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Abstract 

Deep learning has achieved widespread adoption for medical image diagnosis, with extensive 

research dedicated to mammographic image analysis for breast cancer screening. This study 

investigates the hypothesis that incorporating region-of-interest (ROI) mask information for 

individual mammographic images during deep learning can improve the accuracy of 

benign/malignant diagnoses. We used Swin Transformer and ConvNeXtV2 deep learning models to 

evaluate their performance on the public VinDr and CDD-CESM datasets. Our approach involved 

stratifying mammographic images based on the presence or absence of ROI masks, performing 

independent training and prediction for each subgroup, and subsequently merging the results. 

Baseline prediction metrics (sensitivity, specificity, F-score, and accuracy) without ROI-based 

separation were the following: VinDr/Swin Transformer (0.00, 1.00, 0.00, 0.85), VinDr/ConvNeXtV2 

(0.00, 1.00, 0.00, 0.85), CDD-CESM/Swin Transformer (0.29, 0.68, 0.41, 0.48), and CDD-

CESM/ConvNeXtV2 (0.65, 0.65, 0.65, 0.65). Subsequent analysis with ROI-based separation 

demonstrated marked improvements in these metrics: VinDr/Swin Transformer (0.93, 0.87, 0.90, 

0.87), VinDr/ConvNeXtV2 (0.90, 0.86, 0.88, 0.87), CDD-CESM/Swin Transformer (0.65, 0.65, 0.65, 0.65), 

and CDD-CESM/ConvNeXtV2 (0.74, 0.61, 0.67, 0.68). These findings provide compelling evidence 

validating our hypothesis and affirming the utility of considering ROI mask information for 

enhanced diagnostic accuracy in mammography. 
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1. Introduction 

For breast cancer, which remains a prevalent malignancy among women worldwide, early 

detection and accurate diagnosis are crucially important for improving survival. Mammography is 

the widely adopted standard for breast cancer screening, but its interpretation demands extensive 

expertise. Challenges persist related to diagnostic discrepancies and missed diagnoses among 

radiologists. 

Beyond mammography, breast cancer diagnosis incorporates various methods, including visual 

inspection, palpation, and ultrasound examination. When these examinations reveal abnormalities, 

clinicians often perform highly invasive procedures such as cytological and histological examinations 

for definitive diagnosis. If deep learning-based image analysis of minimally invasive mammographic 

images can achieve high diagnostic accuracy, then it could reduce the need for highly invasive 

procedures. This approach would simultaneously alleviate burdens on radiologists and breast 

surgeons responsible for interpreting these images. 

Recent rapid advancements in artificial intelligence (AI) technology, particularly deep learning, 

have accelerated the development of automated analysis and diagnostic support systems for 

mammographic images remarkably. For various image recognition tasks, deep learning algorithms, 

especially convolutional neural networks (CNNs), now demonstrate performance comparable to or 
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exceeding human capabilities. For medical image diagnosis, these technologies often achieve 

superior accuracy and efficiency compared to conventional methodologies. 

Many studies have explored deep learning applications for mammographic image diagnosis. 

For instance, Zhang et al. [1] performed two-stage classification (normal/abnormal and 

benign/malignant) of two-view mammograms (CC and MLO) on the public DDSM dataset using a 

multi-scale attention DenseNet. Lång et al. [2] evaluated the potential of AI for identifying normal 

mammograms by classifying cancer likelihood scores with a deep learning model on a private dataset, 

comparing the obtained results to radiologists’ interpretations. Another study by Lång et al. [3] 

indicated that deep learning models trained on a private dataset can reduce interval cancer rates 

without supplementary screening. Zhu et al. [4] predicted future breast cancer development in 

negative subjects during an eight-year period using a deep learning model with a private dataset. 

Kerschke et al. [5] compared human versus deep learning AI accuracy for benign–malignant 

screening using a private dataset, highlighting the need for prospective studies. Nica et al. [6] 

reported high-accuracy benign–malignant classification of cranio-caudal view mammography 

images using an AlexNet deep learning model and a private dataset. Rehman et al. [7] achieved high-

accuracy architectural distortion detection using image processing and proprietary depth-wise 2D V-

net 64 convolutional neural networks on the PINUM, CBIS-DDSM, and DDSM datasets. Yirgin et al. 

[8] used a public deep learning diagnostic system on a private dataset, concluding that combined 

assessment by the deep learning model and radiologists yielded the best performance. Tzortzis et al. 

[9] demonstrated superior performance for efficiently detecting abnormalities on the public INBreast 

dataset using their tensor-based deep learning model, particularly showing robustness with limited 

data and reduced computational requirements. Pawar et al. [10] and Hsu et al. [11] both reported 

high-accuracy Breast Imaging Reporting and Data System (BIRADS) category classification, 

respectively, using proprietary multi-channel DenseNet architecture and a fully convolutional dense 

connection network on private datasets. Elhakim et al. [12] investigated the feasibility of replacing 

the first reader with AI in double-reading mammography using a commercial AI system with a 

private dataset, emphasizing the importance of an appropriate AI threshold. Jaamour et al. [13] 

improved the segmentation accuracy for mass and calcification images from the public CBIS-DDSM 

dataset by application of transfer learning. Kebede et al. [14] developed a model combining 

EfficientNet-based classifiers with a YOLOv5 object detection model and an anomaly detection 

model for mass screening on the public VinDr and Mini-DDSM datasets. Ellis et al. [15], using the 

UK-national OPTIMAM dataset, developed a deep learning AI model for predicting future cancer 

risk in patients with negative mammograms. Elhakim et al. [16] further investigated replacement of 

one or both readers with AI in double-reading mammography, emphasizing clinical implications for 

accuracy and workload. Sait et al. [17] reported high segmentation accuracy and generalizability in 

multi-class breast cancer image classification using an EfficientNet B7 model within a LightGBM 

model on the CBIS-DDSM and CMMD datasets. Chakravarthy et al. [18] reported high classification 

accuracy for normal, benign, and malignant cases using an ensemble method with a modified 

Gompertz function on the BCDR, MIAS, INbreast, and CBIS-DDSM datasets. Liu et al. [19] achieved 

high classification accuracy on four binary tasks using a CNN and a private mammography image 

dataset, suggesting a potential to reduce unnecessary breast biopsies. Finally, Park et al. [20] reported 

improved diagnostic accuracy, especially in challenging ACR BIRADS categories 3 and 4 with breast 

density exceeding 50%, by learning both benign–malignant classification and lesion boundaries using 

a ViT-B DINO-v2 model on the public CBIS-DDSM dataset. AlMansour et al. [21] reported high-

accuracy BIRADS classification using MammoViT, a novel hybrid deep learning framework, on a 

private dataset. 

Despite these advancements, several points of difficulty hinder the reproducibility of claims in 

deep learning applications for mammographic image diagnosis. Studies using private, non-public 

datasets or proprietary deep learning models with undisclosed details make verification challenging. 

Methods incorporating subject information alongside mammographic images as training data also 

face reproducibility issues caused by limited commonalities across different datasets. Similarly, 
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studies combining mammographic images with other modality images require specific data 

combinations, thereby complicating claim reproduction. 

Given these considerations, we prioritized reproducible research by particularly addressing 

studies using publicly available datasets and open-source deep learning models. Furthermore, we 

emphasized the generalizability of claims across multiple public datasets and various deep learning 

models. 

Therefore, this study tested the hypothesis that prediction accuracy improves when images are 

divided into those with and without annotated mask information for regions of interest, with 

subsequent separate training and prediction for each of the four mammographic views (RCC, LCC, 

RMLO, LMLO), before merging the results. This approach is compared to cases for which image data 

are not separated based on the availability of mask information for regions of interest. Using two 

public datasets and two deep learning models, we validated this hypothesis, particularly addressing 

the presence or absence of annotated mask information as a novel feature. 

2. Materials and Methods 

2.1. Materials 

This study used two publicly available mammography datasets with region of interest (ROI) 

annotations: VinDr [22] and CDD-CESM [23]. Both datasets include ROI mask information, but not 

all mammographic images within them have corresponding mask images available. 

During the training and prediction phases, our study exclusively considered the presence or 

absence of corresponding ROI images for individual mammographic images. The ROI images 

themselves were not used as input data. 

The VinDr dataset provides BI-RADS information, but it lacks explicit benign–malignant 

classifications. Consequently, images categorized as BI-RADS 2 and 3 were classified as benign 

lesions, whereas those categorized as BI-RADS 4 and 5 were classified as malignant. 

The CDD-CESM dataset includes predefined normal, benign, and malignant classifications. For 

this analysis, we used benign and malignant data exclusively. 

Because the CDD-CESM dataset does not provide a predefined train–test split, we divided the 

data into training and testing sets with a 10:1 ratio. 

Compositions of the respective datasets are presented in Tables 1–4. 

Table 1. Distribution of Cases in Training and Testing Subsets of the VinDr Dataset. 

 training testing total 

malignant 790 198 988 

benign 4486 1120 5606 

total 5276 1318 6594 

Table 2. Presence of ROIs in the VinDr Dataset. 

 with ROIs without ROIs total 

malignant 952 36 988 

benign 816 4790 5606 

total 1768 4826 6594 

Table 3. Distribution of Cases in Training and Testing Subsets of the CDD-CESM Dataset. 

 training testing total 

malignant 300 31 331 

benign 300 31 331 

total 600 62 662 
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Table 4. Presence of ROIs in the CDD-CESM Dataset. 

 with ROIs without ROIs total 

malignant 326 5 331 

benign 322 9 331 

total 648 14 662 

2.2. Methods 

2.2.1. Image Preprocessing 

For preprocessing, window processing was applied during conversion of DICOM images to 

JPEG format. This preprocessing was followed by contrast adjustment using Contrast-Limited 

Adaptive Histogram Equalization (CLAHE). 

2.2.2. Image Classification Models 

Swin Transformer [24] and ConvNeXtV2 [25] were selected as image classification models 

because of their superior performance among the various models evaluated. 

2.2.3. Validation Procedure 

The validation procedures were identical for both image classification models, involving the 

following steps. 

1. Mammographic images were segregated based on the presence or absence of ROI mask images. 

2. Images were divided into four standard views: right craniocaudal (RCC), left craniocaudal 

(LCC), right mediolateral oblique (RMLO), and left mediolateral oblique (LMLO). 

3. Training was performed on mammographic images without ROI mask images, with separate 

training for each view. 

4. Prediction was performed on mammographic images without ROI mask images, with separate 

prediction for each view. 

5. Training was then performed on mammographic images with ROI mask images, again with 

separate training for each view. 

6. Prediction was performed on mammographic images with ROI mask images, with separate 

prediction for each view. 

7. Finally, the prediction results were merged. 

2.2.4. Comparative Validation Procedure 

The comparative validation procedure differed from primary validation only in that the 

presence or absence of ROI mask images was not considered during processing. The steps used for 

this procedure were the following. 

1. Mammographic images were divided into the four standard views: RCC, LCC, RMLO, and 

LMLO. 

2. Training was performed on mammographic images without ROI mask images, separately for 

each view. 

3. Prediction was performed on mammographic images without ROI mask images, separately for 

each view. 

4. Training was performed on mammographic images with ROI mask images, separately for each 

view. 

5. Prediction was performed on mammographic images with ROI mask images, separately for each 

view. 

6. The prediction results were merged. 
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2.2.5. Training Hyperparameters and Computational Environment 

Training hyperparameters were determined through five-fold cross-validation. They remained 

consistent for both image classification models: a learning rate of 0.0001, 100 epochs, and image size 

of 384 × 384 pixels. All other hyperparameters were maintained at their respective default values for 

each model. 

Validation was conducted on a system running Windows 11 Pro, equipped with a 13th Gen 

Intel(R) Core(TM) i9-13900KF 3.00 GHz processor, 128 GB of memory, and an NVIDIA RTX 3090 

GPU. 

3. Results 

Our mammographic image classification results are presented for two scenarios: with and 

without the inclusion of ROI mask images. For the VinDr dataset, the classification results obtained 

using Swin Transformer and ConvNeXtV2 are shown respectively in Tables 5 and 6. Similarly for 

the CDD-CESM dataset, Tables 7 and 8 present the classification results obtained respectively using 

Swin Transformer and ConvNeXtV2. 

Table 5. SwinTransformer / Vindr. 

 
without consideration of ROI 

mask image presence 

with consideration of ROI 

mask image presence 

Sensitivity 0.00 0.93 

Specificity 1.00 0.87 

F-score 0.00 0.90 

Accuracy 0.85 0.87 

Table 6. ConvNeXt2 / Vindr. 

 
without consideration of ROI 

mask image presence 

with consideration of ROI 

mask image presence 

Sensitivity 0.00 0.90 

Specificity 1.00 0.86 

F-score 0.00 0.88 

Accuracy 0.85 0.87 

Table 7. SwinTransformer / CDD-DESM. 

 
without consideration of ROI 

mask image presence 

with consideration of ROI 

mask image presence 

Sensitivity 0.29 0.65 

Specificity 0.68 0.65 

F-score 0.41 0.65 

Accuracy 0.48 0.65 

Table 8. ConvNeXt2 / CDD-DESM. 

 
without consideration of ROI 

mask image presence 

with consideration of ROI 

mask image presence 

Sensitivity 0.65 0.74 

Specificity 0.65 0.61 

F-score 0.65 0.67 

Accuracy 0.65 0.68 
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4. Discussion 

Some data lead to diagnosis as malignant, but lack a visible region of interest (ROI). This 

discrepancy is likely attributable to factors such as dense breast tissue, which can obscure ROIs by 

causing the entire image to appear uniformly opaque. In such cases, a malignant diagnosis reached 

despite the absence of a clear ROI on the image likely reflects corroborating results from other 

diagnostic modalities such as biopsies. Also observed are instances of data diagnosed as normal but 

exhibiting an ROI. The presence of an ROI in a “normal” diagnosis looks strange and suggests a 

potential misrepresentation or artifact in the diagnostic labeling process. Such anomalous data points, 

whether they involve a malignant diagnosis without a discernible ROI or a normal diagnosis with an 

ROI, introduce noise into deep learning models. This noise can strongly hinder the model’s ability to 

learn accurate patterns. The noise consequently diminishes its predictive performance. Preprocessing 

the dataset to identify and remove or re-evaluate these inconsistent data points before training might 

enhance the learning and prediction accuracy of deep learning algorithms for medical image analysis. 

This study used data with pre-existing ROI mask images. However, mammographic images 

requiring benign–malignant classification do not always have corresponding mask images available. 

Therefore, future research should specifically examine generation of mask images for 

mammographic data lacking existing masks, employing techniques such as semantic segmentation 

or object detection, and subsequently validating these approaches. 

The deep learning models used for this study, Swin Transformer and ConvNeXtV2, 

demonstrated superior accuracy in both training and prediction compared to other deep learning 

models. We hypothesize that this improved performance derives from differences in their respective 

layer architectures. However, detailed analysis of this phenomenon is left as a subject for future 

investigation. 

Whereas this study specifically addressed benign–malignant classification, mammographic data 

are typically categorized initially into normal versus abnormal findings, with abnormal cases 

subsequently classified as either benign or malignant. An important area for future investigation is 

assessment of whether our methodology can also classify normal versus abnormal cases effectively. 

If successful, this capability would enable diagnostic prediction for a broader range of arbitrary 

mammographic data. 

5. Conclusions 

Our findings indicate that pre-segmentation of mammographic data based on the presence or 

absence of ROI mask images, followed by separate training and prediction processes for each 

segment and subsequent merging of the results, can enhance classification accuracy for the benign–

malignant classification of mammographic images using deep learning. 
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