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Abstract

The quadcopters are extremely sensitive to motor failures, which may occur secondary to broken 
propellers or motor faults during the flight o peration. These faults alter the dynamics of the quad-
copters, whereas the control algorithms generally used for controlling are no longer as effective. This 
paper presents a reliable fault-tolerant controller that can handle quadcopter motor failures in order to 
address these issues. The proposed control system uses a nonlinear disturbance observer-based sliding 
mode control (NLDO-SMC) to significantly manage the quadcopter’s rotational dynamics, while an 
integrated back-stepping controller (IBSC) is employed to supervise the translational movement. The 
developed nonlinear formulation’s NLDO-SMC, predicts motor failures and keeps the system resilient 
to unforeseen circumstances and disruptions that can arise while the vehicle is in the air. The suggested 
fault-tolerant control paradigm is validated by hardware-in-the-loop (HIL) experimental investiga-
tion and extensive simulations. The controller’s performance in real-world scenarios is thoroughly 
examined using the FPGA model. The results indicate that the controller can effectively deal with 
the effects of motor faults and restore control over the quadcopter’s stability. The proposed controller 
achieves robustness to up to 50% fault in a single motor, and the quadcopter follows the desired path 
with well-predicted rotation angles, thus proving the ability of the model to increase fault tolerance 
and operational safety under fault conditions.

Keywords: fault tolerance; quadcopter, integral back-stepping control; nonlinear disturbance observer 
sliding mode control; FPGA implementation

1. Introduction
Unmanned Aerial Vehicles (UAVs) have revolutionized the world and are used in several fields

like agriculture [1], environmental monitoring [2], military services [3], and many more, however,
their control and stability are often compromised in the presence of fault scenarios and they remain
infrequently used in their more conventional applications [4]. To guarantee safety, the design of fault-
tolerant control systems for the UAV is a topic of research. To enhance fault detection, estimation, and
compensation for UAV deployment, scientists deployed different linear and non-linear control system
models [5]. Several nonlinear control strategies include sliding mode control (SMC) and observer-
based methods to cope with the model uncertainties and external disturbances to minimize downtime
catastrophe faults while increasing the knowledge level of all autonomous systems that are struggling
at high altitudes [6]. Arificial intelligence based method also enhances safety [7], responsibility [8],
generalization [9] of UAV by using advanced computer vision and deep learning techniques [10].
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UAVs are a type of aircraft suited for long and high-speed missions and have transformed from
a military concept to a commercial and industrial one [11]. UAVs that give lift employing forward
motion are called fixed-wing UAVs while rotary-wing UAVs (also known as helicopters or multirotors)
generate lift through the rotation of blades [12]. Hybrid UAVs combine fixed and rotary-winged
for efficient long-range flight [13]. Fixed-wing, rotating-wing, and bird-like flying are commercially
available UAVs. The onboard navigation systems are constrained by the variety of UAV types, with
the main requirements being size, weight, accuracy, and availability of location [14]. Quadcopters are
used as a research target because they can handle non-linearities and unexpected faults, the same way
flight dynamics and flexibility are what make them unique compared to other planes [15]. Advanced
controlling techniques such as model predictive, adaptive and sliding mode control, etc. have replaced
traditional ones like PID controllers. Since mission-critical applications require FTC, there is a gap in
integrating nonlinear control with real-time fault detection and compensation. Current FTC methods
suffer from high computational complexity, late fault detection, and less efficient fault compensation
when the condition is severe [16]. Reliability and validation in real-world scenarios are impeded
through most research, which relies on simulations only.

This research aims to create a fault-tolerant control system for a quadcopter so that the faults in
the motor can be compensated. Hardware-based fault compensation analysis is lacking in the present
systems, so designing a hybrid control model that stabilizes the quadcopter and performs successfully
despite actuator faults in real-time is a need of time. Reliable control systems for quadcopters with
dynamic handling requirements and motor failure pose a major challenge. In this study, non-linear
disturbance-based sliding mode control (NLDO-SMC) and integral back-stepping control (IBSC)
for quadcopter translational and rotational motion control are simulated, and FPGA-based HIL
experiments are used to verify the feasibility and reliability of the designed model.

The paper is divided into seven sections: introduction, related work, dynamics of the quadcopter,
methodology, results, discussion, and conclusion. This work includes the mathematical modeling of
motor faults and quadcopter parameters, followed by motor fault modeling. The identified methodol-
ogy consists of a proposed control model and stability analysis. Results are generated in simulation and
FPGA experiments in the case of motor faults is presented. Comparative analysis of HIL experiments
and simulation-based experiments is also discussed.

2. Related Work
In this section, several papers published in the last decade are discussed and summarized to

understand the topic. Motor faults severely affect the controllability of UAVs, and many academic
researchers have proposed different fault-tolerant control strategies to guarantee UAVs’ controllability
during faulty conditions [17]. Controlling a quadcopter UAV is a challenging task because it can no
longer be fully controlled after one motor fails. However, they are still fully controllable when there is a
specific partial failure of a motor [18]. An FTC algorithm is necessary for the safe landing and operation
of multirotor UAVs when there are motor malfunctions [19]. An active disturbance rejection control
technique is proposed which allows quadrotors to maintain a desired trajectory of height and attitude
even when there are outside disturbances. The controller has state error feedback (SEF), an extended
state observer (ESO), and a tracking differentiator (TD). Results from experiments and numerical
simulations confirm that the suggested controller works well [20]. A two-stage control system is used
for analysis, an adaptive observer combined with a nonlinear observer, and for high-frequency control
switching and chattering for quadrotors an SMC with sigmoid function is used in the event of a single
rotor failure. This paper aims to demonstrate the effectiveness and viability of the suggested method
by presenting simulation results only [21].

The following are the contributions of this paper, which are based on research gaps from the
reviewed literature: First, a nonlinear observer is developed to estimate the impact of motor faults
on the control algorithm; second, a sliding mode controller and the nonlinear observer are combined
to create a novel FTC strategy for a quadrotor’s rotational control; third, an integral backstepping
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controller is designed for translational motion control; fourth, the suggested hybrid control strategy
is implemented on a custom quadcopter testbed; and fifth, the fault-tolerant controller is validated
through FPGA-Based HIL experiment. Table 1 summarizes some recently published work.

3. Quadcopter’s Dynamics
Understanding the dynamics and control systems of quadcopters requires mathematical modeling.

Quadcopter systems are inherently nonlinear, with intricate connections between translational and
rotational motions. The quadcopter’s behavior is governed by a nonlinear mathematical model
with four rotors, allowing it to perform six degrees of freedom (DOF) [33]. This flexibility enables
quadcopters to perform various aerial tasks. The configuration of quadcopter propellers, commonly
"+" and "x", plays a crucial role in stability and control as shown in Figure 1 [34].

Figure 1. Quadcopter Configurations

This work analyses a cross-configuration quadcopter, having four propellers at the corners of
a square and spinning the pairs in opposite directions to cancel torque. This layout makes control
logic simple and increases system stability. The desired directional orientation and trajectory of the
quadcopter is realised by modulating the rotational speeds of the four motors, which consequently
create the rotational forces and moment components to execute the required maneuvers [35]. Vertical
translation is controlled by changing the rotational speeds of all four rotors together, and roll, pitch, and
yaw are caused by the rotation of longitudinal, lateral, and transverse axes, respectively. Newton-Euler
equations allow deriving a robust mathematical model of the platform, which is essential to develop
advanced control schemes and achieve dependability under disturbances of the system [36]..

Figure 2 illustrates the quadcopter’s inertial frame and body frame, with ϕ, θ, and ψ representing
roll, pitch, and yaw, respectively. Two opposite propellers rotate clockwise to control the quadcopter’s
motion, while the remaining two rotate counterclockwise. Altitude control involves adjusting the
speeds of all four rotors upwards or downwards, depending on the desired effect. For forward
movement, increase rotor speeds (1,2) while decreasing (3,4), and for backward movement, increase
rotor speeds (3,4) and decrease (1,2). To turn the quadcopter left or right, increase or decrease rotor
speeds (1,3) and decrease or increase rotors (2,4) [37].
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Table 1. Related Work Summary.

Reference Proposed Control System Results Limitations

[22] Sliding mode control with
dynamic control allocation

Results showed the effectiveness
in maintaining flight stability and
performance in the event of motor
failure

Complexity of implementing the
control strategy in real-time scenar-
ios, limited to simulations only

[23] Novel adaptive control
scheme that integrates an L1
adaptive controller with an
optimization routine

The system effectively maintained
operational resilience and compen-
sates the failure of single propeller
failure

Complex real-time implementa-
tion and no work if multiple pro-
pellers fail.

[24] Finite-time disturbance
observer-(FTDO)

The findings showed the effective-
ness in multirotor positioning and
swing control

Complex techniques to address un-
certainties with simulation-based
analysis only

[25] Gain-scheduling (GS) con-
troller within the framework
of H ∞ synthesis

Results demonstrated robust per-
formance under multiple critical
actuator faults

Unsuitable for systems with exces-
sive actuators, such as hexacopters

[26] RBF neural network with
SMC method

Efficient in managing UAVs when
an accelerometer, gyroscope, or ac-
tuator malfunctions

No comprehensive fault tolerance;
No HIL testing.

[27] Integral back-stepping con-
trol with disturbance rejec-
tion for translational motion

Stable translational control with ef-
fective disturbance rejection

No HIL testing and no rotational
fault tolerance.

[28] Adaptive Fault-Tolerant H-
Infinity Output Feedback
Control

The Lead-Wing close formation
flight simulation results validate
the practicality of the model

lack of FPGA testing and limited
to small-magnitude faults

[29] The study employs a Simple
Adaptive Control with Anti-
Windup Compensator

Actuator saturation successfully
countered, such that stable control
outputs result, even in the pres-
ence of actuator faults

Simulation performed in a con-
trolled environment, extreme pa-
rameter uncertainties and actuator
faults can challenge its validity

[30] SMC to address issues re-
lated to a rear servo’s stuck
fault in a tilt trirotor

UAV maintains stable attitudes
even when external disturbances
are introduced

The control scheme is effective, it
may still be sensitive to minor dis-
turbances only

[31] Gated recurrent unit (GRU)
neural network within a
gain-scheduled framework

Three attitude angles effectiveness
loss 10%, 30%, and 10%

The efficiency of the model is heav-
ily depends on the quality of the
training data.

[32] AESO-based geometric
fault-tolerant control
(AESOGFTC)

Attitude error to converge to zero
in the first 10 seconds, with little
shift for actuator faults

The lumped disturbance’s upper
bound was unknown when the
controllers were constructed

This
work

Integrates NLDO-based
SMC with IBSC as FTC for
quadcopter motion control

The proposed control model can
tolerate 50% fault in any single mo-
tor of the quadcopter

Real-time validation using FPGA,
Hybrid control system
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Figure 2. Quadcopter Rotational Diagram

3.1. Quadcopter Mathematical Modeling

In addition to exploring the dynamic equation of UAV and clarifying its physical properties,
this section presents the mathematical model that determines the behavior of a quadcopter, with a
particular emphasis on its four-rotor cross configuration. Equations (1) and (2), respectively, show the
quadcopter’s translational and rotational dynamics in the body frame [38].

Translational Dynamics
−→a I =

1
m

(
∑

−→
F E + ∑

−→
F aero

)
(1)

Rotational Dynamics

∑
−→
ME + ∑

−→
Maero + ∑

−→
Mgyro

∣∣∣
B
=

−→̂
ω B + ω⃗B × (J.ω⃗B)) (2)

Euler Equations  φ̇

θ̇

ψ̇

 =

 1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sec θ sin φ sec θ cos φ


 p

q
r

 (3)

UAVs may be divided into two subsystems: a) Subsystem that rotates: This includes the Euler
angles that determine the orientation of the UAV. In particular, the yaw angle around the z-axis, the
pitch angle around the y-axis, and the roll angle around the x-axis. b) translational subsystem: here,
this work focuses on the quadcopter’s spatial positioning, which includes its altitude (z-axis), and its x
and y coordinates. The position vector V ∈ R6 can be formally represented as conversion from earth
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frame to body frame is possible. Equation (4) demonstrates the transition between Earth and body
frames. x′

y′

z′

 = R∗

u
v
w


R(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1


R(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)


R(φ) =

1 0 0
0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)


R(φ, θ, ψ) = R(φ)R(θ)R(ψ)

(4)

Equation (5) provides R, the rotation matrix from the body to the inertial frame.

R =

 cθcψ cθsψ −sθ

sθsφcψ − sψcφ sψsθsφ + cψcφ sφcθ

sθcφcψ + sψsφ sψsθcφ − cψsφ cφcθ

 (5)

Equation (6) shows the relationship between the angular and the Euler angle rates.P
Q
R

 =

1 0 − sin(θ)
0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(φ) cos(θ)


φ′

θ′

ψ′


Φ′

θ′

ψ′

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)


P

Q
R


(6)

Equation (7) represents the dynamic model of the quadcopter, which includes the x, y, and z
motions as a consequence of translational and rotational movement.

ẍ = (sin θ cos φ cos ψ + sin ψ sin φ)
u1

m

ÿ = (sin ψ sin θ cos φ − cos ψ sin φ)
u1

m

z̈ = (cos φ cos θ)
u1

m
− g

φ̈ = (
Iy − Iz

Ix
)θ̇ψ̇ +

JR

Ix
θ̇wr +

1
Ix

u2

θ̈ = (
Iz − Ix

Iy
)θ̇ψ̇ +

JR

Ix
φ̇wr +

1
Iy

u3

ψ̈ = (
Ix − Iy

Iz
)φ̇θ̇ +

1
Iz

u4

(7)
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Equation (8) illustrate the rotational matrix for Euler angles:

R∅ =

 1 0 0
0 cos ∅ − sin ∅
0 sin ∅ cos ∅


Rθ =

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


Rφ =

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1



(8)

The following matrix operation in (9) is used to acquire the transformation matrix for angular
velocities from the earth frame to the body frame: ∅̇

θ̇

φ̇

 =

 1 sin ∅ tan θ cos ∅ tan θ

0 cos ∅ − sin ∅
0 sin ∅

cos θ
cos ∅
cos θ


 p

q
r

 (9)

Equations (10) and (11) present the aerodynamic forces and moments of the quadcopter. The
translational drag coefficients are kx, ky and kz and rotational drag coefficients are kφ, kθ and kψ are
provided in Table 2.

∑
−→
F aero =

[
−kx ẋ −kyẏ −kz ż

]T
(10)

∑
−→
Maero =

[
−kφ p2 −kθq2 −kψr2

]T
(11)

The quadcopter’s state space vector can be determined through

X = [(x, ẋ), (y, ẏ), (z, ż), (φ, φ̇), (θ, θ̇), (ψ, ψ̇)] (12)

Additionally, the state space vector may be expressed as follows:

X = [(x1, x2), (y1, y2), (z1, z2), (φ1, φ2), (θ1, θ2), (ψ1, ψ2)] (13)

A quadcopter can rotate in several ways depending on its angular speed, measured in radians per
second. The following is the complete set of equations for angular speeds regarding the four control
inputs.

Ω1 =
(

1
4b u1 +

1
2b u3 − 1

4d u4

)1/2

Ω2 =
(

1
4b u1 − 1

2b u2 +
1

4d u4

)1/2

Ω3 =
(

1
4b u1 − 1

2b u3 − 1
4d u4

)1/2

Ω4 =
(

1
4b u1 +

1
2b u2 +

1
4d u4

)1/2

(14)

3.2. Rotor dynamics and motor fault modeling

To counteract the change in rotational speed caused by the motor dynamics, the thrust produced
by the motors is thought of as a first-order system:

Ωi = K
ω0

s + ω0
PWMi (15)
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In (15), Ωi represents the rotational speed of each motor in rpm, ω0 is the motor gain, PWMi is
the nth motor input, and s represents the Laplace variable, regulating the motor.

The propeller’s diameter, rotational speed, and the aerodynamic characteristics of the blades all
affect the motors’ torque and thrust force in the following ways:

Ti = CtρΩ2
i D4 = bΩ2

i (16)

Qi = CdρΩ2
i D5 = kTi = dΩ2

i , k = 2.07e − 2m (17)

where Ct and Cd are the thrust and drag coefficients, ρ is the air density, and D is the propeller
diameter. The numerical numbers b and d are introduced in Table 2. By considering the inverse,
the motor mixer expression is derived, which determines the rotational speed of each rotor with
intermediate autopilot outputs (u).

Ω = KU2Ωu, KU2Ω = inv(KΩ2U) (18)

The autopilot outputs (u) must be converted into motor inputs for quadcopter speed controls and
applied to each motor’s motor, ensuring a matching PWM signal. A partial failure on the nth motor
may result in rotor damage or deterioration of the motor’s performance, creating internal parametric
uncertainty and influencing the force and moment of the motor as shown below.

Ti f = Ti + ∆Ti = bΩ2
i + ∆bΩ2

i , ∆b = − fib

Qi f = Qi + ∆Qi = dΩ2
i + ∆dΩ2

i , ∆d = − fid
(19)

Bounded fluctuations of the motor efficacy that respect their nominal values are shown by the
variables ∆b and ∆d. They might be stated like this: fi indicates the ith motor fault, -b ≤ ∆b ≤ 0, and -d
≤ ∆d ≤ 0. It should be noted that the previously described fault model is only used in the simulation;
neither the length nor the severity of the issue are provided to the control algorithm. Thus, the real
signal (T) produced by the faulty actuator Tf is as follows:

T f (t) = (1 − Γ)T(t), T(t)T = [T1, T2, T3, T4]

Γ =

{
0 t < t f

diag( f1, f2, f3, f4) t > t f

(20)

While fi, which varies from 0 to 1, indicates the fault’s severity, t f represents the fault time at which
the fault occurs. Whereas fi = 1 indicates total motor damage, fi = 0 indicates no motor defect as
shown in the (20).

3.3. Physical Parameters of the Quadcopter

This section presents the physical parameters of a quadcopter to explain its dynamics and to be
able to design a proper control system, as shown in Table 2. The parameters studied are the mass, arm
length, drag factor, drag coefficients, inertial moments, as well as the motor speed. Taken together, the
three quantities allow aerodynamic forces to be modelled, enable estimating energy use, and are used
to provide the static stability. The inertial moments around the main axes, which are the roll, the pitch,
and the yaw, and also the motor speed are also assessed, providing control algorithms of precision but
also of robustness. The results form the basis of a nonlinear control architecture that is able to generate
high-accuracy simulations and manage fault situations.
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Table 2. Quadcopter’s Physical Parameters and Values

Parameters Values
Mass (m) 0.650 kg
Length (l) 0.243 m
Gravity (g) 9.81 m/s2

Propeller Chord (c) 0.04 m
Propeller Radius (Rr) 0.15 m
Propeller DC (kd) 0.23 m
Arm Length (l) 0.23 m
Thrust Factor (b) 3.13e−5 N/rpm2

Drag Factor (d) 7.7e−7 N/rpm2

Air density (ρ) 1.225 kg.m3

Span Area (A) 0.0706 m2

Rotor Inertia (IR) 6e−5 kg.m2

Max. Rotor Speed (Ωm) 6250 rpm
Inertial Moment (Ix) 7.5e−3 kg.m2

Inertial Moment (Iy) 7.5e−3 kg.m2

Inertial Moment (Iz) 1.3e−2 kg.m2

Translational DC (Kx, Ky) 5.567e−4 N/m/s
Translational DC (Kz) 6.354e−4 N/m/s
Rotational DC. (Kθ , Kϕ) 5.567e−4 N/m/s
Rotational DC (Kψ) 6.35e−4 N/m/s

DC: Drag Coefficient.

4. Methodology
This work aims to implement a nonlinear control technique to create a fault-tolerant control

system for quadcopter UAVs. First, the UAV is chosen, and then factors like mass, moment of inertia,
and motor characteristics are chosen. Stability and control under a range of operating circumstances,
including fault-tolerant operations, are features of the nonlinear control system. For the control
algorithm to operate properly, the controller has an NLDO-SMC that enables real-time state and fault
estimates. When a quadcopter has a motor failure, the performance of the nonlinear control system is
evaluated, demonstrating the maximum fault tolerance for steady flight. Each motor’s flaws are taken
into account in the simulation, and the suggested control system is put into practice using the hardware
FPGA model. In order to illustrate the advantages of nonlinear control in coordinating fault detection,
estimation, compensation, and system recovery, the outcomes of nonlinear control are based on several
fault analysis scenarios, with the maximum values being recorded and compared. MATLAB/Simulink
is used to simulate the quadcopter model, and the FPGA board is used to implement the IBSC and
NLDO-SMC. This systematic technique guarantees a thorough investigation of the quadcopters’ fault-
tolerant capacities under various fault levels, leading to significant findings on the advantages of
nonlinear control algorithms in UAV explanations.

Fault tolerance and sophisticated control system methods are included in the suggested quad-
copter control system. The integrated back-stepping controller (IBSC), which regulates translational
motion, uses the trajectory planner on the quadcopter to deliver both the intended and actual trajectory
information while in flight. A simulated actuator failures block processes the signals for altitude and
horizontal movement direction inputs that are provided by the IBSC. Rotational motion control is
accomplished via the non-linear disturbance observer (NLDO), which is firmly intended to monitor
desired trajectories in spite of system actuators that may malfunction and cause disturbances. A quad-
copter’s fault-tolerant control system provides strong performance even in the event of motor failures
by combining the NLDO-SMC for rotating motion control with the IBSC approach for translational
motion. These controllers fix issues with a quadcopter’s attitude and position stability, ensuring that it
remains stable even when there are defects or disruptions. Two sizable control loops are taken into
account in quadcopter dynamics: one governs rotating motion, while the other governs translational
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motion. In spite of equipment malfunctions, both tactics work together to keep the UAV stable and
on the intended course. Lyapunov stability is taken into account in the design and analysis of the
suggested scheme for the fault-tolerant control system of a quadcopter UAV, both in the case of the
NLDO-SMC for rotating motion and the IBSC for translational motion. Figure 3 shows the block
diagram of the proposed system.

Trajectory

Planner

Translational
Motion Control

uf1

Backstepping
Integral 

Controller
uf 234

Disturbance

Nonlinear

Observer 

Rotational
Motion Control

Mode

Sliding

Controller

f(x,u)

u234

ufxy

u1

x = {x tra rotx, } rotx rotx

desx

x 

Quadcopter Dynamics

(UAV)

Actuator 

Simulating

Faults

fv 

Note:

fv = fault vector

[ ],f1 f2 f3 f4, ,fv 

Figure 3. Block Diagram of the Proposed Controller

4.1. Integral Backstepping Controller Design for Translational Motion Control

Three-dimensional Newton-Euler equations are used to model the dynamics of the translational
control in quadcopter systems. The thrust forces of the rotor serve as control inputs [39]. Because
it gradually stabilizes the system, backstepping is a recursive design process that works well for
nonlinear systems like UAVs. To compensate for steady-state mistakes and improve the system’s
capacity to reject disturbances and handle faults, integral backstepping control adds an integral action
to conventional backstepping controls. The integrated action modifies the overall thrust in the event of
a motor failure to keep the quadcopter in the intended position [40]. The quadcopter’s translational
motion is stabilized by this architecture. Below is a discussion of the system’s (y-axis) IBSC design.

ẏ1 = y2

ẏ2 = −kyy2
2 + uy

1
m

u1

(21)

The tracking error variable for y and its derivative is

ε3 = y1 − yd1, ε̇3 = y2 − ẏd1 (22)

To make sure the stability of the quadcopter the Lyapunov candidate function V2(ε3) is used

V2(ε3) =
1
2

ε2
3

V̇2(ε3) = ε2(y2 − ẏd1)
(23)

The virtual control input y2 for the stability of ε3 is

y2 = ẏd1 − κ3ε3 (24)

putting the value of y2, in (23)
V̇2(ε3) = −κ3ε2

3 (25)
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Further, to stabilize the second error state, the stabilizing function α2(y1) is

α2(y1) = ẏd1 − κ3ε3 (26)

the second tracking-error variable for y2 is

ε4 = y2 − α2(y1)

ε4 = y2 − ẏd1 + κ3ε3
(27)

from (23)
ε̇3 = ε4 − κ3ε3 (28)

Take derivative of (27) and put (21), we get

ε̇4 = −kyy2
2 + uy

1
m

u1 − ÿd1 + κ3 ε̇3 (29)

To select augmented Lyapunov candidate function Va2

Va2(ε3, ε4) =
1
2

(
ε2

3 + ε2
4

)
(30)

derivative of Va2 is

V̇a2(ε3, ε4) = −κ3ε2
3 + ε4

(
ε3 − kyy2

2 + uy
1
m

u1 − ÿd1 + κ3 ε̇3

)
(31)

Finally, the control input uy is obtained as shown below

u1 =
m
uy

(
−κ4ε4 − ε3 + kyy2

2 + ÿd1 − κ3 ε̇3

)
(32)

uy =
m
u1

(
−κ4ε4 − ε3 + kyy2

2 + ÿd1 − κ3(y2 − ẏd1)
)

(33)

Putting into (31), the Lyapunov function becomes

V̇a2(ε3, ε4) = −κ3ε2
3 − κ4ε2

4 (34)

According to (34), the Lyapunov function derivative is negative, indicating the stability of the control
system that was constructed. Additionally, the above procedure for uz is applied to derive the
expressions of ux and uz as shown in (35) and (37) respectively. As seen in (36) and (38), the Lyapunov
function derivatives are also negative, demonstrating the stability of the suggested system.

ux =
m
u1

(
−κ2ε2 − ε1 + kxx2

2 + ẍd1 − κ1(x2 − ẋd1)
)

(35)

V̇a1(ε1, ε2) = −κ1ε2
1 − κ2ε2

2 (36)

uz =
m

cos ϑ1 cos φ1

(
−κ6ε6 − ε5 + g + Kzz2

2 + z̈d1 − κ5(z2 − żd1)
)

(37)

V̇a3(ε5, ε6) = −κ5ε2
5 − κ6ε2

6 (38)

Accordingly, the Lyapunov stability idea has been applied naturally in the back-stepping control
work to develop the stabilizing controller for system dynamics at each step [41]. A Lyapunov function
that reflects the system’s "energy" or position inaccuracy is chosen at each stage in the back-stepping
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process. Usually, it might be the total of squared errors in velocity and location. For instance, the
Lyapunov function for the y-axis may be:

Vy =
1
2

(
e2

y + ė2
y

)
(39)

To ensure stability, its time derivative must be at least negative semi-definite, meaning that the
system’s energy decreases with time.

V̇y = ey ėy + ėyuy (40)

The control input, or thrust along the y-axis, is represented by uy in (40), the error in the z-direction
or altitude by ey, the time derivative of this error by ėy, and V̇y ≤ 0 for the system to be stable. The
altitude error decreases with time because the backstepping controller guarantees that such a derivative
is negative, which results in asymptotic stability. After that, steady-state mistakes are eliminated by
adding an integral action. The Lyapunov function of this system with the position error integral may
have an additional component. Under continuous disturbances or motor failures, the derivative of this
extended Lyapunov function ensures that, in addition to maintaining system stability, it also drives the
position error to zero.

4.2. Rotational Motion Control using Nonlinear Disturbance Observer-Based Sliding Mode Control
(NLDO-SMC)

A quadcopter’s angular orientation affects its attitude dynamics. According to Euler’s equations
of rotational motion, it may be analytically represented by Euler angles: roll ϕ, pitch θ, and yaw ψ [42].
The UAV’s rotation around its center of mass is described by these dynamics. The torques supplied by
the motors are connected with and dictate the rotational dynamics. Additionally, the SMC design for θ

looks like this:

θ̇1 = θ2

θ̇2 = a3ψ2 φ2 + a4Ω̄φ2 − Kθθ2
2 + b1u3

(41)

First, we define the tracking-error variable for θ1:

εθ = θ1 − θd1 (42)

Taking its derivative:
ε̇θ = θ2 − θ̇d1 (43)

Now select a sliding surface s5:

s5 =

(
d
dt

εθ + η5εθ

)n−1
, n = 2 (44)

s5 = (ε̇θ + η5εθ) (45)

Put the value of ε̇θ from (43) in (45)

s5 =
(
θ2 − θ̇d1 + η5εθ

)
(46)

Further, the derivative of s5 is
ṡ4 = θ̇2 − θ̈d1 + η5 ε̇θ (47)

putting the value of θ̇2

ṡ5 = a3ψ2 φ2 + a4Ω̄φ2 − Kθθ2
2 + b2u3 − θ̈d1 + η5 ε̇θ (48)
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The sliding surface is set to zero while developing SMC, ṡ5 = 0. The switching control component
and the control input of a continuous control law are displayed in (50) and (51), respectively.

⇒ a3ψ2 φ2 + a4Ω̄φ2 − Kθθ2
2 + b2u3 − θ̈d1 + η5 ε̇θ = 0 (49)

u3 =
1
b2

(
−a3ψ2 φ2 + a4Ω̄φ2 + Kθθ2

2 − θ̈d1 + η5 ε̇θ

)
(50)

u3sw = −ζ9sign(s5)− ζ10s5 (51)

After adding u2sw to uθ , we get

uθ =
1
b2

(
−ζ9sign(s5)− ζ10s5 − a3ψ2 φ2 − a4Ω̄φ2 + Kθθ2

2 + θ̈d1 − η5 ε̇θ

)
(52)

Likewise, the SMC design for ψ and θ is determined, and the corresponding mathematical forms
are displayed in (53) and (54).

uφ =
1
b1

(
−ζ7sign(s4)− ζ8s4 − a1ψ2θ2 − a2Ω̄θ2 + Kφ φ2

2 + φ̈d1 − η4 ε̇θ

)
(53)

uψ =
1
b3

(
−ζ11sign(s6)− ζ12s6 − a5ψ2θ2 + Kψψ2

2 + ψ̈d1 − η6 ε̇ψ

)
(54)

In the mathematical form of NLDO-SMC, the constant values are given in Table 3.

Table 3. Factors and their Values used in Modeling

Parameter Value

Translational Gain
k1 = 12.4, k2 = 4.3
k3 = 9.6, k4 = 5.7
k5 = 9.2, k6 = 5.1

Rotational Gain
ζ7 = 0.698, ζ8 = 7.005
ζ9 = 0.365, ζ10 = 11.023
ζ11 = 0.025, ζ12 = 12.025

Starting Point x0 = 1, y0 = 1, z0 = 0
φ0 = 0.15, θ0 = 0.25, ψ0 = −0.3

Tuning Paramater η4 = 2, η5 = 3, η6 = 4

The purpose of the sliding mode control law is to steer a system toward a sliding surface while
preserving stability. For stability, the derivative of the squared sliding surface, which is a Lyapunov
function, must be negative [43]. The control law can be created to stabilize the system and lower
rotational errors to lower the Lyapunov function. Control input is corrected based on the observer’s
estimation of system states or defects. The observer may be designed using a Lyapunov-based method,
which guarantees boundedness and asymptotic convergence of estimate errors [44].

By calculating the percentage decrease in thrust or torque, a nonlinear disturbance observer
can infer unmeasured states or faults, like motor faults [45]. The nonlinear function f(x,u) affecting
quadcopter dynamics, including errors, uncertainties, and disturbances, is estimated by this nonlin-
ear observer and supplied into the SMC for appropriate control action [46]. The following are the
mathematical formulas for NLDO dynamics:

˙̂X = AX̂ + Bu + L(x − x̂)

x̂ = c1X , f̂ (x, u) = c2X
(55)

However, the discretized form of the model is used as shown in (63).
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x[k + 1] = (T × A + I)× x[k] + T × Bu[k] + T × L × e[k] (56)

The dynamics of state estimation error are obtained by defining an error function, ê, which is the
difference between the estimated and real states. Calculating the derivative of the state estimation
error yields the following results, where L represents observer gain, c1, and c2 guarantee observer
dynamics stability.

ê = (A − LC)ê + Γ ḟ (x, u) (57)

A nonlinear observer is proposed to estimate the function f (x, u), which characterizes the quad-
copter’s dynamics. The observer dynamics are defined as:

˙̂X = AX̂ + Bu + L(xrot − x̂rot) (58)

where L is the observer gain matrix. The observer states and nonlinear function estimations are
given by:

x̂rot = c1X, f̂ (x, u) = c2X (59)

where
c1 =

[
I6×6 O6×6

]
, c2 =

[
O6×6 I6×6

]
The stability analysis for the Observer is defined by the error’s dynamics. The state estimation

error’s dynamics, which are described as ê = xrot − x̂rot, may be stated as follows:

˙̂e = (A − LC)ê + Γ ḟ (x, u), C = c1 (60)

The below requirements must be fulfilled for the observer to stay dynamically stable:

1. The left-hand plane of the complex domain must include the matrix’s eigenvalues (A − LC).
2. The nonlinear function and its derivatives ( f (x, u), ḟ (x, u)) should be bounded.

3. G(s) = ê
L( ḟ (x,u))

= Γ[sI − (A − LC)]−1 is the transfer function which must be strictly stable, in
this the Laplace transform is shown by L.

The eigenvalues of the (A − LC) matrix are chosen to be in the left half-plane and are [-1.5 -1.6
-9.9 9.0 -1.9 -2.7 -3.3 -6.4 -2.5 -6.4 -5.8 -6.2] to guarantee the observer’s dynamic stability. It is assumed
that the system satisfies BIBO stability. This guarantees the boundedness of the nonlinear function
f (x, u) and its derivatives:

∥ f (x, u)∥∞ ≤ ρ0 < ∞, ∥ ḟ (x, u)∥∞ ≤ ρ1 < ∞ (61)

If the first two requirements are met, then G(s) is assumed to be strictly stable. The observer gain
matrix L that corresponds to the eigenvalues mentioned above is as follows:

L =

[
diag([12.0, 4.5, 15.4, 12.4, 8.0, 4.9])

diag([35.9, 5.0, 57.5, 24.8, 10.2, 5.1])

]
(62)

The FPGA board’s discretized implementation of NL-DO is provided as in Equation 63;

x[k + 1] = (TA + I)x[k] + T(Bu[k] + Le[k]) (63)

where the sampling period is denoted by T.
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Trajectory Planner

Quadcopter Dynamics (UAV)

Actuator Faults

MATLAB/Simulink (Software)

Sliding Mode Controller (SMC)

Non Linear Disturbance Observer (NLDO)

Integral Backstepping Controller (IBC)

Nexys A7 FPGA Board (Hardware)

Figure 4. Block Diagram of Proposed System

As seen in Figure 4, the NLDO-SMC and IBSC are implemented on the Nexys A7 FPGA model,
while the UAV model, trajectory planner, and actuator failures are simulated in MATLAB/Simulink.

The quadcopter uses translational control (back-stepping) to prevent motor failures and preserve
stability. Utilizing the Lyapunov functions, the system employs a Fault Tolerant Control System based
on Lyapunov Stability and Fault Tolerant Control, which guarantees system stability under both
nominal and fault situations. According to the Lyapunov function, system energy gradually drops,
causing the system to approach a stable state. Lyapunov stability for translational motion is used
to manage the quadcopter’s position and ensure that it stays in the appropriate location. Lyapunov
stability is used for globally stable orientation control, including attitude pitch roll and yaw, even if the
motors fail. The system’s control signals are designed to be stable and resilient to disturbances, as well
as to eliminate uncertainties and disruptions.

The actual hardware configuration employed in this experiment is depicted in Figure 5. With this
capacity, the Nexys A7™ board—a robust platform built on Xilinx’s Artix-7® Field Programmable
Gate Array (FPGA) is used to implement the specified control system. The screen shows the proposed
control system, quadcopter model, trajectory planner, and simulated fault actuator. The IBSC and
NLDO-SMC deployed on the FPGA board to confirm experimental results, whereas the quadcopter
model operated in MATLAB/Simulink.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2025 doi:10.20944/preprints202507.1442.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1442.v1
http://creativecommons.org/licenses/by/4.0/


16 of 34

Figure 5. Hardware in the Loop Testing Experimental Setup

The proposed controller is based on real-time computation and uses an observer and a set of fault
compensation algorithms. They are innately nonlinear and computationally intensive modules, and
thus, they are computationally intensive. These computations are implemented on an FPGA model,
the parallel nature of which dramatically increases the efficiency of the computation thus reducing the
load on the CPU compared with fully software equivalent solutions. After synthesis of the controller
and observer design using Xilinx Vivado, the following hardware resources of the FPGA board were
noted to have been required to address all the computing needs:

31800 LUT (Look-up Tables)
4998 FF (Flip Flops)
26 BRAM (Block RAMs)
240 DSP Blocks

5. Results
This section presents the results of a fault-tolerant control technique for a quadcopter under

different failure circumstances. In both simulation-based and FPGA hardware-based analyses, the
controller’s capacity to sustain stability and trajectory tracking in the face of motor failures is assessed.
The controller’s fault detection, estimation, and compensation capabilities are examined. Compara-
tive graphs demonstrate the controller’s consistency and adaptability in various testing situations.
The effectiveness of the suggested method for a robust quadcopter control is demonstrated by the
quantitative measurement of each parameter and the overall system’s reaction to a motor failure.

5.1. No Fault on any Motor of the Quadcopter

In the first case, there is no fault on any quadcopter motor, allowing it to follow a trajectory that
serves as a baseline. Figure 6 shows this baseline, representing the desired trajectory for the rest of our
analysis. The green, rust, and yellow lines represent the desired trajectory along the x-axis (denoted by
xd), y-axis (yd), and z-axis (zd), respectively. The trajectory xd remains zero for the first 10 seconds, then
linearly increases until the 20th second, stays constant for the next 10 seconds, and finally decreases
linearly up to the 40th second. The trajectory yd increases linearly up to the 20th second, remains
constant for the next 20 seconds, decreases linearly till the 30th second, and then remains constant up
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to the 40th second. Lastly, zd increases linearly from the initial point until the 12th second and then
remains constant until the 40th second.

0 5 10 15 20 25 30 35 40
0

5

10

0 5 10 15 20 25 30 35 40
0

5

10 Figure 6. Desired Trajectory of the Quadcopter

5.2. Cartesian Coordinate Based Trajectory Results after Faults on each Motor

In this case, 20% fault is injected into the motor of the quadcopter one by one, which created
little disturbances at the starting position, but the proposed control system model quickly optimized
the disturbance and kept the quadcopter stable. Figure 7 shows the actual trajectories followed by
the quadcopter in the presence of 20% fault on motor 1. The trajectories followed are the same as the
desired trajectories, as shown in Figure 6. After the simulation with this fault, the proposed control
model is implemented on the FPGA model, and the trajectory followed by the quadcopter is still the
same, hence verifying the practicality of the proposed control model. Furthermore, the same 20%
is injected into motor 2, motor 3, and motor 4; the results generated by both the simulations and
hardware-based FPGA implementation are the same as those generated by motor 1.0 5 10 15 20 25 30 35 40
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(b)

Figure 7. Actual Trajectories Results After 20% Fault on Motor 1: (a) Simulations Based. (b) FPGA-based.

In this case, each motor of the quadcopter is subjected to a 30% fault separately. Figure 8 shows the
simulation and FPGA-based results of motor 2 having 30% faults. The graph shows minor disturbances
at the initial position; therefore, actual trajectories deviated from the desired trajectory, but the control
system model can quickly compensate for the disturbance to maintain the stability of the quadcopter.
The simulation-based actual trajectories followed by the quadcopter are compared to the desired
trajectories in Figure 8a and are found to track well. The control model is eventually tested on an
FPGA-based hardware setup and successful trajectory tracking is observed as shown in Figure 8b,
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demonstrating that the model can be practical. Furthermore, 30% fault is applied to motor 1, motor 3,
and motor 4, simulations and FPGA-based trajectory results are the same as the results of motor 2.0 5 10 15 20 25 30 35 40
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Figure 8. Actual Trajectories Results After 30% Fault on Motor 2: (a) Simulations Based. (b) FPGA-based.

The quadcopter’s motor 3 is investigated for stability under a 40% fault scenario in the case. FPGA-
based results in Figure 9b and simulation results in Figure 9a show minor disturbances that induce
trajectories from the desired trajectory at the starting position only. Nevertheless, these disturbances
can be compensated quickly by the proposed control system model and stabilize the quadcopter. The
trajectory of the simulator is then tested on an FPGA-based hardware setup, and results comparable to
those of the simulator are found. Consistency similar to motor 3 is obtained for motor 1, motor 2, and
motor 4 with a 40% fault. Similar consistency between simulations and FPGA tests is shown to verify
the validity of the control model.
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Figure 9. Actual Trajectories Results After 40% Fault on Motor 3: (a) Simulations Based. (b) FPGA-based.

The quadcopter’s stability is examined in the case of a 50% fault on motor 4. The simulation
findings in Figure 10a and the FPGA-based results in Figure 10b demonstrate slight perturbations
but the proposed control system model provides rapid response to small perturbations by quickly
stabilizing the quadcopter. An FPGA-based hardware configuration is used to assess the quadcopter’s
functionality, yielding similar results. The other motors, 1, 2, and 3, when faulty for 50% of the time,
achieve similar results as motor 4, validating the control model through consistent results in both
simulations and HIL tests.0 5 10 15 20 25 30 35 40
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Figure 10. Actual Trajectories Results After 50% Fault on Motor 4: (a) Simulations Based. (b) FPGA-based.
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5.3. 3D Plane Trajectory Results Analysis after the Faulty Motors of the Quadcopter

The quadcopter UAV’s trajectory tracking performance under a 20% motor 1 malfunction situation
is demonstrated in Figure 11. The blue dashed line indicates the quadcopter’s "Desired" trajectory. The
solid orange line represents the quadcopter’s "Actual" trajectory after the faulty situation. Results from
a simulation-based test and an FPGA hardware-based implementation are displayed in Figures 11a and
11b, respectively. Both figures demonstrate how closely the intended trajectory and the actual trajectory
match, and how the fault-tolerant control system preserves trajectory accuracy even in cases when
a single motor is significantly affected. The quadcopter immediately settles to return to the proper
direction when the controller first veers slightly off course to make up for the error. Results demonstrate
that the control system aligns symmetrically around the nominal trajectory in both simulation and
FPGA testing, indicating that such defects would not substantially alter the quadcopter’s flying from
its intended direction. All outcomes demonstrated the accuracy and dependability of the control
method on both hardware and simulation platforms. Furthermore, the same 20% faults are applied on
motor 2, motor 3, and motor 4 too, the trajectories followed by the quadcopter are the same as in this
figure.

(a) (b)

Figure 11. 3D Plane Trajectories Results After 20% Fault on Motor 1: (a) Simulations Based. (b) FPGA-based.

The quadcopter trajectory tracking is shown in Figure 12 at 30% fault in motor 2. The trajectories
tracked in 3D space show that the actual trajectory remains very near to the intended path in both
situations shows that the fault-tolerant control system can maintain path accuracy even in the event
of a motor failure. After a brief period of adapting to the problem, the system rapidly stabilizes and
precisely follows the desired path. The other three motors are also subjected to the same 30% fault,
and the trajectories followed by the quadcopter are the same as in this case.
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(a) (b)

Figure 12. 3D Plane Trajectories Results After 30% Fault on Motor 2: (a) Simulations Based. (b) FPGA-based.

Figure 13 demonstrated that, even with a 40% failure rate on motor 3, the quadcopter can follow
its intended course. The solid orange line represents the actual path taken, while the dotted blue line
represents the intended trajectory. Figure 13a shows the simulation findings, whereas Figure 13b shows
the FPGA implementation. The robustness of the control system is exhibited via the performance
trajectory that stays closer to the intended direction in the presence of defects. Simulation and FPGA
results validate the stability, and dependability of the system. A similar fault was injected in motors 1,
2, and 4 attaining the same trajectory in later simulations and hardware analysis.

(a) (b)

Figure 13. 3D Plane Trajectories Results After 40% Fault on Motor 3: (a) Simulations Based. (b) FPGA-based.

Quadcopter tracking performance under 50% motor 4 failure is displayed in 3D trajectory graphs
14. The solid orange line indicates the "Actual" trajectory of the Quadcopter, while the blue dashed line
indicates the "Desired" trajectory. The resilience of the control method under failures is demonstrated
by the quadcopter’s rapid convergence to the intended route, even after an initial transient brought on
by the motor problem. System stability and resilience are shown by the near consistency of simulation
hardware results, indicating that the system functions effectively under fault situations to ensure
trajectory tracking accuracy. Motors 1, 2, and 3 followed the same paths in the hardware and simulated
model with a 50% fault as they were under a similar fault state on motor 4.
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(a) (b)

Figure 14. 3D Plane Trajectories Results After 50% Fault on Motor 4: (a) Simulations Based. (b) FPGA-based.

5.4. System Dynamics Results Analysis During the Faulty Motor Conditions of the Quadcopter Results

The system dynamics of a quadcopter UAV with a 20% fault on each separate motor are considered.
Here, the dynamics of motor 1 are depicted in Figure 15 under 20% fault. The system’s reaction to the
problem is investigated using simulations and FPGA hardware findings. The system’s roll, pitch, yaw
angles, angular velocities, actuator fault vectors, and linear velocities are considered during analyses.
The fault tolerant control system maintains orientation stability in the presence of a motor defect,
as evidenced by the system’s modest fluctuations that result from the detection and rectification of
the fault on motor 1. These fluctuations settle and converge to a steady state. According to the fault
vector linked to the actuator issue, the fault occurred on motor 1 and was first shown as leaping to
20% at the fault commencement and then staying there. Only motor 1 has a fault rest all other motors
have zero fault levels. When the fault is introduced, translational velocities are initially disturbed.
Still, they soon settle and show minimal long-term variation, indicating that the control system can
handle translational motion in the fault scenario. Results based on simulation and FPGA have very
few initial variations that rapidly compensated, and they are quite comparable across all parameters.
This suggests that the control method performs similarly in simulated and real-world environments
while handling failures. The system dynamics findings verify the fault-tolerant control technique by
demonstrating that the quadcopter resists its orientation and velocity with little deviation and rapidly
stabilizes after a fault.
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Figure 15. System dynamics After 20% Fault on Motor 1: (a) Simulations Based. (b) FPGA-based.

Figure 16 shows the dynamic reaction of the quadcopter to a 30% malfunction in motor 2 based
on simulation and FPGA hardware. The same faults are also applied to each motor one by one. After
this faulty condition, it takes some time for the control system to compensate, the fault soon stabilizes
and demonstrates efficient orientation management. Only motor 2 has consistent 30% motor faults,
according to the resultant actuator fault vector, whereas the remaining motors are fault-free. Linear
velocities experience a brief period of perturbation following the fault before stabilizing. The control
system can handle motor defects with stable flight dynamics in both the simulated environment and
the real system, according to the validation between the simulation and actual FPGA findings. The
graphs show that the fault-tolerant control technique successfully permits stable performance during a
motor failure.
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Figure 16. System dynamics After 30% Fault on Motor 2: (a) Simulations Based. (b) FPGA-based.

In this case, the quadcopter is subjected to 40% fault on a single motor of the quadcopter, and
Figure 17 shows the results after 40% fault on motor 3 specifically. Results show that orientation is
maintained and stable dynamics are achieved. Motor 3 is identified as the only motor with a fault
in the actuator fault vector, and the linear velocities are not significantly different post-stabilization.
Simulations and FPGA tests show consistent responses on managing faults and maintaining stable
dynamics in both implementations. Results demonstrate that the fault-tolerant control system can
handle motor faults and ensure smooth operation in faulty conditions. The performance of the fault
handling and smooth operation is verified with consistent responses between simulation and FPGA
implementations.
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Figure 17. System dynamics After 40% Fault on Motor 3: (a) Simulations Based. (b) FPGA-based.

The quadcopter’s fault-tolerant reaction under a 50% motor 4 failure is displayed in Figure 18.
First, the system experiences modest roll, pitch, and yaw disturbances, which are promptly addressed
and stabilized by the control system. Linear velocities showed brief fluctuations followed by rapid
stabilization, confirmed the actuator fault vector’s existence, and proved the fault exclusively affects
motor 4. The simulation and FPGA results validated the consistency and robustness of the control
approach, showing that it can continue to function normally even in the presence of errors and be
dependable in both experimental and real-world situations.
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Figure 18. System dynamics After 50% Fault on Motor 4: (a) Simulations Based. (b) FPGA-based.

5.5. Thrust Control, Rotational orientation, Disturbance estimation, and Motor speeds During the Faulty
Motor Conditions of the Quadcopter results

Figure 19 demonstrates the effects of a 20% failure on motor 1 under several performance criteria,
together with simulation and FPGA hardware-based experimental analysis. The top left graph in each
pair of graphs displays the thrust control signal (u f ), demonstrating the controller’s adaptation to
retain the thrust after a slight fault-related disruption and subsequent thrust stabilization. The top
right graphs display the roll, pitch, and yaw control signals (τϕ, τθ , and τψ). These signals indicate that
the system can sustain the proper orientation even with the fault since they stabilize fast and recover
from early fluctuations. Estimates for disruptions introduced by the observer are displayed in the
graphs on the bottom left. It demonstrates the observer’s capacity to identify and manage disruptions
by first detecting the problems in motor 1 and then reducing the disruption in real-time. Lastly, the
motor speeds are shown in the graphs on the bottom right: ω1, ω2, ω3, ω4 The system’s resilience is
demonstrated by the speeds’ deviation from steady states and subsequent ramp-up to normal levels
for the 20% motor malfunction. The consistency shown in the findings indicates that the fault-tolerant
control system maintains stability and adjusts for defects in each set while maintaining acceptable
performance, which keeps the simulation and FPGA environment results comparable.
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Figure 19. System Performance Metrics After 20% Fault on Motor 1: (a) Simulations Based. (b) FPGA-based.

The quadcopter’s performance under a 30% fault state in a single motor one by one was measured
using simulation and FPGA hardware tests. The quadcopter’s performance was plotted against motor
2 fault under a 30% fault situation. We see logical stability when the controller adjusts and minor
variations in the propulsion control signal at fault initiation. Roll, pitch, and yaw control signals
rapidly stabilize after the first disruptions, indicating proper control system alignment as shown in
Figure 20. The disturbance estimations show motor 2’s fault identification and compensation. The
motor speeds exhibit brief oscillations before stabilizing at the steady state levels, demonstrating the
robustness of the control system. The alignment of both outcomes validates the fault tolerance and
dependability of the control system.
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Figure 20. System Performance Metrics After 30% Fault on Motor 2: (a) Simulations Based. (b) FPGA-based.

Figure 21 shows the system’s performance under a 40% malfunction motor one by one during
simulations and FPGA hardware testing. The thrust control signal first varies during the fault, but
it eventually stabilizes once the controller adjusts. It is seen that the roll, pitch, and yaw control
signals’ early oscillations settle, giving the impression that orientation is effectively under control.
The observer’s reaction to the defect that is being exploited and used to fix it quickly is linked to
the disturbance estimations. The motor speeds that momentarily vary and then return to normal
demonstrate the fault resilience of the system. The resilience of the control approach to maintain
stability in the face of faults is confirmed by the results obtained from the FPGA and simulators. The
same 40% faults are also applied to motors 1,2 and 4, and the results are the same as in this case.
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Figure 21. System Performance Metrics After 40% Fault on Motor 3: (a) Simulations Based. (b) FPGA-based.

The system behavior of the quadcopter is demonstrated in the case in which one motor at a
time is subjected to 50% fault during the simulations, and also FPGA hardware analysis. The thrust
control signal first exhibits transient disruptions before the controller stabilizes it. The system’s
orientation is returned to the roll, pitch, and yaw control signals after a brief interruption, as displayed
in Figure 22. Effective disturbance monitoring and mitigation are demonstrated by the disturbance
estimations. Motor speed charts exhibit a brief oscillation before stabilizing, indicating fault tolerance.
The concordance between simulated and hardware outcomes demonstrates the control approach’s
anticipated robustness and dependability.
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Figure 22. System Performance Metrics After 50% Fault on Motor 4: (a) Simulations Based. (b) FPGA-based.

5.6. Discussion

Table 4 shows the numerical results of the proposed fault-tolerant control system for a quadrotor
under various failure circumstances on various motors during simulation-based and FPGA hardware-
based analysis. FU246 (total estimate of faults and disturbances in absolute terms), Ω f a (sum of absolute
motor speed deviations from steady state), U f 234 (sum of absolute moment deviations from steady
state), RTu f 1 (time for thrust control signal to reach a steady state), Errorϕ, Errorθ , Errorψ (steady
state error on rotational angles), and MVu f 1 (max range for thrust control signal) are the performance
metrics. MVu f 1, Fu246, Ω f a, and U f 234 increased when the level of fault is increased from 20% to 50%.
This implies that when the fault increased it resulted in more thrust changes, motor disturbances,
and motor speed and moment variations. This tendency implies that control systems with more
severe defects have difficulty maintaining stability. Nonetheless, the system’s capacity to sustain the
rotational stability of the quadcopter is robust and insensitive to growing faults, as evidenced by the
rotational angles (Errorϕ, Errorθ , and Errorψ) having steady-state errors near zero for all fault levels.
Higher faults require longer for the system to stabilize, as indicated by the modest increase in RTu f 1

with fault severity. In particular, the values derived from simulation and hardware-based findings for
every parameter show that the fault-tolerant control system’s behavior are same and accurate. In both
the real and simulated contexts, the control system generally shows up to manage fault conditions in
a variety of ways and maintain high performance; however, as the fault level increases, it becomes

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2025 doi:10.20944/preprints202507.1442.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1442.v1
http://creativecommons.org/licenses/by/4.0/


31 of 34

increasingly strained. Overall, the numerical values in the simulation and FPGA hardware-based
findings are the same using different parameters in the analysis. As the fault % rises, parameters
like MVu f 1, FU246, Ω f a, and U f 234 rise as well, indicating the system’s heightened susceptibility to
ever-increasing disruptions. However, it shows that parameters like Errorϕ, Errorθ , and Errorψ do
not deviate much from zero, confirming that rotational stability is strongly controlled even in more
fault circumstances. Recovery time and thrust variations grow with fault severity, and the control
system effectively limits rotational errors. It indicates a good but increasingly less effective reaction
to increasing flaws. The UAV control system’s numerical results showed resilience to different fault
circumstances while maintaining comparable fault estimation, speed control, and thrust recovery
performance is validated in simulated and hardware environments.

Table 4. Numerical Results

Simulation Based Numerical Results

Motor Fault
% MVu f 1 RTu f 1 Errorϕ Errorθ Errorψ Fu246 Ω f a U f 234

Motor
1 20% 0.885 1.168 4.10E-

23
6.16E-

23
3.77E-

40 121.88 16196.7 19.272

Motor
2 30% 1.331 1.234 3.39E-

23
6.04E-

23
3.78E-

40 318.32 25196.7 29.690

Motor
3 40% 1.778 1.273 4.10E-

23
5.89E-

23
3.76E-

40 257.30 34942.9 40.686

Motor
4 50% 2.228 1.295 5.19E-

08
6.14E-

23
3.79E-

40 560.85 45596.3 52.311

FPGA Hardware Based Numerical Results

Motor Fault
% MVu f 1 RTu f 1 Errorϕ Errorθ Errorψ Fu246 Ω f a U f 234

Motor
1 20% 0.885 1.168 4.10E-

23
6.16E-

23
3.77E-

40 121.88 16196.7 19.272

Motor
2 30% 1.331 1.234 3.39E-

23
6.04E-

23
3.78E-

40 318.32 25196.7 29.690

Motor
3 40% 1.778 1.273 4.10E-

23
5.89E-

23
3.76E-

40 257.30 34942.9 40.686

Motor
4 50% 2.228 1.295 5.19E-

08
6.14E-

23
3.79E-

40 560.85 45596.3 52.311

6. Conclusion
In conclusion, an NLDO-SMC and IBSC controller-based fault-tolerant control technique is

presented in this work. The proposed system connected a nonlinear observer in the controller’s inner
loop with a sliding mode control structure. The observer estimated errors, unmodeled dynamics, and
disruptions caused by motor failures with this design and also included a stability analysis of the
nonlinear observer and the controller. The study examined the quadcopter’s full controllability and
capacity to monitor trajectories in the presence of 20%, 30%, 40%, and 50% motor faults. Simulations
and real-time FPGA-based testbed methods are used to assess the controller’s performance. The results
showed that up to the 50% fault on any single motor, the quadcopter retains complete control over the
roll, pitch, and yaw channels for motors and also for x, y, and z coordinates. Implementing this FTC
structure when multiple motors of the quadcopter are faulty and testing it in flight will be the next
step. Second, it is believed that the nonlinear observer functions as an FDI algorithm inside the FTC
framework, enabling it to be combined with various control strategies to enhance fault tolerance.
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