumption [5], restricted memory
bandwidth [6], and latency caused by data transfers and synchronization processes [7]. Additionally,
scaling large CNN models across multiple processing units introduces significant interconnect
bottlenecks, leading to further inefficiencies in real-time processing tasks [8]. Consequently,
alternative computing architectures have been actively explored to address these challenges.

One promising alternative is optical computing, which leverages the inherent parallelism and
high bandwidth of light to perform computations at the speed of light while significantly reducing
power consumption. Traditional optical CNN implementations have primarily employed 4f

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

2 of 14

correlator systems [9-12] that utilize Fourier optics to perform convolutions [13]. Despite their ability
to execute parallel convolutions, 4f correlator-based systems face several drawbacks, including
limited scalability imposed by the finite space-bandwidth product of optical components [9],
geometric aberrations, and the slow refresh rates of spatial light modulators (SLMs) used for kernel
pattern generation.

To overcome these limitations, previous studies have introduced scalable optical convolutional
neural network (SOCNN) architectures based on free-space optics using lens arrays and spatial light
modulators [14-16]. These architectures allow for scalable input sizes and direct kernel
representation, mitigating some challenges of the 4f correlator systems. However, SLM-based
systems still suffer from slow refresh rates, typically operating in the kilohertz range [17,18], which
restricts their ability to support real-time weight updates and dynamic kernel reconfiguration.

Smart-pixel-based optical convolutional neural networks (SPOCNNSs) have been proposed as a
further advancement, replacing SLMs with smart pixel light modulators (SPLMs) that integrate
photodetectors, electronic processors, and light-emitting diodes within each pixel [19-21]. The
inclusion of electronic processors and memory within SPLMs enables rapid weight updates, reaching
refresh rates in the hundreds of megahertz, while maintaining optical parallelism. SPOCNNs not
only enhance reconfigurability and scalability but also simplify the optical design by reducing
alignment complexities and eliminating the need for coherent light sources.

While SPOCNNSs provide significant improvements, one remaining challenge lies in efficiently
managing data rearrangement between convolutional layers, particularly when dealing with multi-
page data formats such as color image channels or high-dimensional feature maps. The conventional
SPOCNN architecture may require multiple sequential steps or complex spatial transformations to
reorganize data for the subsequent convolutional layers, leading to additional latency and
diminished parallel processing benefits.

To address this challenge, this study proposes a novel conceptual architecture that integrates a
crossbar switching network into the smart-pixel-based optical CNN framework. The crossbar switch
enables multicast and efficient spatial permutation of data between layers, allowing arbitrary
reorganization of output data to align with the input format of subsequent convolutional layers. This
integration significantly reduces the number of sequential processing steps required for data
reorganization and enhances the overall parallel processing capability of the system.

By leveraging the high-speed reconfigurability of SPLMs and the flexible connectivity of
crossbar switches, the proposed architecture offers a promising pathway toward highly scalable and
efficient optical CNNs capable of handling complex multi-layer structures with minimal latency. The
following sections will present a detailed conceptual design of the proposed system, analyze its
operational principles, and discuss its potential advantages over existing architectures.

2. Materials and Methods

To explain the architecture of the SPOCNN incorporating crossbar switches, it is essential to first
examine the structure and operation of a typical CNN. We aim to demonstrate how the SPOCNN,
along with crossbar switches, can be employed to implement conventional CNN procedures. The
general CNN architecture is illustrated in Figure 1, and the detailed layer specifications —including
input, output, and kernel array sizes—are summarized in Table 1 [22]. This layer configuration
closely resembles that of AlexNet.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

3 of 14

. 256
W3 ~. 96
- . "%
"
CONV1+LRN1+POOL1 CONV2+LRN2+POOL2
227x227 L1 27x27 L2 13x13 L3 13x13
— pu RN
Pl K - ®.
< .7 . . 384 CONV4
’ ’ N
. ’ , ’
< K . “u
o .
. ‘s CONV5+POOLS
~ ‘N «
N '~ L5 L4
L FC8 By oy B (PR 13x13
1000 4096 4096

Figure 1. Schematic representation of a typical CNN architecture, including fully connected (FC) layers and local

response normalization (LRN).

Table 1. Summary of the full layer architecture of the AlexNet model [22], including input size, convolutional,
pooling, normalization, and fully connected layers, along with their respective kernel sizes, strides, paddings,

and output dimensions.

Layer Type Kernel Size / Stride Padding Output Size Remarks
Input Input Image - - 227x227x3 RGB image
Convl Convolution 11x11x3/4 0 55x55%96
LRNI1 Normalization - - 55x55%96 Window size =5
Pooll Max Pooling 3x3/2 0 27x27%x96
Conv2 Convolution 5x5%x48 /1 2 27%x27%256 Group split
LRN2 Normalization - - 27x27x256 Window size =5
Pool2 Max Pooling 3x3/2 0 13x13%256
Conv3 Convolution 3x3x128 /1 1 13x13x384
Conv4 Convolution 3x3x192 /1 1 13x13x384 Group split
Conv5 Convolution 3x3x192 /1 1 13x13x256 Group split
Pool5 Max Pooling 3x3/2 0 6x6%256
Flattened input size:
FC6 Fully Connected - - 4096 6x6x256 = 9216
FC7 Fully Connected - - 4096
FC8 Fully Connected - - 1000 Softmax output

Suppose that the SPOCNN architecture shown in Figure 2 is used to implement the layer
structure described in Table 1. The first convolutional layer, Conv1, receives three input images (R,
G, B), each with a resolution of 227 x 227, and produces 96 output feature maps of size 55 x 55 when
using an 11 x 11 kernel with a stride of 4. One approach to performing convolution with SPOCNN is
to process one image at a time, storing the outputs for all 96 filters. After processing the R image, the
same procedure is applied to the G and B images. This results in a total of 96 x 3 sequential steps for
the Conv1 layer.

The number of operations per step is (227 x 227) x (11 x 11), requiring a minimum SPLM array
size of 2,497 x 2,497 to process the entire input image without fragmentation. If such a large SPLM
array is unavailable, the input must be divided into smaller patches and recombined, as described in
the transverse scaling method using SPLM memory [21], which increases the number of steps and
introduces processing delays.

Although this method leverages the optical parallelism of SPOCNN, it does not fully exploit its
potential. One of SPOCNN's key advantages is its ability to handle arbitrarily large input and output
arrays. However, the method above limits the input size to 227 x 227. This limitation becomes more

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

4 of 14

pronounced in subsequent layers, such as Conv2. The Conv2 layer receives input of size 27 x 27 x 96
and produces output of size 27 x 27 x 256 using 5 x 5 kernels. In this case, the required SPLM array
size is only 135 x 135—significantly smaller than the 2,497 x 2,497 needed for Conv1.

If an SPLM array of 2,497 x 2,497 is allocated for Conv1l, most of the array would remain idle
during Conv2. To improve resource utilization and parallel throughput, feature maps from the 27 x
27 input array can be duplicated and tiled into a larger 2,497 x 2,497 array. For example, 96 feature
maps can be arranged in a 12 x 8 macro-array, where each sub-array is 27 x 27. This results in a
composite array of size 324 x 216 pixels, requiring a 1,620 x 1,080 SPLM array when accounting for
the 5 x 5 kernel size. Tiling in this way significantly improves SPLM utilization and throughput.

However, transferring data from the original 27 x 27 input to the 324 x 216 tiled output is feasible
but inefficient in SPOCNN. As shown in Figure 2, the maximum data transfer range is limited by half
the kernel size. If the maximum kernel size is 11, the step size is only 5, requiring 30 sequential moves
to shift the data to the farthest tile. Moreover, data replication and movement are not inherently
parallel operations and demand additional algorithmic complexity. This issue of data rearrangement
commonly arises between layers—especially when the data format changes substantially.

EPO)
LD'® gp| Mm@ Lens LD'™ SPLM@ " Lens - EPO
Array2 PDM Array2 LD'™ SPLM®
EPO)
PDO al’

Figure 2. Example schematic of a multilayer SPOCNN illustrating its layer-wise optical computing framework.
Example schematic of a multilayer SPOCNN illustrating its layer-wise optical computing framework. LD, PD,
EP, and SPLM represent the light source, photodetector, electronic processor, and smart pixel light modulator,
»

respectively. The superscript denotes the layer number, and LD’ indicates the backward light source. a;

indicates the i-th neural network node in the j-th layer [21].

To address the issue of data rearrangement between layers, we introduce a crossbar switch
network positioned either between convolutional layers or directly after the output nodes, as
illustrated in Figure 3(a). The crossbar switch is a well-established component in communication and
computer network systems, and it exists in both electronic and optical forms [23-26]. When a switch
is turned ON, the corresponding horizontal line connects electrically to the vertical line at the crossing
point. Since the crossbar switch forms a two-dimensional matrix, each crossing point can be

individually turned ON or OFF, with its state programmable through data stored in memory.
&)

For example, if the output node a; is connected to a horizontal wire and the crossbar switch
at position (i, j) is ON, then ai(l) is routed to a;z). If multiple switches in a row are ON while others
remain OFF, the input signal is sent to multiple outputs simultaneously —this is referred to as
multicast [24-26]. If only one switch in a row is ON, the signal is routed to a single output—this is
called unicast. When multiple switches in the same column are ON, it results in contention or an

output conflict, which is typically undesirable and requires scheduling or arbitration mechanisms.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

5 of 14

In cases where the output is treated as current, simultaneous activation of multiple switches in
a column may be interpreted as a summation operation. However, this current-based addition is
excluded from consideration for now. Such scenarios are better managed using merge connections,
where inputs are sequentially linked to a shared output via unicast operations. Although this
approach introduces delays due to serialization, merge operations can still be useful for
implementing certain algorithms.

A particularly valuable case is when N input lines are connected to N output lines via unicast
connections exclusively. In this configuration, the crossbar switch effectively performs a permutation,
enabling arbitrary rearrangement of input data at the output. This is highly beneficial for
reformatting data between layers in the SPOCNN architecture.

The physical layout of the SPOCNN integrated with a crossbar switch network is shown in
Figure 3(b), and a 3D view of the configuration is presented in Figure 3(c). The 3D schematic
illustrates how horizontal and vertical crossbar switch planes interconnect to support the
rearrangement of two-dimensional arrays of neural network nodes. Each horizontal plane receives
inputs from a row of output nodes in the previous layer and reorganizes the data sequence, while
each vertical plane performs vertical rearrangement.

Buffers or bypass circuits can be placed between these planes or at their endpoints to store
intermediate data. These buffers can also enable reverse data transmission to the input nodes,
leveraging the bidirectional nature of the crossbar switch. This is particularly useful for bidirectional
SPOCNN architectures, such as the two-mirror-like SPOCNN [21], where data flows back and forth
between two physical layers. This design allows the emulation of an arbitrary number of virtual
layers using only two physical hardware layers.

7 Crossbar switch
WDIO" -
"- Wi oo -#E: X o o o
. td
~ -’ I 1
Wi = YR =
< L N %
Pt
d N ~
WULI .

r§l'|\\
L b
N
\\\ ’
A Y

00
| 0]

O

O (0]
! 0]

~

: |\\;‘E
1=
K

\

\‘ ./
o0
] o
! o
O o

-~
A

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

6 of 14

EPM

SPLM®© Crossbar switch

o
a0
0
ay” o
) o) 0 0
a” —O)) 0
Lo Lo L[le Lo
OUT1 OUT2 OUT3 OUT4 ==
(b)

PDO+EP©® SPLM© Lens Detector LED™
Array?2 & Electronics

Horizontal crossbar
switching plane

S

Oi .l
{

~_ Buffer or bypass

— node

A
"
\

-\
vy
.‘ l.“‘ [Y
i

\e

-l‘\l

1\

\

'!

)
|
.'

“——__ Vertical crossbar
switching plane

Buffer memory

()

Figure 3. Optical CNN (OCNN) with integrated crossbar switch network. (a) Schematic of a CNN incorporating
a crossbar switch network. The yellow square in the crossbar switch represents memory; (b) Smart-pixel-based
optical CNN (SPOCNN) with a crossbar switch network; (c) Three-dimensional view of the SPOCNN
architecture illustrating crossbar switch integration. The horizontal and vertical crossbar planes are
interconnected via bypass circuits or intermediate buffers, with additional buffer arrays positioned at their

endpoints.

An advanced configuration that leverages the bidirectional nature of both the SPOCNN and the
crossbar switch network is illustrated in Figure 4. To control data flow between layers, additional
switches are incorporated both after the preceding layer and before the subsequent one. When the
rearranged data stored in the output buffer of the crossbar switch is routed backward to the neural
network nodes, these switches determine whether the data flows to the previous or the next layer.

Specifically, if Switch 1 is ON and Switch 2 is OFF, the data flows to the previous layer;
conversely, if Switch 1 is OFF and Switch 2 is ON, the data proceeds to the next layer. Additionally,
when all crossbar switches are OFF, the network functions in bypass mode. As a result, the crossbar
switch network in Figure 4 effectively operates as a three-way switch. In the 3D configuration, the
outputs of the next layer are connected to the horizontal crossbar switch plane through the bypass
output channels.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

7 of 14

P Crossbar switch
Woge”" Switch1 Switch2
g Pl
@) A —e s ()
Wie o) O O O
~\ "! SV
I’\

= e

v

1

1
\\\: 7

3
pi
D()
D()
o1

7

'.’_iﬂfu S -MO—C O o O——o/
Wii D; Dz Dz L

OouT1t OuUT2 OUT3 OuUT4 =*=*°*

)
Ins“i
\\ ,
c\
93
D
9
Jrat

Figure 4. Schematic diagram of a cascaded OCNN with a crossbar switch network, featuring auxiliary switches

and buffers for managing three-way data flow.

Another advantage of the switch configuration shown in Figure 4 is that it can be placed between
layers in a cascading manner along a straight path, without requiring a 90-degree change in direction.
The multilayer SPOCNN architecture incorporating crossbar switches is illustrated in Figure 5. This
configuration serves as a fundamental building block that can be repeated to form multiple physical
layers to enhance parallelism, although it can also simulate additional layers by allowing data to flow

back and forth within the same module.

€Y
i
(EPs), receives input data in real time from an optical imaging device and sends its output to the first

In this architecture, the first layer a;’, consisting of photodetectors and electronic processors

crossbar switch (crossbarl). Crossbarl rearranges the data and routes it to the second layer al.(z). The
second and third layers perform optical convolution and other operations with dense

interconnections. The resulting output is then passed through the second crossbar switch (crossbar2),
(3) #

which reorganizes the data and routes it to ai(3). At this stage, a; ;

effectively becomes a;”, now

using updated weights stored in memory.
)

Layer a;~ executes another convolution or function in the reverse direction, and the resulting

()
i
SPOCNN architecture combined with crossbar switches can emulate a deep multilayer neural

output is stored on the opposite side—originally a;”, now serving as ai(s). In this manner, the
network, enabling flexible data flow and repeated processing within a compact physical system.

In Figure 5, the core optical component is the SPOCNN architecture; however, it can be
substituted with other types of optical neural network structures, such as SPLM-based bidirectional
optical neural network (SPBONN) [27,28], which features fully connected layers rather than partially
connected ones. Multiple modules incorporating different optical cores can be cascaded to form a
more efficient system, capable of handling varying data sizes or performing diverse functions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

8 of 14

Crossbar1 Crossbar2
Woo

Gage o ET”*.*”“‘“'."”TTW*.
Wya - ng'
Dty o O OO

> > > Wi | >) > >
W(u WDZ‘
6 BN BN TN BV i O N I TN Y
¢ [[L[Cro w,_ wg e [Fe [Cre [T

O OO O

OUT1M OUT2(M QUT3M OUT4AM . OUT1% OUT2®) OUT4® OUT4®) .,

Crossbar1 Crossbar2
1
C[((J) a((;}] 7
O o
I o) O o
af)- @
o o-0——0 Lo} Lo
Creg [he [y [
a(l) (4)
2 loo-0——0 o 020
Cre [hp [y [
ah a@
3 loo-0——0——0 03070~
!
QUTIM QUT2M QUT3T QUTAM .. . OUTIM QUT20 QUT3M QUTAN
(b)

Figure 5. Illustration of a multilayer OCNN architecture incorporating a crossbar switch network with auxiliary
switches and buffers. (a) Schematic diagram with neural network nodes. (b) Schematic diagram showing the

corresponding SPOCNN hardware implementation.

3. Results

An investigation of the layer architecture, as shown in Table 1, reveals that the CNN primarily
consists of convolution, max pooling, and local response normalization (LRN) operations applied to
feature maps of varying sizes. Consequently, understanding how these operations can be
implemented within the SPOCNN environment using crossbar switches is essential for evaluating
the efficiency of the proposed architecture.

Figure 6 illustrates how convolution is applied to feature maps in this system. This form of
convolution differs from the standard 2D convolution typically performed by SPOCNN [21]. While
SPOCNN generally processes two-dimensional data arrays, convolution on feature maps involves
depth, with both the data and kernel represented as three-dimensional arrays. In this case,
convolution must be applied to each feature map independently, and the results at corresponding
spatial coordinates must be summed across the entire depth.

In the example shown in Figure 6, the input consists of 16 feature maps, each of size 4 x 4. These
feature maps are duplicated and tiled into a 4 x 4 macro-array using the multicast function of the
crossbar switch, as depicted in the second step. A 3 x 3 kernel is then applied to each feature map,
reducing each to a 2 x 2 array while preserving the 4 x 4 macro-array structure. The crossbar switch
then uses its permutation capability to reorganize the convolution outputs into four colored sections,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025

9 of 14

where each section aggregates results from different feature maps corresponding to a specific output
coordinate.

In the final step, data within each color group is summed by a convolution operation—
effectively performing a summation across the depth of the feature maps. Without this tiling and
reorganization, convolution would need to be performed separately for each feature map, followed
by 16 summations (equal to the number of feature maps). The conventional approach would require
a total of 32 steps. In contrast, the proposed method completes the same process in just four steps,
assuming the input data is pre-arranged into a tiled macro-array, as provided by the preceding layer
in this architecture. Furthermore, in the proposed architecture, the number of processing steps
remains constant regardless of the number of feature maps, whereas the conventional method scales

linearly with depth.
Crossbar : Convolution Crossbar : Convolution
multicast (kernel 3x3) permutation (sum)

d0i:10.20944/preprints202507.1851.v1

Tiled maps 4x4
4x4 (4x4)

—_

2x2) 2x2 (4x4) 2x2 (1x1)

Figure 6. Illustration of a convolution operation on feature maps using a SPOCNN integrated with a crossbar

switch network, demonstrating the application of a single kernel across all feature maps.

The max pooling operation on feature maps using the SPOCNN with a crossbar switch is
illustrated in Figure 7. In this example, the pooling window size is 3 x 3, and the stride is 2. As aresult,
the output appears every two pixels, with the gray pixels in Figure 7 representing the resulting pooled
values.

The sequence of operations is indicated by arrows of different colors. In each step, data is moved
and the max function is applied between the incoming pixel value and the current target pixel. The
numbers in parentheses indicate the sets of data involved in the max operations performed up to that
point. After four steps, all values within the 3 x 3 window are compared to determine the maximum
output.

This process is highly parallelizable. When applied to a tiled feature map, the total number of
steps remains constant at four, regardless of the input array size.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

10 of 14

C D
A B

~ (
(12) (1.23)

AN NN

4,5 (456) (1,23456) (1,23,456,789)
(72) (7.89) (789

Figure 7. Illustration of a max pooling operation on feature maps using a SPOCNN integrated with a crossbar
switch network. The numbers in parentheses indicate the sets of data involved in the cumulative max operations

performed up to that point. The pooling window size is 3 x 3.

The LRN operation using the SPOCNN with a crossbar switch is illustrated in Figure 8. Like
depth-wise convolution, LRN is also performed across feature maps. In the example shown in Figure
8, the normalization window size is 3.

When feature maps are tiled in a two-dimensional macro-array, the LRN operation requires
accessing pixelwise data from both the preceding and succeeding feature maps. This is achieved by
shifting each pixel’s data one map forward and one map backward within the macro-array, requiring
only two steps. This movement is made possible through the permutation functionality of the
crossbar switch.

If the normalization window size increases to 5, the number of required steps also increases
accordingly to four. In this way, LRN operations can be efficiently performed with high parallelism
using the SPOCNN architecture combined with crossbar switching.

Crossbar Crossbar : permutation Crossbar : permutation
muIticast‘ Shift by one Shift backward by one
map size + Added map size + Added

4x4x16

Tiled maps 4x4 (4x4) 4x4 (4x4)
4x4 (4x4)

Figure 8. Illustration of an LRN operation on feature maps using a SPOCNN integrated with a crossbar switch

network. The normalization window size is 3.

4. Discussion

In the previous sections, we described the functions of the crossbar switch and the methods for
applying it within the SPOCNN architecture to implement the three core layer operations:
convolution, max pooling, and LRN. We now analyze how many steps or instruction cycles are
required to complete the full layer architecture, as summarized in Table 1. The analysis assumes a
hardware configuration based on the schematic in Figure 5.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

11 of 14

The program begins with the first layer, which receives data in real time from an optical imaging
device. The data acquired by the detector array in the first layer is processed through electronic
processors and routed to the first crossbar switch (crossbarl). Each node in the first layer stores RGB
image data with a resolution of 227 x 227. The three color channels are multicast to form a 227 x 681
array. This array is processed simultaneously as a regional block in the convolution layer, as
illustrated in Figure 6. The process illustrated in Figure 6 corresponds to applying a single kernel
across all feature maps.

To further increase parallel throughput, multiple kernel blocks are tiled within the convolution
layer. For instance, if 96 blocks (arranged in a 12 x 8 grid) are tiled in the second layer, the entire
dataset can be processed simultaneously. Accommodating these tiled maps in two dimensions
requires an SPLM array of 29,964 x 59,928. Although this size is extremely large, we assume its
feasibility, as the SPOCNN framework does not impose a theoretical limit on array size. Multicasting
the three color maps to 96 kernel sets takes six instruction cycles—two for each color channel.

Once the tiled maps are ready, Conv1 is executed with an 11 x 11 kernel and a stride of 4, yielding
a 55 x 55 x 96 output array. This convolution layer requires three instruction cycles, as shown in Figure
6. The LRN1 layer performs normalization with a window size of 5, requiring four steps and five
instruction cycles—the additional cycle accounts for final computations using accumulated data. The
Pooll layer performs max pooling using a 3 x 3 window and a stride of 2, following a process similar
to that shown in Figure 4. This step requires four iterations and eight instruction cycles, as each step
involves both data shifting and a max operation. Rearranging the data format after Pool1l requires a
multicast operation, which takes two additional instruction cycles.

Similarly, Conv2, LRN2, and Pool?2 follow the same procedures and together require a total of
16 instruction cycles. Conv3, Conv4, and Conv5 collectively require 12 instruction cycles, as feature
maps with depths exceeding 11 x 11 require an additional cycle to perform the final summation. Pool5
requires eight instruction cycles. Including four intermediate data rearrangement operations adds
another eight instruction cycles.

Following the convolutional layers, three fully connected layers are executed. If the output nodes
from Figure 5 are connected to another module —identical in structure but incorporating an SPBONN
[28] core that performs full connectivity —with an input/output array of 128 x 128, then the FC6, FC7,
and FC8 layers can be completed in just three steps, without requiring any data rearrangement.

In total, completing the CNN described in Table 1 requires approximately 71 instruction cycles.
While this is a rough estimate, the total is expected to remain under 100 cycles. Assuming each
instruction cycle takes approximately 10 ns, the processing time for a single image frame is about 1
s, corresponding to a throughput of 1 million frames per second. Further system optimization and
reduction of instruction cycle duration could result in even higher throughput. The analysis of
instruction cycles is summarized in Table 2.

Table 2. Instruction cycle breakdown for each stage of the AlexNet architecture implemented using the SPOCNN

framework with integrated crossbar switch networks.

Layer / Operation Description Instruction Cycles
RGB Multicast Multicast RGB images to 96 kernels (2 per channel X 3) 6
Convl Convolution with 11x11 kernel, stride 4 3
LRNI1 Local Response Normalization, window size 5 5
Pooll Max pooling with 3x3 window, stride 2 8
Rearrangement after Pooll Data formatting using multicast (2 instructions) 2
Conv2 to Pool2 Conv2, LRN2, and Pool2 combined 16
Conv3 to Conv5 Convolution layers 3 to 5 12
Pool5 Max pooling layer 8
Intermediate Rearrangements 4 rearrangement operations (2 cycles each) 8
FC6 to FC8 Three fully connected layers (SPBONN) 3
Total Total instruction cycles required 71

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

12 of 14

5. Conclusions

This study introduces a reconfigurable optical convolutional neural network (CNN)
architecture—SPOCNN —enhanced by a crossbar switch network. The SPOCNN utilizes SPLMs that
integrate light sources, photodetectors, and electronic processors within each pixel. This integration
allows rapid weight updates and high-speed optical computation. While SPOCNN already improves
upon traditional optical CNNs by enabling greater scalability and speed, its data rearrangement
between layers remains a challenge—especially for multi-channel inputs and deep-layer
architectures.

To overcome this limitation, a novel integration of crossbar switches is proposed. Crossbar
switches enable efficient, programmable spatial permutation and multicast of data across neural
layers, significantly reducing the number of sequential operations required for data reformatting. The
study explores how core CNN operations—convolution, max pooling, and LRN—can be
implemented in this architecture with high parallelism. Specific examples show that complex feature
map operations traditionally requiring dozens of steps can now be completed in as few as four steps
using the crossbar-enhanced SPOCNN.

The architecture also supports bidirectional data flow and modular stacking, enabling the
simulation of deeper networks using fewer physical layers. This reconfigurable structure can
accommodate various optical cores, including fully connected optical networks such as SPBONNS,
and can efficiently handle diverse data formats and operations.

Simulation of an AlexNet-style CNN indicates that the entire network can be executed in
approximately 71 instruction cycles—potentially under 100 in worst-case scenarios—with each cycle
lasting around 10 ns. This results in an estimated processing speed of 1 million frames per second.

In conclusion, the integration of a crossbar switch network into the SPOCNN framework
provides a compelling solution to the longstanding challenge of data reorganization in optical CNNs.
This enhancement enables high-throughput, scalable, and reconfigurable deep neural network
computation in the optical domain. By efficiently implementing convolution, pooling, and
normalization operations—and leveraging the programmable, bidirectional capabilities of crossbar
switches—the proposed architecture offers a promising pathway toward real-time, low-latency
optical Al systems capable of processing frame rates exceeding 1 million frames per second. Future
work involving hardware prototyping and algorithm-hardware co-optimization will be essential to
fully realize the potential of this approach.

Funding: This research received no external funding

Data Availability Statement: The datasets generated during and/or analyzed during the current study are

available from the corresponding author on reasonable request.

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind

(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network

EP Electronic processor

LD Laser diode

LED Light-emitting diode

LRN Local response normalization

OCNN Optical convolutional neural network
PD Photo detector

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

13 of 14

SPBONN Smart-pixel-based bidirectional optical neural network

SPLM Spatial light modulator

SLM Smart pixel light modulator

SPOCNN Smart-pixel-based optical convolutional neural network
References

1. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.;
Sainath, T.N.; Kingsbury, B. Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups IEEE Signal processing magazine 29, 82-97 (2012)

LeCun Y.; Bengio Y.; Hinton G. Deep learning, Nature 521, 436-444 (2015).

3. Lecun L. Bottou L.; Bengio Y.; Haffner P. Gradient-based learning applied to document recognition
Proceedings of the IEEE 86 2278-2324 (1998)

4. Chetlur S.; Woolley C.; Vandermersch P.; Cohen J.; Tran J.; Catanzaro B.; Shelhamer E. cuDNN: efficient
primitives for deep learning, arXiv:1410.0759v3 (2014).

5. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network.
Advances in Neural Information Processing Systems, 28 (2015).

6. Rhu, M.; Gimelshein, N.; Clemons,].; Zulfiqar, A.; Keckler, SSW. vDNN: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 1-13 (2016).

7. Chen, T,; Moreau, T; Jiang, Z.; Zheng, L.; Yan, E.; Shen, H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; Guestrin,
C. TVM: An au-tomated end-to-end optimizing compiler for deep learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 578-594 (2018).

8. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N;
Borchers, A.; Boyle, R. In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture, 1-12 (2017).

9. Colburn, S.; Chu, Y.; Shilzerman, E.; Majumdar, A. Optical frontend for a convolutional neural network.
Applied optics, 58 3179-3186 (2019)

10. Chang, J; Sitzmann, V.; Dun, X.; Heidrich, W.; Wetzstein, G. Hybrid optical-electronic convolutional neural
networks with optimized diffractive optics for image classification, Scientific reports 8, 12324 (2018)

11. Lin, X,; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning
using diffractive deep neural networks, Science 361, 1004-1008 (2018)

12, Sui, X.; Wu, Q.; Liu, J.; Chen, Q.; Gu, G. A review of optical neural networks, IEEE Access 8, 70773-70783
(2020)

13. Goodman, J.W. Introduction to Fourier optics. Roberts and Company publishers (2005).

14. Glaser, I. Lenslet array processors, Applied Optics 21, 1271-1280 (1982)

15. Ju, Y.G. A scalable optical computer based on free-space optics using lens arrays and a spatial light
modulator. Optical and Quantum Electronics, 55, 1-21 (2023)

16. Ju, Y.G. Scalable Optical Convolutional Neural Networks Based on Free-Space Optics Using Lens Arrays
and a Spatial Light Modulator. Journal of Imaging, 2023, 9(11), p.241.

17. Cox, M.A,; Cheng, L.; Forbes, A. Digital micro-mirror devices for laser beam shaping, Proc. SPIE 11043,
Fifth Conference on Sensors, MEMS, and Electro-Optic Systems, 110430Y (2019).

18. Mihara, K.; Hanatani, K.; Ishida, T.; Komaki, K.; Takayama, R. High Driving Frequency (> 54 kHz) and
Wide Scanning An-gle (> 100 Degrees) MEMS Mirror Applying Secondary Resonance For 2K Resolution
AR/MR Glasses. 2022 IEEE 35th In-ter-national Conference on Micro Electro Mechanical Systems
Conference (MEMS), 477-482 (2022)

19. Seitz, P. Smart Pixels, PROCEEDINGS EDMO 2001 / VIENNA, 229-234 (2001)

20. Hinton, H.S., 1996. Progress in the smart pixel technologies. IEEE journal of selected topics in quantum
electronics, 2(1), pp.14-23.

21. Ju, Y.-G. A Conceptual Study of Rapidly Reconfigurable and Scalable Optical Convolutional Neural
Networks Based on Free-Space Optics Using a Smart Pixel Light Modulator. Computers 2025, 14, 111.
https://doi.org/10.3390/computers14030111

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 d0i:10.20944/preprints202507.1851.v1

14 of 14

22. Krizhevsky, A.; Sutskever, I; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Advances in Neural Information Processing Systems 2012, 25, 1097-1105.

23. Jahns, J., 1998. VI: Free-Space Optical Digital Computing and Interconnection. Progress in optics, 38,
pp-419-513.

24. Dally, W.]J. and Towles, B.P., 2004. Principles and practices of interconnection networks. Elsevier. p. 113

25. McKeown, N., 1997. A fast switched backplane for a gigabit switched router. Business Communications
Review, 27(12), pp.1-30.

26. A.S.Hamza,].S. Deogun and D. R. Alexander, "Free space optical multicast crossbar," in Journal of Optical
Communications and Networking, vol. 8, no. 1, pp. 1-10, 1 January 2016, doi: 10.1364/JOCN.8.000001

27. Ju, Y.G. Bidirectional Optical Neural Networks Based on Free-Space Optics Using Lens Arrays and Spatial
Light Modulator. Micromachines 2024, 15, 701. https://doi.org/10.3390/mi15060701

28. Ju, Y.-G. A Conceptual Study of Rapidly Reconfigurable and Scalable Bidirectional Optical Neural
Networks Leveraging a Smart Pixel Light Modulator. Photonics 2025, 12, 132
https://doi.org/10.3390/photonics12020132

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1851.v1
http://creativecommons.org/licenses/by/4.0/

