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Abstract

Quantitative proteomics analyses rely on robust statistical methods for differential expression,
impacting downstream pathway and functional enrichment. This meta-analysis investigated the
influence of Hypothesis Testing Methods (HTMs) and Criteria for Biological Relevance (CBRs) on
functional enrichment concordance. Five independent label-free quantitative proteomics datasets
were reanalyzed using diverse frequentist (t-test, Limma, DEqMS, MSstats) and a Bayesian
(rstanarm) approach. Concordance of enriched terms was assessed using Jaccard indices, categorized
by four comparison types: Intra-HTM_FC_CBR, Intra-HTM_Bayes_CBR, Intra-CBR_Fixed_HTM,
and Inter-HTM_Inter_CBR. Results showed highly significant differences in Jaccard similarity
distributions among comparison types (Kruskal-Wallis p = 5e-04). “Intra-HTM_FC_CBR” exhibited
the highest consistency, indicating minor HTM influence when using FC-based CBR. “Intra-
CBR_Fixed_HTM” also maintained high concordance, suggesting robust agreement between FC and
Bayesian CBRs when HTM is fixed. Conversely, “Intra-HTM_Bayes_CBR” and “Inter-HTM_Inter-
CBR” showed the lowest consistency, highlighting the critical impact of Bayesian method choice and
mixed comparisons on functional overlaps, particularly for Gene Ontology terms. KEGG pathways
displayed more uniform, method-insensitive concordance. Sensitivity analysis confirmed the
robustness of these findings. This study underscores that analytical choices profoundly influence
functional enrichment outcomes, emphasizing the need for transparency and careful consideration
in proteomics research to ensure reproducibility.

Keywords: proteomics; meta-analysis; Jaccard index; functional enrichment; statistical methods

1. Introduction

The “omics” era has revolutionized our understanding of biological systems, with quantitative
proteomics emerging as an indispensable tool for unraveling cellular complexity, identifying
biomarkers, and understanding pathology [1]. Mass spectrometry (MS)-based approaches are now
the gold standard for large-scale protein identification and quantification. Among these, “label-free”
quantification is a widely adopted strategy. Unlike isotopic or chemical labeling methods, it infers
relative protein abundance directly from peptide ion signal intensity in the mass spectrometer. Its
appeal lies in experimental simplicity, lower cost, and ability to compare multiple samples without
multiplexing limitations [2]. This makes it ideal for high-throughput studies and extensive cohorts
where sample integrity and efficiency are paramount. However, label-free quantification faces

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1554.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 July 2025 d0i:10.20944/preprints202507.1554.v1

2 of 21

challenges. The precision and accuracy of peptide and protein quantification are highly dependent
on numerous factors that introduce variability, affecting the reliability of biological conclusions [3].
Identifying and managing these parameters that can bias “biological reality” is crucial for obtaining
meaningful and reliable results [4].

Variability originates from multiple stages. The pre-analytical stage is critical; sample type,
quality and protein lysis/extraction methods significantly influence recovery and representativeness.
Different extraction protocols, for instance, often yield low overlap in identified proteins due to
selective solubilization, leading to biased profiles [5]. At the protein level, intrinsic characteristics like
size, hydrophobicity, and post-translational modifications (PTMs) impact proteolytic digestion,
solubility, and ionization efficiency. Peptide amino acid sequence also directly influences
fragmentation and thus identification/quantification efficiency [6]. The instrumental stage influences
by ionization efficiency and peptide ion mobility, among others. Optimization of mass spectrometer
acquisition parameters (e.g., injection time, resolution, collision energy), co-elution, interference, and
the quality/stability of the liquid chromatogram are also crucial [7,8]. Poor chromatographic
reproducibility or high background noise severely compromise accurate peptide quantification.

After mass spectra acquisition, bioinformatic decisions profoundly alter results [9]. The choice
of protein sequence database and its comprehensiveness is fundamental since an incomplete database
leads to missed protein identifications. Customized databases are increasingly vital in
proteogenomics, improving identification rates for organisms with incomplete genomes or specific
genetic variants [10]. Databases should be complete, up-to-date, and include relevant isoforms and
known variations. Search parameters in engines are equally decisive, based on enzymatic digestion
(e.g., trypsin), PTMs, and expected mass errors [11]. Strict mass tolerances can omit valid
identifications, while lax ones increase false positives. These parameters directly affect peptide
detection, identification, and subsequent protein quantification. Mass spectrometry search engines
(e.g., Mascot, Sequest, Proteome Discoverer, MaxQuant, Comet/X! Tandem) use distinct algorithms.
While often yielding similar results, they differ in sensitivity and specificity, particularly for low-
abundance or complex peptides [12]. Engine choice and parameter optimization influence PSM
(Peptide-Spectrum Match) identification quantity and quality. Later, peptide-to-protein inference is
a non-trivial next step, requiring critical decisions to avoid protein over-identification. It involves
grouping PSMs corresponding to unique peptides to infer protein presence, in this sense, proteotypic
peptides are crucial for unambiguous protein identification [6]. Parsimony principles and handling
shared peptides among multiple proteins are key, often forming inferred protein groups. Setting FDR
(False Discovery Rate) thresholds, typically 1% at peptide and/or protein level, is critical for
controlling false positives and ensuring identification confidence [13].

Quantitative intensity data derived from PSMs require normalization to correct for technical
variability [14]. Various methods exist for intra-replicate (e.g., total chromatogram intensity) and
inter-replicate (e.g., median of total peptide intensities, quantile normalization) correction [15]. More
sophisticated methods like LOESS or VSN normalize for variance-intensity dependencies [16]. Label-
free specific methods like iBAQ and LFQ (in MaxQuant) perform internal normalizations across
replicates [17,18]. The choice of normalization significantly impacts downstream results and the
detection of biological changes [19].

Once reached, determining significantly changing proteins requires careful experimental design
and appropriate statistical approaches for differential expression analysis [20]. Designs range from
simple two-group comparisons to complex multifactorial or time-series experiments (Table 1). While
conventional parametric methods like Student’s t-test and ANOVA are widely used [21], their
assumptions (normal distribution, homoscedasticity, independence) are often violated in proteomics
due to variability, missing values, and heterogeneous measurement error [22-24]. These classical
methods limit statistical power and increase false positive/negative rates, especially in low-
replication designs.
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Table 1. Recommended Statistical Tests for Quantitative Proteomics Differential Expression Analysis Based on

Experimental Design.

Experimental Design Most Commonly Used Test More Appropriate Test

limma (moderated t-test) [25], DEqMS [26], Bayesian
models [27]
Multiple Conditions One-way ANOVA [28] limma [25], DEqMS [26], Bayesian models [27]

Simple Comparison (A vs. B)  Student’s t-test [23]

ANOVA / Linear Regression  Linear mixed-effects models (MSstats) [28], limma
Time Series Experiments

[28] [25], DEgMS [26], Bayesian [27]
Multifactorial (e.g., treatment Mixed-effects models (MSstats) [28], limma [25],
Factorial ANOVA [28]
xtime) DEgMS [26], Bayesian [27]
Controlled Reference ) .
ANOVA / t-test [28] limma [25], DEgMS [26], Bayesian [27]
Mixtures
Spectral Count Data QSpec [29] QSpec [29], hierarchical Bayesian count models [27]
Extended Time Series (>4 Linear mixed-effects models (MSstats) [28], Bayesian
Regression / Clustering [28]
points) time series [27]
PLGEM-STN [23], limma [25], DEgMS [26],
Low Replication Designs t-test / PLGEM-STN [23]

Bayesian [27]

More robust alternatives address these limitations. limma performs moderated t-tests using
empirical Bayes shrinkage, improving variance stability with low replicates [25]. DEqQMS models
protein-level variance dependence on identified peptides for precise estimates [26]. Bayesian
methods (e.g., BDiffProt, BNIH) encode uncertainty and incorporate prior information, improving
false discovery rate control and effect size estimation under non-normal conditions [22,27]. For
longitudinal and multifactorial designs, linear mixed-effects models (MSstats) control for intra-
subject correlation, repeated measurements, and batch effects [30]. These models, combined with
variance moderation (limma, DEqMS), outperform classical methods in high-dimensional data with
missing values or low replication [23,31]. Beyond statistical significance, biological relevance must be
evaluated. While p-values indicate probability, effect size or Fold Change (FC) quantifies the
magnitude of difference, directly indicating biological relevance [32]. Bayesian approaches offer
direct inference about effect magnitude and the probability of biologically relevant differential
expression, often using a Null Interval of Relevance for more intuitive interpretation [27].

The quantitative proteomics workflow lead to the performance of enrichment analyses to
transform data into interpretable biological knowledge. These analyses identify disproportionately
represented biological functions, processes, or pathways within lists of quantitatively changed
proteins by integrating proteomic information with databases like GO, KEGG, and Reactome. This
provides a high-level view of underlying molecular mechanisms. The robustness of enrichment
results could be intrinsically linked to methodological decisions made throughout the proteomic
workflow. Variability from sample preparation, data acquisition, normalization, missing value
imputation, and differential expression analysis propagates, could affect input protein lists for
enrichment and thus pathway interpretation. Understanding factors biasing or affecting enrichment
consistency is essential for reliable biological conclusions. This study precisely addresses this
fundamental need. Through a meta-analysis using the Jaccard similarity coefficient on real proteomic
datasets, we aim to quantify and understand how different methodological decisions influence the
robustness and reproducibility of pathway enrichment results. This approach will empirically
illuminate how selections within the quantitative proteomics bioinformatics pipeline directly affect
biological interpretation, providing a basis for optimizing workflows and enhancing confidence in
biological inferences.
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2. Materials and Methods

2.1. Dataset Selection

Five publicly available mass spectrometry (MS) proteomic works (referred to as Works 1-5) were
selected for this study. Works 1, 2, and 3 were chosen randomly based on three criteria: their
acquisition using an Orbitrap Fusion mass spectrometer, utilization of data-dependent acquisition
(DDA) mode, and prior publication in peer-reviewed journals. Works 4 and 5 were selected from a
previously published work by our research group, adhering to the same criteria. From each work,
specific RAW files were obtained to perform pairwise comparisons. Information for each work is
detailed below:

- Work 1 (ProteomeXchange: PXD051640) originated from a study on brown adipose tissue and
liver in a cold-exposed cardiometabolic mouse model [33]. The protein database used for
identification was Mus musculus (C57BL/6]) (UP000000589).

- Work 2 (ProteomeXchange: PXD041209) investigated the Escherichia coli protein acetylome
under three growth conditions [34]. Protein identification relied on the Escherichia coli K12
(UP000000625) protein database.

- Work 3 (ProteomeXchange: PXD019139) explored quantitative proteome and PTMome
responses in Arabidopsis thaliana roots to osmotic and salinity stress [35]. The corresponding protein
database was Arabidopsis thaliana (UP000006548).

- Works 4 and 5 (ProteomeXchange: PXD034112) were derived from a comprehensive study on
biological nitrogen fixation and phosphorus mobilization in Azotobacter chroococcum NCIMB 8003
[36]. The protein database for these works was UP000068210.

The files were analyzed in MaxQuant, using the parameters specified in Table S1.

2.2. Differential Abundance Analysis

Data processing and statistical analyses were primarily conducted using R (version 4.5.0) [37]
within the RStudio 2025.05.0 environment, leveraging various specialized packages. The initial input
for differential abundance analysis consisted of the proteinGroups.txt and evidence.txt files, which
are standard outputs from the MaxQuant processing. As a crucial data preparation step (Script 1),
contaminants, proteins identified by only one unique peptide, and proteins from the decoy database
were filtered out from the proteinGroups.txt file. The resulting filtered dataset, named
proteinGroups_filtered.txt, was then used as the primary input for most downstream statistical
analyses. For all analyses, iBAQ normalized intensity data were utilized, and all selected statistical
methods were robustly designed to accommodate the presence of missing values. Six distinct
hypothesis testing methods (HTMs) were applied to these prepared datasets (Script 2):

- Student’s and Welch's t-tests: Performed on the base-2 logarithm of protein intensity data to
compare means between two conditions. Both Student’s t-test (assuming equal variances) and
Welch's t-test (not assuming equal variances) were conducted using base R functions.

- Limma: The limma R package [25,38] was used to fit a linear model to log2-transformed protein
intensity data. This method employs empirical Bayes moderation to ‘borrow information” across
proteins, enhancing statistical power and stabilizing variance estimates, particularly critical in
experiments with low biological replicates.

- DEqMS: The DEqMS R package [26] was employed, extending the limma framework by
incorporating peptide count information to refine variance estimation in differential protein
abundance analysis. It leverages the observation that proteins identified with more peptide-spectrum
matches (PSMs) yield more reliable intensity measurements, leading to improved statistical power.

- MSstats: The MSstats R package [30] is specifically designed for quantitative mass spectrometry
data. Uniquely among these methods, MSstats requires the original proteinGroups.txt file (not the
filtered version) along with the evidence.txt file as input. Data was pre-processed using the
dataProcess function in MSstats, and group comparisons were performed using linear mixed-effects
models. This approach accounts for various sources of variability (e.g., biological/technical replicates,
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batch effects) by explicitly modeling them as random effects, thus providing robust variance
estimates and increased statistical power.

- Bayesian Analysis: Differential protein abundance was also assessed using a Bayesian
framework, implemented with the rstanarm R package [39]. This package provides an interface to
Stan for Hamiltonian Monte Carlo (HMC) sampling. For each protein, a Bayesian linear regression
model was fitted to the log2-transformed intensity data, utilizing the experimental condition as
predictor. Model fitting employed four Markov Chain Monte Carlo (MCMC) chains with 4000
iterations (including 2000 warm-up iterations) and an adapt_delta of 0.99. Convergence of the chains
was rigorously monitored using Rhat values (ideally <1.01) and effective sample size (ESS, ideally
>200). This probabilistic approach yields full posterior distributions for the model parameters, which
enables direct statements about effect sizes and their associated uncertainties. Weakly informative
priors were incorporated to regularize parameter estimates and enhance model stability, particularly
beneficial for proteins with limited measurements [40,41].

For all frequentist methods (Student’s t-test, Welch’s t-test, imma, and DEqMS), p-values were
adjusted for multiple testing using the Benjamini-Hochberg (BH) method to control the false
discovery rate. Proteins with an adjusted p-value <0.05 were considered significantly differentially
abundant. For the Bayesian method, significance was determined by calculating the posterior
probability that the effect size (log2FC) exceeded a predefined threshold of biological relevance (1),
with proteins having a posterior probability >0.95 considered differentially abundant.

To provide a comprehensive overview of the differential abundance analysis results, several
types of plots were generated for each pairwise comparison (Script 2): bar plots (using the ggplot2
package) visualizing the total number of significant proteins identified by each method; UpSet plots
(using the UpSetR package, [42]) representing the intersections and unique sets of significant proteins
across different methods, complemented by tabular summaries of these intersections; and density
plots of -log10(adjusted p-value) (using ggplot2) to assess overall trends in p-value distributions from
frequentist methods, including a vertical line for the significance cutoff.

2.3. Biological Relevance Filtering and Overlap Analysis

To identify proteins with significant biological relevance beyond mere statistical significance,
two distinct criteria for biological relevance (CBRs) were applied to the initial results of differential
abundance analysis (Script 3). The first criterion, Fold Change (FC) Filtering, was applied to proteins
statistically identified as differentially abundant by the frequentist methods (t-Student, t-Welch,
limma, DEqMS, MSstats). A protein was considered biologically relevant if its absolute log2 Fold
Change (I1og2FC|) was greater than or equal to 1. The second criterion, Bayesian Biological Relevance
Filtering, employed the previously described Bayesian linear modeling approach. After the initial
hypothesis testing, for each protein, a Bayesian linear model (fitted using the rstanarm R package;
[39], with the MCMC parameters and convergence diagnostics as detailed above) was utilized. A
protein was deemed biologically relevant by this criterion if the absolute mean of its posterior log2
Fold Change (llog2FC|) was 21 and the probability of this log2 Fold Change exceeding an absolute
threshold of 1 (P(Iposterior log2FC|>1)) was 20.

To understand the agreement and unique contributions of each filtering strategy, intersection
analysis was performed using UpSet plots [42]. For each statistical method, three sets of proteins were
defined: “Originals” (statistically significant proteins from the HTMs), “FC” (proteins from the
“Originals” set also meeting the Fold Change CBR), and “Bayes” (proteins from the “Originals” set
also meeting the Bayesian CBR). These sets of protein identifiers were used as input for the UpSetR
package in R. UpSet plots were generated to visualize the size of unique sets and all possible
intersections.

2.4. Segregation and Functional Enrichment Analysis

Following the HTM analysis and CBR filtering, proteins were classified as up- or down-
regulated based on their log2 FC values and the respective statistical or biological relevance

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1554.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 July 2025 d0i:10.20944/preprints202507.1554.v1

6 of 21

thresholds (Script 4). For each HTM and CBR, separate lists of up-regulated and down-regulated
protein identifications (Protein.IDs) were generated. It is important to note that while the res_bayes
method originates from Bayesian inference, its results for biological relevance were also considered
under the Fold Change criterion for specific downstream applications.

Functional enrichment analysis was performed using ClueGO (v2.5.9) [43] within Cytoscape
(v3.10.0) [44]. For each set of upregulated and downregulated proteins identified, Gene Ontology
(GO) terms (Biological Process and Molecular Function) and KEGG pathways, when possible, were
interrogated. The enrichment analysis relied on a two-sided hypergeometric test, with resulting p-
values corrected for multiple testing using the Benjamini-Hochberg method. Only terms with a
corrected p-value <0.05 were considered significant. To reduce redundancy and improve
interpretability, functionally related terms were grouped based on their kappa score using the GO
Term Fusion option, and the resulting networks were visualized based on the overlap of associated
genes.

2.5. Jaccard Analysis of Individual Works

To systematically evaluate the impact of HTMs and CBRs on the consistency of functional
enrichment outcomes within individual quantitative proteomics datasets, % associated genes of each
upregulated and downregulated datasets from each HTM and CBR frameworks were used to analyze
the similarity (Script 5). Then, the similarity between these lists of enriched terms was quantitatively
assessed using the Jaccard Index (J(A,B)=|AUBI|ANBI) [45]. Jaccard similarity indices were rigorously
categorized based on the nature of the combined HTM and CBR as follows, mirroring the scheme
implemented in our analysis scripts:

¢ Intra-HTM_FC_CBR: Comparisons between different HTMs where the CBR was consistently
Fold Change-based (e.g., deqms_FC vs. limma_FC). This category assesses the variability introduced
solely by the choice of HTM when a fixed FC relevance criterion is applied.

¢ Intra-HTM_Bayes_CBR: Comparisons between different HTMs where the CBR was
consistently Bayesian posterior probability-based (e.g., deqms_bayes vs. limma_bayes). This category
assesses the variability introduced solely by the choice of HTM when a Bayesian relevance criterion
is applied.

¢ Intra-CBR_Fixed_HTM: Comparisons between the two different CBRs (Fold Change-based vs.
Bayesian posterior probability-based) where the HTM was kept constant (e.g., tstudent_FC vs.
tstudent_bayes). This category directly evaluates the influence of the biological relevance criterion
itself, controlling for the HTM.

¢ Inter-HTM_Inter-CBR: Comparisons between combinations where both the HTM and the CBR
differed (e.g., tstudent_FC vs. limma_bayes). This category represents the cumulative variability
from changing both methodological aspects.

For each individual “Work” and for each direction of regulation (up/down), a non-parametric
Kruskal-Wallis H-test (p<0.05) was performed to assess overall differences in Jaccard index
distributions across these defined comparison types. If significance was detected, post-hoc Dunn’s
tests with Bonferroni correction [46] were performed to identify specific pairs of groups with
significantly different Jaccard index distributions.

2.6. Meta-Analysis

A comprehensive meta-analysis was performed to evaluate the consistency of biological
enrichment results across various quantitative proteomics datasets and statistical methodologies
(Script 6). The pre-computed and categorized Jaccard similarity indices from each individual “Work”,
as described in the previous section, served as the foundational data for this meta-analysis. This
approach ensured the ecological validity of our meta-analysis beyond controlled benchmark
scenarios [47,48].

For integration, raw ontology names, which sometimes included dataset-specific suffixes or
dates, were systematically standardized to their core functional categories (e.g.,
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“GO_BiologicalProcess”, “GO_MolecularFunction”, “KEGG”). All extracted Jaccard indices from all
“Works” were then transformed using the arcsin square root transformation (arcsin(V])) to improve
normality and homogeneity of variance, a common practice for proportional data. These transformed
indices were combined into a single, comprehensive dataset, along with metadata detailing the
original Work, normalized ontology, direction of regulation (up/down), and their specific
methodological comparison category.

Statistical analysis for the meta-analysis was conducted using the non-parametric Kruskal-
Wallis test to assess overall differences in transformed Jaccard index distributions across the
comparison types. This was followed by Dunn’s post-hoc test with Bonferroni correction for pairwise
comparisons when global significance was observed. The robustness and consistency of the overall
findings were further evaluated through a sensitivity analysis, where the Kruskal-Wallis test was re-
run by systematically excluding one “Work” at a time from the meta-analysis dataset.

All analyses and visualizations were performed using R (version 4.5.0), leveraging the tidyverse
suite for data manipulation, ggpubr for statistical tests and visualization, patchwork for combining
plots, and dunn.test for post-hoc analysis [49-51].

3. Results and Discussion

Quantitative proteomics experiments aim to identify and quantify changes in protein abundance
across different biological conditions. A critical downstream step involves pathway and functional
enrichment analysis, which translates lists of differentially expressed proteins into biologically
meaningful insights. However, the statistical methods employed for differential expression analysis
can vary significantly, broadly categorized into frequentist approaches (e.g., t-tests, ANOVA, linear
models) and Bayesian methods (e.g., typically incorporating prior information or empirical Bayes).
The choice of method could profoundly impact the resulting list of significant proteins, consequently
affecting the outcome of subsequent enrichment analyses.

In this work, five previously published quantitative proteomics independent studies (“Works”)
were reanalyzed to elucidate the impact of the non-biological component of sample-to-sample
comparison experiments using label-free quantitative proteomics. All were analyzed using the same
parameters in MaxQuant (Table S1), thus limiting the differences to the biological parameters of the
experiment itself and those derived from the statistical decisions under study. However, these
parameters were also not identical to those of the original studies, which would explain possible
differences with respect to them. To our knowledge, this study presents a novel meta-analytical
approach by combining enrichment results from diverse real-world, independently published
quantitative proteomics datasets rather than controlled benchmark datasets. This allows for a
comprehensive evaluation of the relative influence of both specific HTMs and distinct CBRs on
downstream biological interpretations, reflecting the variability encountered in actual research.
While method benchmarking studies often utilize specially prepared datasets to validate new
approaches, the use of a meta-analysis on randomly selected or pre-existing “real” datasets is less
common and offers valuable insights into the generalizability and robustness of analytical choices in
routine proteomics research. By analyzing the different Works, we aim to address three key questions
regarding the influence of statistical methodologies on biological enrichment findings:

* Does the specific hypothesis testing method (HTM; e.g., t-Student, t-Welch, Limma, DEqMS,
MSstats, Bayesian) influence the resulting biological enrichments when the criterion for biological
relevance (CBR) is kept constant?

* Does the method used for determining biological relevance (CBR; Fold Change-based vs.
Bayesian posterior probability-based approaches) influence the resulting biological enrichments
when the hypothesis testing method (HTM) is kept constant?

* What has a greater influence on the observed biological enrichments: the specific hypothesis
testing method (HTM) or the criterion for determining biological relevance (CBR)?

3.1. Protein Groups Variability
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Prior to examining the differential expression results, it is crucial to understand the inherent
variability within each experimental condition (Table 2). The median coefficient of variation (CV)
offers insights into the reproducibility of protein quantification within each condition. In Works 1, 4,
and 5, a notable disparity in the consistency of protein quantification between conditions is observed.
Specifically, in these Works, Cond2 exhibits a considerably higher median CV than Cond1. For Works
4 and 5, the variability in Cond? is particularly pronounced, significantly exceeding that observed in
Cond1. It is important to note that, for these Work, Cond2 was derived from the same raw files,
suggesting that these differences in CV primarily stem from the impact of normalization strategies
applied across different replicates on the final observed protein quantification. High CVs can indicate
greater biological variability, technical noise, or a combination of both. Conversely, Work3 shows
relatively low and similar median CVs for both conditions, indicating more consistent and
reproducible protein quantification. Work2 also presents relatively high CVs for both conditions, but
with a less dramatic difference between them. The standard deviation (SD) of the absolute log2 fold
change (1Log2FC|) provides a measure of the spread of the observed changes in protein abundance
between the two conditions. Higher SD values indicate a wider range of fold changes, suggesting
more diverse responses to the experimental manipulation. The |Log2FC| SD is relatively low in
Work1 (1.06) compared to the other Works, indicating a more uniform response. In contrast, Works
2, 4, and 5 exhibit higher 1Log2FCI| SD values (3.94, 3.59, and 3.9, respectively), suggesting more
heterogeneous protein abundance changes. Work3 shows a moderate |Log2FC| SD of 2.73.

Levene’s test assesses the equality of variances between the two conditions. A p-value greater
than 0.05 indicates no significant evidence to reject the null hypothesis of equal variances, while a p-
value less than or equal to 0.05 suggests that the variances may be different. In our data, Works 2 and
3 have Levene’s test p-values greater than 0.05 (0.9313 and 0.1317, respectively), suggesting that the
variances between the two conditions are not significantly different. However, Works 1, 4, and 5 have
p-values lower than 0.05 (0, 0.0117, and 0.001, respectively), indicating significant differences in
variances between the conditions, which should be considered when selecting appropriate statistical
methods for differential expression analysis. Methods that assume equal variances may not be
appropriate for these datasets. This analysis of protein group variability, the spread of fold changes,
and variance equality provides important context for interpreting the subsequent differential
expression results. Datasets with higher CVs or unequal variances between conditions may require
more robust statistical methods or more careful interpretation of the results.

Table 2. ProteinGroups variability. Cond1, condition 1 (Cold, Glu, NaCl, BNF and PM, respectively for each
Work); Cond2, condition 2 (RT, Gly, No saline stress, no BNF, no PM, respectively for each Work). Levene p
value shows the result of the Levene’s test (Equality of Variances): p-value > 0.05: There is no significant evidence
to reject the null hypothesis that the variances between groups are equal; p-value <= 0.05: There is significant

evidence to reject the null hypothesis of equality of variances (the variances between groups may be different).

Wor Median CV (Cond1) Median CV (Cond2) SD del |Log2FC (Cond1 vs Levene (p
k (%) (%) Cond2)| value)
1 17.02 36.85 1.06 0
2 39.18 46.63 3.94 0.9313
3 17.16 12.92 2.73 0.1317
4 25.27 62.71 3.59 0.0117
5 74.69 62.2 3.9 0.001

3.2. Differential Expression Analysis and Impact of Hypothesis Testing Methods

The input data for this study originated from a protein groups file (proteinGroups.txt) and an
evidence file (evidence.txt) obtained from mass spectrometry experiments. For differential
abundance analysis, we applied six different statistical methods, five frequentists: t-test [52], t-test
with Welch's correction [53], limma [38], DEqMS [26], MSstats [30]; and a Bayesian approach utilizing
rstanarm [39,54]. It is indeed plausible to state that brms was initially considered for the Bayesian
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analysis but proved computationally unfeasible for routine use, leading to the adoption of rstanarm,
with higher efficiency for standard generalized linear models (GLMs) due it frequently leverages pre-
compiled Stan code, significantly reducing the compilation time often required by brms for each
model specification [54,55]. Nevertheless, both packages are widely recognized and applied in
quantitative proteomics for differential expression analysis due to their ability to provide full
posterior distributions for parameters of interest, quantify uncertainty, and incorporate prior
knowledge, which can be particularly advantageous with limited biological replicates [56]. The
Bayesian method implemented via rstanarm was employed for both hypothesis testing and, in a
single step, the determination of statistical significance, which inherently accounts for biological
relevance through its probabilistic framework. Differential expression analysis was performed using
each of these six methods on the respective input data, and the resulting lists of differentially
abundant proteins were compared based on adjusted p-values.

The number of identified differentially expressed proteins (DEPs) varied considerably across the
six statistical methods (Bayesian, DEqMS, Limma, MSstats, t-Student, and t-Welch) and the five
distinct workflows (W1-W5), as depicted in Figure 1A. A general pattern observed in Panel A is that
MSstats consistently identifies a larger number of DEPs across most workflows compared to other
methods, suggesting higher sensitivity or a less stringent filtering of significance. Conversely, the
Bayesian method often yields a more conservative number of DEPs, particularly noticeable in
workflows where other methods report a high count. Limma and DEqMS tend to show intermediate
numbers, while t-Student and t-Welch results are also variable. This variability highlights the
dependency of DEP lists on the chosen statistical approach, a well-documented challenge in
proteomic data analysis. The UpSet plots in Figure 1B provide crucial insights into the overlap and
unique identifications among the methods for each workflow. A key pattern emerging from Panel B,
particularly evident in workflows with a higher overall number of DEPs (e.g., Work1, Work4), is that
while a substantial core set of proteins is often identified by multiple methods, indicating high
confidence, there are also considerable numbers of DEPs unique to one or a few specific methods.
This observation reinforces that different statistical models emphasize distinct aspects of the data,
potentially due to variations in assumptions regarding variance estimation or outlier handling [56].
For instance, methods showing higher individual DEP counts (like MSstats) also tend to contribute a
larger number of unique DEPs, suggesting their sensitivity might capture a broader range of subtle
changes or, conversely, a higher rate of false positives if not adequately controlled. Thus, the choice
of HTM profoundly influences the sheer volume of proteins deemed significant, a critical factor for
downstream biological interpretation.

The distribution of adjusted p-values, as presented in Figure S1, provides further insights into
the behavior and sensitivity of the six statistical methods across the five Works. A sharp peak near
the origin (low negative log-base-10 adjusted p-value) is consistently observed, representing non-
significant proteins, as expected. Crucially, the right tail of these distributions, corresponding to
statistically DEPs, varies notably. MSstats, consistent with its higher DEP counts in Figure 1A,
typically displays a broader distribution extending to higher negative log-base-10 adjusted p-value
values (e.g., in Workl, Work4). This indicates that MSstats assigns lower adjusted p-values to more
proteins, suggesting higher sensitivity, but also potentially a higher false positive rate if not carefully
controlled. Conversely, methods like Bayesian, t-Student, and t-Welch show distributions more
concentrated at lower negative log-base-10 adjusted p-value values, with minimal density in the right
tail. This reflects their more conservative nature and lower DEP counts, as seen in Figure 1A,
indicating fewer proteins meeting significance thresholds. The shape of these distributions,
particularly the presence of a “spike” near the significance threshold, can indicate a method’s ability
to discern true DEPs from noise [57]. While not strictly bimodal, MSstats’” shifted distribution
suggests a more substantial set of low p-values. Finally, the variability in p-value distributions across
workflows emphasizes the significant impact of data processing and normalization steps on
statistical outcomes. In essence, Figure S1 confirms that the chosen statistical method profoundly
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influences the statistical evidence for differential expression, impacting the final DEP list due to
varying sensitivities.
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Figure 1. Number of significant proteins and their intersections across different hypothesis testing methods
(HTMs) for five quantitative proteomics Works. (A) Barplots showing the total number of significant proteins
identified by each of the six hypothesis testing methods (Bayesian, DEqQMS, Limma, MSstats, t-Student, and t-
Welch) for Work 1, Work 2, Work 3, Work 4, and Work 5 (from top to bottom). (B) UpSet plots illustrating the
intersections of significant protein sets identified by the various HTMs for Work 1, Work 2, Work 3, Work 4, and
Work 5 (from top to bottom). Dots connected by lines below the vertical bars show which methods contribute to

each intersection.

3.3. Biological Relevance in Differential Proteomics Analysis
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Beyond statistical significance, the biological relevance of identified proteins is paramount for
meaningful interpretation in proteomics studies. This often involves applying additional filters, such
as fold change thresholds or probabilistic assessments from Bayesian analyses, to refine the list of
potentially interesting proteins. Figure 2 illustrates the overlaps in significant proteins among
different frequentist HTM (Student’s t-test, Welch’s t-test, Limma, DEqMS, and MSstats) after the
application of these biological relevance filters across Works 1, 2, 4, and 5 (Panels A to D). Work 3 is
not included in this figure due to an insufficient number of significant results after the initial statistical
testing and subsequent filtering for biological relevance.

Considering the Limma method as an example we found that the ‘O’ set, representing all
proteins initially significant by Limma, comprises 3630 proteins (Figure 1). From this ‘O’ set, 2311
proteins are deemed biologically relevant by the Bayesian and FC filters, and 3322 proteins (2311 +
1011) the EC filter. This detailed breakdown highlights that while some proteins exhibit robust
agreement across all criteria, a significant number of proteins pass one biological relevance filter but
not the other, indicating distinct filtering specificities. Meanwhile, 308 proteins didn’t surpasses any
of the biological relevance (Bayesian or FC). Works 2 (B), 4 (C), and 5 (D) present more varied
patterns. In Work 2, the total number of significant proteins (Set ‘O’) is considerably smaller for some
methods (e.g., t-Student, t-Welch) compared to Work 1, aligning with the observations from Figure 1
regarding method sensitivity. This reduced initial set of significant proteins naturally leads to fewer
proteins passing the biological relevance filters, as seen by the smaller absolute set sizes for ‘B” and
‘FC’. Nevertheless, the previously found pattern is also observed not only in the rest of the datasets
in Work1, but is quite common in all the works, thus showing that the biological relevance filter using
Bayesian analysis is more restrictive than the FC. This is especially evident in work 5, where hardly
any proteins with biological relevance are identified after applying the Bayesian method (only 1 is
found after hypothesis testing with MSstats). Moreover, when using the Bayesian method after
hypothesis testing with frequentist methods, fewer proteins with biological relevance are always
found (Figure 2) than when the Bayesian method is used as both the hypothesis testing test and a
method to determine biological relevance (Figure 1). This observed variability suggests that different
statistical approaches, such as fold change versus Bayesian methods, may not always perfectly agree,
especially when dealing with noisier datasets or more subtle biological effects. The consistency
observed in certain methods stems from their robustness to common proteomics challenges like
missing values and outliers. For instance, MSstats is designed to manage missingness through
imputation or probabilistic modeling, while Limma’s empirical Bayes moderation stabilizes variance
estimates, particularly with small sample sizes [24,30,46]. When these methods are applied to data
where such issues are effectively managed, their convergence on similar significant findings
underscores their reliability.

Beyond proteins passing initial filters, we investigated whether discarded proteins followed
specific patterns. As anticipated from Figure 2, proteins eliminated by the Bayesian method’s filter
were largely expected to include those removed by the Fold Change (FC) filter. For instance, in
Workl, this general expectation held true, except for proteins discarded after using the MSstats test.
In this specific case, 459 proteins were commonly discarded by both MSstats and FC filters, while 373
were uniquely eliminated by the Bayesian method, and 1,202 uniquely by the FC filter (Figure S2).
This demonstrates that applying the Bayesian CBR filter not only tends to discard more proteins but
also, depending on the preceding hypothesis test, the set of discarded proteins can differ significantly
from those removed by the FC filter. This highlights a fundamental distinction: while FC is a purely
magnitude-based filter, Bayesian methods integrate uncertainty into their relevance assessment. This
provides a complementary perspective where a substantial effect size might be down-prioritized if
statistical confidence is low [40]. Consequently, the selection of both the hypothesis testing method
and the biological relevance criterion jointly determines the final set of relevant proteins, directly
influencing downstream pathway and functional enrichment analyses.
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Figure 2. Comparison of overlaps in the significant proteins in the different hypothesis tests after the biological
relevance filter (fold change and Bayesian analysis). The overlap results of the identified proteins are presented
for each of the frequentist methods (Student’s t, Welch’s t, Limma, DEqMS and MSstats) in Works 1, 2, 4 and 5
(A to D). Work 3 did not yield sufficiently significant results. B, proteins identified only after applying the
biological relevance filter by the Bayesian method; FC, proteins identified only after applying the fold change
filter; O, all proteins present after the hypothesis test.

3.4. Functional Enrichment and Similarity Profiles

Following the application of biological relevance filters to identify differentially expressed
proteins, functional enrichment analyses were subsequently performed. Once significant enrichment
terms were obtained, the evaluation proceeded to assess the significance of changes in these
functional profiles across the different analytical methods developed. It is important to note that,
while Work3 had already yielded an insufficient number of significantly distinct proteins following
initial statistical testing and filtering (as discussed in the previous section), at this subsequent
enrichment stage, we similarly did not find enough enriched terms for both Work2 and Work5
(encompassing lists of both upregulated and downregulated proteins), nor specifically for the
downregulated proteins of Workl. Consequently, the ensuing assessment of functional enrichment
and similarity profiles, as visually represented in Figure 3, focuses solely on selected data subsets
from “Workl (upregulated)” and “Work4 (up- and down-represented)”.

The Jaccard similarity distributions for Work1, across Biological Process, Molecular Function,
KEGG pathways, and an “All Ontologies” aggregate, revealed significant differences. The Kruskal-
Wallis rank sum test yielded a chi-squared value of 8.6305 (df = 3, p = 0.03463), indicating that the
comparison types within Workflow 1 had a statistically significant, non-random impact on the
observed functional similarities. This result (p < 0.05) necessitates further post-hoc analysis to
pinpoint the specific differing comparison types (Dunn, 2017). Detailed pairwise Jaccard similarities,
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particularly for Biological Process, Molecular Function, and KEGG pathways, provide granular
insights into which specific groups or comparisons drive this overall statistical significance. Tightly
clustered regions of high similarity within these comparisons underscore consistent functional
patterns.

For Work4, focusing on upregulated (“up”) entities, the analysis revealed highly significant
differences in Jaccard similarity profiles across Biological Process, Molecular Function, and the “All
Ontologies” aggregate. The Kruskal-Wallis test for “Work4_up” yielded a p-value of 2.289e-05 (chi-
squared = 24.182, df = 3), strongly indicating profound impacts of comparison type on functional
relationships for upregulated entities [58]. Conversely, for downregulated (“down”) entities, the
“Work4_down” component, specifically within the Biological Process ontology, showed a borderline
but still statistically significant difference (p = 0.04404, chi-squared = 8.0974, df = 3) (no significant
enrichment results were obtained on other ontologies). This suggests that comparison types also
influence functional similarity for downregulated elements, albeit less profoundly than for
upregulated ones [59].

Collectively, the consistent statistical significance (p<0.05 for Work1 and Work4_down; p <0.001
for Work4_up) from the Kruskal-Wallis tests across all analyzed workflows underscores that the
methodological approach to comparison profoundly impacts Jaccard similarity measures. This
highlights the critical importance of selecting appropriate comparison types in functional enrichment
analyses. While summary statistics offer initial understanding, detailed pairwise relationships reveal
clusters of high or low similarity, with consistently high Jaccard indices signifying shared functional
characteristics and low indices indicating distinct functional roles [45]. The striking difference in
significance between “up” and “down” components in Work4, with stronger significance for
upregulated entities, suggests potentially more distinct and discernible functional patterns in gene
activation compared to downregulation. Future investigations could benefit from post-hoc tests (e.g.,
Conover’s test or pairwise Wilcoxon rank sum tests with Bonferroni correction) to precisely identify
specific differing comparison groups [60], and from integrating these functional similarity insights
with upstream expression data or network analyses for a more comprehensive understanding.

3.5. Meta-Analysis

Finally, a meta-analysis was performed with the objective of systematically evaluating the
impact of diverse statistical methodologies on the outcomes of biological enrichment analysis. This
meta-analysis compiled Jaccard indices from multiple quantitative proteomics “Works,” categorizing
them into four primary comparison types based on the interplay between the HTM and the CBR:
“Intra-HTM_FC_CBR,” “Intra-CBR_Fixed_HTM,” “Inter-HTM_Inter-CBR,” and  “Intra-
HTM_Bayes_CBR.” An “Unknown” category with very few data points was also observed,
representing method combinations not fitting the primary classifications; due to its sparse
representation, the interpretation focuses on the four main comparison types. The distribution of
Jaccard indices, both in their original and arcsin square root transformed forms, are presented in
Figure 4, Panels A and B, respectively.
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Figure 3. Jaccard Similarity Distributions and Heatmaps of Functional Enrichment Terms. Panels A, B, and C
illustrate Jaccard similarity distributions (top row, boxplots) and corresponding heatmaps (bottom row) of
enriched functional terms across various comparison types for Workl (upregulated proteins), Work4
(upregulated proteins), and Work4 (downregulated proteins), respectively. The boxplots show the distribution
of arcsin(sqrt)-transformed Jaccard indices, categorized by comparison type: “Intra-HTM_FC_CBR”
(concordance within Hypothesis Testing Methods with fixed Fold Change-based Criteria for Biological
Relevance), “Intra-HTM_Bayes_CBR” (concordance within HTMs with fixed Bayesian-based CBR), “Intra-
CBR_Fixed_HTM"” (concordance within CBRs with fixed HTM), and “Inter-HTM_Inter-CBR” (concordance
when both HTM and CBR vary). * p <0.05, ** p <0.01 (based on Kruskal-Wallis test and post-hoc Wilcoxon rank-
sum tests as performed in the meta-analysis). Heatmaps represent pairwise Jaccard indices for terms across

different methodological comparisons, with darker blue indicating higher similarity.

The arcsin square root transformation generally shifts the distribution towards a more
symmetrical form, which is beneficial for statistical analyses. The results are presented both globally
(across all analyzed ontologies and Works combined) and specifically for key Gene Ontology (GO)
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and KEGG pathway ontologies (Figure 4C and Figure 5A). The global analysis (Figure 4C) reveals a
highly significant overall difference in Jaccard similarity distributions among the comparison types
(Kruskal-Wallis p = 5e-04). A clear hierarchy of consistency emerges when comparing the median
Jaccard indices:

¢ “Intra-HTM_FC_CBR” (red boxplot in Figure 4C) exhibits the highest median Jaccard indices,
indicating a remarkably high degree of agreement among different frequentist HTMs (e.g., Limma,
DEgMS, t-Student, t-Welch, MSstats) when identifying enriched terms using a Fold Change (FC)-
based criterion for biological relevance. This suggests that within the frequentist paradigm, the
specific choice of HTM has a relatively minor influence on the resulting biological enrichments.

¢ “Intra-CBR_Fixed_HTM” (grey boxplot in Figure 4C) shows high consistency, with its median
Jaccard indices not significantly different from “Intra-HTM_FC_CBR” (p = ns). This is a pivotal
finding, indicating that the consistency observed when changing the relevance criterion (from FC to
Bayesian) while keeping the HTM fixed is comparable to the consistency achieved when varying
HTMs solely within the FC paradigm. This challenges the initial assumption that these fundamental
differences in defining relevance would lead to substantial divergence, suggesting a robust overlap
in the biological terms deemed relevant by both FC and Bayesian criteria when derived from the

same initial statistical assessment [45].
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Figure 4. Global distribution and comparison of Jaccard indices from meta-analysis. Panel A presents a
histogram showing the distribution of the raw Jaccard Index values across all collected data. Panel B displays a
histogram of the arcsin(sqrt)-transformed Jaccard Index values, illustrating how the transformation affects the
data distribution. Panel C features boxplots representing the arcsin(sqrt)-transformed Jaccard Index values,
categorized by four comparison types: “Intra-HTM_Bayes_CBR” (concordance among Hypothesis Testing
Methods with Bayesian-based Criteria for Biological Relevance), “Inter-HTM_Inter-CBR” (concordance when
both HTM and CBR vary), “Intra-CBR_Fixed_HTM” (concordance among CBRs with fixed HTM), and “Intra-
HTM_FC_CBR” (concordance among HTMs with FC-based CBR). Each point represents a single Jaccard index
calculation. The global Kruskal-Wallis p-value is displayed, indicating overall significant differences among the
groups. Brackets with asterisks denote significance from post-hoc Wilcoxon rank-sum tests (ns: not significant,
*p <0.05 * p<0.01).

o “Inter-HTM_Inter-CBR” (yellow boxplot in Figure 4C) and “Intra-HTM_Bayes_CBR” (blue
boxplot in Figure 4C) show similarly lower levels of consistency, with no significant difference
between them (p = ns). Both are significantly lower than “Intra-HTM_FC_CBR” (p < 0.01 and p <
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0.0001, respectively) and “Intra-CBR_Fixed_HTM” (p =ns for Inter vs Intra-CBR, p <0.0001 for Intra-
Bayes vs Intra-CBR). This suggests that changing HTMs within the Bayesian paradigm, or changing
both HTM and CBR simultaneously, leads to similarly low consistency in enrichment results. This
also implies that selecting one Bayesian method over another might be more critical for the qualitative
outcome of enrichment analysis than the choice among frequentist methods.

Ontology-specific analysis (Figure 5A) largely maintains these global trends. For
“GO_BiologicalProcess” (Kruskal-Wallis p = 0.033) and “GO_MolecularFunction” (Kruskal-Wallis p
= 0.0019), “Intra-HTM_FC_CBR” (red) generally exhibits higher overlap, and “Intra-
CBR_Fixed_HTM” (grey) often performs comparably. The lowest consistency consistently remains
with “Intra-HTM_Bayes_CBR” (blue) and “Inter-HTM_Inter-CBR” (yellow) for these GO terms.
However, for “KEGG” pathways (Kruskal-Wallis p = 0.038), a notable difference persists: all four
comparison types exhibit relatively high and non-significantly different Jaccard indices in most
pairwise comparisons (p = ns). This reinforces that for KEGG pathways, neither the specific HTM nor
the CBR exerts a predominantly stronger influence on the observed enrichments, suggesting a more
consolidated and less method-sensitive nature for these well-defined molecular networks [59]. This
observation aligns with previous studies that report good agreement among various differential
expression tools for protein quantification, especially when dealing with well-behaved data or
distinct changes [56,61].

A sensitivity analysis was performed by systematically excluding one “Work” (dataset) at a time
and re-running the Kruskal-Wallis test on the remaining data. Globally, when Workflow 1 or
Work4_up were individually excluded, the Kruskal-Wallis p-values remained very low (close to 0).
This strongly indicates that the observed global differences in Jaccard index distributions are robust
and not primarily driven by these two datasets. Conversely, excluding Work4_down resulted in the
Kruskal-Wallis p-value notably increasing to approximately 0.015-0.02. While still below the 0.05
significance threshold, this higher p-value suggests Work4_down has a more substantial influence
on the overall statistical significance compared to Work 1 or Work4_up. These results confirm the
robustness of our main findings regarding the differential consistency among comparison types,
particularly with respect to Work 1 and Work4_up. However, the greater impact of Work4_down on
overall significance points to a potential dataset-specific variability or an outlier effect that warrants
further investigation. This implies that while broad trends exist, the precise statistical significance of
methodological impacts can sometimes be influenced by individual datasets, underscoring the
importance of meta-analysis for generalizability.

3.6. Conclusions and Implications

This meta-analysis represents a novel systematic approach to evaluate the impact of statistical
methodologies on biological enrichment analysis outcomes by synthesizing Jaccard index data across
multiple independent quantitative proteomics studies. Our comparative framework, utilizing real-
world and independently sourced datasets rather than artificially constructed benchmarks, proved
that depending on the choices made at different stages of the analysis, the results regarding biological
enrichments can vary drastically. To begin with, we observed that the results obtained were not
identical to those presented by the original authors, despite using the same raw files. This discrepancy
is attributed to differences in the search and quantification process, as well as variations in the
number of replicates used in the normalizations. Furthermore, it has been shown how highly variable
samples compromise the tests’ ability to determine significance. Thus, reducing non-biological
variability (technical variability) as well as non-controlled biological variability becomes essential. In
this sense, the use of standardized protocols, the introduction of control points at key stages such as
sample preparation, the collection of samples by cross-referencing physiological data, proper
management of batch effects, uniform storage conditions, and an adequate number of replicates per
condition have a direct positive impact on statistical power by reducing noise.
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Figure 5. Ontology-Specific and Sensitivity Analysis of Jaccard Similarity. Panel A displays boxplots of
arcsin(sqrt)-transformed Jaccard Indices across the four comparison types, separated by specific ontologies: GO
Biological Process, GO Molecular Function, and KEGG Pathways. Each subplot includes the Kruskal-Wallis p-
value, and brackets with asterisks indicate significance from post-hoc Wilcoxon rank-sum tests (ns: not
significant, * for p <0.05, ** for p <0.01). Panel B illustrates the sensitivity analysis by showing the Kruskal-Wallis
p-values when each individual “Work” (dataset) is excluded from the meta-analysis. The dashed red line at p =
0.05 indicates the significance threshold. This panel highlights the influence of individual datasets on the overall

statistical significance of the methodological comparisons.

On the other hand, we observed that while specific frequentist HTMs within their paradigm
yield high and consistent enrichment results (“Intra-HTM_FC_CBR”), the agreement remains high
even when comparing FC-based and Bayesian-based CBRs if the underlying HTM is fixed (“Intra-
CBR_Fixed_HTM"”). Crucially, we showed that the consistency when varying HTMs within the
Bayesian paradigm (“Intra-HTM_Bayes_CBR”), or when varying both HTM and CBR
simultaneously (“Inter-HTM_Inter-CBR”), is the lowest among the groups. This implies that the
choice between frequentist and Bayesian HTMs, as well as the specific Bayesian method utilized,
profoundly impacts the overlap of identified terms for GO ontologies. This observation is crucial for
ensuring the reproducibility and comparability of proteomics studies, as differing analytical
pipelines and data processing choices can lead to divergent conclusions, sometimes even resulting in
a lack of significant protein findings after hypothesis testing or an insufficient number of significant
enrichments for downstream functional analyses. These findings underscore the importance of
transparency in reporting statistical methods in proteomics studies and encourage researchers to
consider the implications of their analytical choices on the biological interpretation of their data. The
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sensitivity analysis further emphasizes that while general patterns emerge, individual datasets can
exert notable influence on the overall statistical significance of these methodological comparisons.
For all these reasons, proteomic analysis (and omics in general) must include a cross-validation stage
with techniques such as Western blot, ELISA, or targeted MS (PRM/SRM) and/or functional
validation outside the proteomic framework [62].

Supplementary Materials: The following supporting information can be downloaded at website of this paper

posted on Preprints.org.
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