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Abstract: Hybrid modeling aims to combine physical and data-driven models to increase simulation
accuracy without losing physical interpretability. In the context of dynamic mechanical systems, this
enables the compensation of modeling inaccuracies that arise from simplifications, missing effects, or
uncertain parameters. In this work, a hybrid model is used as a starting point, in which the discrepancy
between simulation and measurement is learned and compensated by a data-driven correction element.
To integrate such models into commercial multibody system (MBS) software like MSC Adams and
Simpack, the formulation is adapted to operate directly on the force level. This allows implementation
via standard co-simulation interfaces without modifying the system’s differential equations or solvers.
The method is demonstrated using a single-mass oscillator with synthetic measurement data. Results
show that the coupled simulation works reliably and that the hybrid model significantly improves
accuracy while remaining compatible with established industrial simulation workflows.

Keywords: Hybrid Modeling; MSC Adams; Simpack

1. Introduction
Accurate modeling of dynamic systems is a central task in engineering. Traditional approaches

are typically classified as white-box, black-box, or gray-box modeling, each with inherent advantages
and limitations. [1,2]
White-box models are based entirely on physical principles, such as Newton’s laws or balance equa-
tions, and require detailed knowledge of system parameters and interactions. They offer transparency,
interpretability, and extrapolation capabilities, but often suffer from modeling inaccuracies due to
simplifications or unknown effects, such as friction or wear. [1,2]
Black-box models, by contrast, rely purely on data. Machine learning techniques are used to learn
input–output relationships without explicit knowledge of the underlying physics. These models are
flexible and can capture complex phenomena, but they require large datasets, lack physical inter-
pretability, and often perform poorly outside the range of the training data. [1,2]
Gray-box models blend both approaches by embedding data-driven components into physical struc-
tures, or vice versa. This hybridization improves generalization while capturing unmodeled dynamics.
Examples include physics-informed neural networks (PINNs), which incorporate physical laws into
the training loss, and surrogate models that approximate detailed simulations to reduce computational
costs and enable an efficient analysis of macroscopic behavior. [1,2]
Hybrid modeling, a specific form of gray-box modeling, emphasizes a close interplay between physical
and data-driven components. Neither model dominates; instead, both work in tandem to bridge the
gap between idealized models and real-world behavior. [1,3]
Commercial MBS software such as MSC Adams or Simpack already offer interfaces for co-simulation,
e.g. with MATLAB/Simulink. These are often used for control engineering or complex subsystems, but
in principle also allow the integration of data-driven models for model correction. It has been shown
that hybrid approaches can be successfully used for modeling specific components such as rubber-
metal bushings [4]. This can be easily implemented as a discrepancy of force using a co-simulation. In
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this article, however, the focus is on cases in which modeling differences cannot be clearly assigned
to individual elements, but result from general model simplifications or unknown effects. The aim is
to systematically compensate for such discrepancies at the force level and thus to be able to model
complex dynamic systems more realistically.

2. Hybrid Modeling
For a dynamic system, measurements (tk, x̄(tk)) are given. Furthermore, a white-box model in

form of an equation of motion

˙̃x = f (t, x) (1)

is given, which does not fully capture the actual behavior of the system and therefore only provides
an approximation x̃. This may be due to unmodeled phenomena or imprecise parameterization. As a
result, a discrepancy

∆ẋ = ˙̄x − ˙̃x (2)

between measurement ˙̄x and model ˙̃x arises.
In [3] a continuous hybrid modeling approach was proposed, in which the discrepancy (2) is modeled
using a black-box method. This correction term is then added to the white-box model, resulting in the
hybrid formulation

ẋ∗ = f (t, x) + ∆ẋ(t, x). (3)

For multibody systems (MBS), the equation of motion is generally given by the second-order
differential equation

M(q, t)q̈ + kc(q, q̇, t) = ke(q, q̇, t), (4)

where M is the mass matrix, kc contains the generalized centrifugal and Coriolis forces, and ke

contains the generalized applied forces. [5]
Then the introduced hybrid model can be implemented in the form[

q̇
q̈

]
︸︷︷︸ =

[
q̇

−M−1kc(q, q̇) + M−1ke(q, q̇)

]
︸ ︷︷ ︸ +

[
0

∆q̈

]
︸ ︷︷ ︸,

ẋ = f (t, x) + ∆ẋ(t, x).

(5)

However, in many practical cases – particularly when using commercial simulation software such
as MSC Adams or Simpack – direct modification of the equations of motion is not possible. [5,6]

2.1. Force Variation

To address this limitation, the black-box correction can be applied at the force level instead of at
the acceleration level. The governing equation is reformulated as

Mq̈ + kc(q, q̇) + ∆F(q, q̇) = ke(q, q̇), (6)

from which the force discrepancy can be computed as

∆F(q, q̇) = M(q, t)q̈ + kc(q, q̇, t)− ke(q, q̇, t). (7)

This formulation allows hybrid correction to be introduced using a force element, without the
need to alter the underlying integration scheme. It is therefore well suited for implementation in
commercial simulation tools like MSC Adams (Section 2.3.1) or Simpack (Section 2.3.2).
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2.2. Application Example: Single-Mass Oscillator

A single-mass oscillator with external excitation, as shown in Figure 1a), is used as an application
example. The mass m is connected to the environment by a non-linear spring and a non-linear damper
and is excited with a harmonic force F(t) = F̂ sin (ωt). In addition, a frictional force Fµ acts between
the mass and the ground. The displacement of the mass is denoted by q. The free-body diagram can be
seen in Figure1b). The complete equation of motion is given by

m

q q

F

a) b)

FF

F
F

g

F
µ

µ
c

d

N

Fm

Figure 1. a) Sketch and b) free body diagram of the single-mass oscillator under consideration.

mq̈ + Fc(q) + Fd(q) + Fµ(q̇) = F(t), (8)

with

Fc(q) = cq3, (9)

Fd(q̇) = d|q̇|q̇, (10)

Fµ(q̇) = FNµsgn(q̇) = mgµsgn(q̇), (11)

F(t) = F̂ sin (2π f t). (12)

The white-box model chosen as the basis for hybrid modeling neglects the dissipative effects, so
that the reduced equation of motion is given by

mq̈ + Fc(q) = F(t). (13)

The force discrepancy can then be calculated via

∆F̄ = −m ¨̄q − Fc(q̄) + F(t) (14)

and serves as target for the black-box model. The input consists of the displacement q and the
velocity q̇.

2.3. Implementation

Synthetic measurement data is generated using MATLAB. Therefore, the equation of motion (8) is
solved numerically using the Dormand-Prince method from the Runge-Kutta family. Additionally, a
measuring noise of 1.5% of the maximum values is added. The results can be seen in Figure 2 in black.
The numerical solution of the white-box model (13) is shown in gray.
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Figure 2. Synthetic measurements (black) and results of the white-box model (gray).

Equation (14) is used to calculate the discrepancies ∆F, which serve as target. As input, the state
variables q and q̇ are used. A feedforward, fully connected neural network for regression with the
MATLAB default setting is used as the black box model. Randomly, 70% of the data is used for training
and the remaining 30% for testing. The root mean square error (RMSE)

RMSE(∆F̃, ∆F̄) =

√
1
n

n

∑
i=1

(∆F̃(ti)− ∆F̄(ti))2 (15)

between the training data ∆F̄ and the prediction ∆F̃ is 0.90 for the training data set, and 0.81 for
the test data set.

The results can be seen in Figure 3. The trained model is saved in a ∗.mat file for later use with
MSC Adams and Simpack.
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Figure 3. Training (red) and test (black) data for the black-box model, as well as prediction results for the test data
(blue).

2.3.1. MSC Adams

The white-box model (13) is built in MSC Adams. The elements used and the setup can be
seen in Figure 4a)-b). It consists of a point mass and three SForce elements: the nonlinear spring
force F_spring, the excitation F, and the discrepancy force F_Delta. Three state variables are defined:
the displacement state_q and the velocity state_dq of the point mass, as well as the force Delta_F,
which is the value of the force F_Delta. To calculate Delta_F, the black-box model is integrated by a
co-simulation with MATLAB/Simulink. For this purpose, the model is exported using the controls
plugin. As input, the state variable Delta_F is selected, and the state variables state_q and state_dq are
selected as outputs. [7]
In MATLAB/Simulink, the exported S-function model "MSC Software" can be coupled with the black-
box model using the "RegressionNeuralNetwork Predict" block. The model structure in Simulink is
shown in Figure 4c).
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a)

b)

c)

Figure 5. a) Elements and b) model setup in Simpack and c) model setup in Simulink.

a)

b)

c)

Figure 4. a) Elements and b) model setup in MSC Adams and c) model setup in Simulink.

2.3.2. Simpack

As for the application in MSC Adams, the white-box model (13) is now implemented in Simpack
2024x. The elements used and the setup can be seen in Figure 5a)-b) It consists of a point mass and
three force elements. The point mass is connected to the initial system via a joint Element, allowing
only motion in one direction. The force elements are a non-linear spring force FSpring connecting the
point mass to the origin, an excitation force FExcitation that provides the harmonic excitation, and a
controllable input Fdelta. As a model output, there are two stat variables defined, the displacement Yq
and the velocity Ydq of the point mass. The force variable UIdeltaF is defined as the model input. For
the calculation of the discrepancy force deltaF the data-driven model is integrated via a co-simulation
with MATLAB/Simulink. To start a co-simulation between Simpack and MATLAB/Simulink, a "simat"
block is added to Simulink to generate the interface. In the "simat" settings, the absolute path of the
Simpack model is entered. Similar to the hybrid model using MSC Adams, the "simat" block is coupled
with the "RegressionNeuralNetwork Predict" block. The model structure in Simulink is shown in
Figure 5c). The command server for co-simulation must also be started in Simpack. Then the co
simulation of the two programs can be started from MATLAB/Simulink.
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Figure 6. Synthetic measurement and results of hybrid modeling.

3. Results
The results using the different software are shown in Figure 6, a quantitative evaluation can

be found in Table 1. The RMSE is used for the displacement q and for the velocity q̇.The synthetic
measurements are shown in red. For comparison, the results of the continuous method (MATLAB) are
also shown in black. A neural network with the default settings was trained as the data-driven model.
Since the targets of the black-box models for ∆F and ∆q̈ have different units, the normalized root mean
square error (NRMSE) [8]

NRMSE(∆F̃, ∆F̄) =
RMSE((∆F̃, ∆F̄))

max(∆F̄)− min(∆F̄)
(16)

for ∆F and analogous for ∆q̈ is given in Table 1.
The results are close to the measurements, only at the beginning there is a slight phase shift in which
the hybrid model lags behind the measurements. This is probably due to the transient response of the
system and its underrepresentation in the data.
The results of the hybrid modeling MSC Adams (green) and Simpack (magenta) are almost congruent
with each other and with the measurements. The differences can be attributed to the use of different
solvers.

Table 1. MAPE of the trained black-box models and RMSE for hybrid modeling in different software.

∆q̈ ∆F

Data-driven Model
(NRMSE)

train test train test
0.072 0.077 0.072 0.070

MATLAB MSC Adams Simpack

Displacement (RMSE) 0.031 0.021 0.018

Velocity (RMSE) 0.071 0.055 0.051

4. Discussion
Overall, the results of the hybrid modeling using both the original continuous method ∆ẋ from [3]

and the variation ∆F are very good and also very similar. Since no optimization of the hyperparameters
took place, the results presented here do not allow any statement to be made as to which of the methods
provides more accurate results.

5. Conclusions
In this work, a variation of the continuous method for hybrid modeling based on force-level

discrepancies was presented. This enables the correction of modeling inaccuracies using data-driven
elements without modifying the system’s differential equations or interfering with the numerical
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solver, thus allowing seamless integration into commercial MBS software such as MSC Adams or
Simpack.

While previous hybrid modeling efforts have focused on clearly identifiable components - such as
rubber-metal bushings, the approach presented here addresses more general model inaccuracies that
cannot be assigned to a specific force element. This makes it suitable for complex multibody systems
where simplifications, parameter uncertainties, or unknown effects affect the model as a whole.

The study demonstrates the general feasibility of this approach, though it has not yet been applied
to real measurements. As system complexity increases, challenges will arise, particularly in localizing
and interpreting force discrepancies. In such cases, expert knowledge remains crucial.

Nevertheless, the promising results with synthetic data, combined with compatibility across
established simulation tools, provide a solid foundation for future work. In particular, the ability
to embed hybrid models component-wise offers new potential for realistic simulation and efficient
modeling of complex mechanical systems.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org.

Author Contributions: Conceptualization, M.W. and J.S.; methodology, M.W. and W.S.; software, M.W. and J.M.L.;
writing—original draft preparation, M.W. and J.M.L.; writing—review and editing, M.W., J.M.L., J.S. and W.S.;
supervision, J.S. and W.S.

Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under the DFG Priority Programme 2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics
– Project number 501834605.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable
to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Von Rueden, L.; Mayer, S.; Sifa, R.; Bauckhage, C.; Garcke, J. Combining Machine Learning and Simulation

to a Hybrid Modelling Approach: Current and Future Directions. In Advances in Intelligent Data Analysis
XVIII; Berthold, M.R.; Feelders, A.; Krempl, G., Eds.; Springer International Publishing: Cham, 2020; Vol.
12080, pp. 548–560. https://doi.org/10.1007/978-3-030-44584-3_43.

2. Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating Scientific Knowledge with Machine Learning
for Engineering and Environmental Systems, 2020. https://doi.org/10.48550/ARXIV.2003.04919.

3. Wohlleben, M.; Röder, B.; Ebel, H.; Muth, L.; Sextro, W.; Eberhard, P. Hybrid Modeling of Multibody Systems:
Comparison of Two Discrepancy Models for Trajectory Prediction. Proceedings inApplied Mathematics and
Mechanics 2024, 24. https://doi.org/10.1002/pamm.202400027.

4. Wohlleben, M.; Schütte, J.; Berkemeier, M.; Peitz, S.; Sextro, W. Evaluating Physics-Based, Hybrid, and
Data-Driven Models for Rubber-Metal Bushings, 2025. https://doi.org/10.21203/rs.3.rs-6556746/v1.

5. Schiehlen, W.; Eberhard, P. Technische Dynamik; Springer Fachmedien Wiesbaden, 2017. https://doi.org/10.1
007/978-3-658-18457-5.

6. Ryan, R.R. ADAMS — Multibody System Analysis Software. In Multibody Systems Handbook; Schiehlen, W.,
Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1990; pp. 361–402. https://doi.org/10.1007/978-3-642-
50995-7_21.

7. Adams 2021.1 - Adams Controls User’s Guide. User’s Guide, MSC Software Corporation, U.S.A.
8. Statistics - CIRPwiki. https://cirpwiki.info/wiki/Statistics#Normalization.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2025 doi:10.20944/preprints202507.1581.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.preprints.org/
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.48550/ARXIV.2003.04919
https://doi.org/10.1002/pamm.202400027
https://doi.org/10.21203/rs.3.rs-6556746/v1
https://doi.org/10.1007/978-3-658-18457-5
https://doi.org/10.1007/978-3-658-18457-5
https://doi.org/10.1007/978-3-642-50995-7_21
https://doi.org/10.1007/978-3-642-50995-7_21
https://doi.org/10.20944/preprints202507.1581.v1
http://creativecommons.org/licenses/by/4.0/

