
Article Not peer-reviewed version

iRAT: Replanning and Controlled

Retrieval for Robust LLM Reasoning

Zeeshan Ali , Praneeth Vadlapati * , Aryan Singh

Posted Date: 22 July 2025

doi: 10.20944/preprints202507.1289.v2

Keywords: large language models; artificial intelligence; chain-of-thought reasoning; uncertainty-aware

language models; reasoning in LLMs; context-aware reasoning; LLM reasoning frameworks

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

Article

iRAT: Replanning and Controlled Retrieval for

Robust LLM Reasoning

Zeeshan Ali †, Praneeth Vadlapati *,† and Aryan Singh

University of Arizona, USA

* Correspondence: praneethv@arizona.edu

† Equal contributions.

Abstract

Large Language Models (LLMs) have demonstrated significant capabilities in answering questions

using techniques such as Chain of Thought (CoT) and Retrieval-Augmented Generation (RAG). CoT

enables step-by-step reasoning to improve accuracy, while RAG supplements LLMs with relevant

external information. Retrieval-Augmented Thoughts (RAT) combines CoT and RAG to provide a

more robust factual foundation and coherence in reasoning chains. However, RAT is limited in its

ability to handle uncertainty and lacks replanning, often resulting in unnecessary retrievals,

inefficiencies, and globally inconsistent reasoning. To address these limitations, we introduce iRAT,

a novel reasoning framework that enhances RAT through retrieval control and replanning. iRAT

dynamically evaluates uncertainty in initial responses, employs controlled and filtered retrievals to

obtain only the most relevant context, revises thoughts to align with new content, and uses

replanning to correct previous thoughts. Evaluations demonstrated that iRAT outperforms RAT in

HumanEval, MBPP, and GSM8K datasets, while reducing retrievals by a considerable amount. The

source code is available at github.com/prane-eth/iRAT. The fine-tuned model used for replanning is

available at huggingface.co/zeeshan5k/iRATReasoningChainEvaluatorv2.

Keywords: large language models; artificial intelligence; chain-of-thought reasoning; uncertainty-

aware language models; reasoning in LLMs; context-aware reasoning; LLM reasoning frameworks

Introduction

Background

Large Language Models (LLMs) are recognized for their effectiveness in addressing user queries

based on information available through training, fine-tuning, or in-context learning. Among the key

techniques to enhance their capabilities is “Chain of Thought” (CoT) [1], also known as “reasoning,”

which prompts LLMs to generate intermediate reasoning steps prior to generating final responses.

CoT outperforms few-shot prompting with enhanced response accuracy. Another technique is

Retrieval-Augmented Generation (RAG) [2], which supplements LLMs with new information

through retrievals from external sources. However, recent findings on reasoning reveal an illusion of

thinking in LLMs when facing complex tasks [3].

Literature Review

Previous research on Retrieval-Augmented Thoughts (RAT) [4,5], referred to as “old-RAT”,

utilized CoT combined with RAG, which mitigated hallucinations and incoherent reasoning in the

LLMs, increasing response accuracy. Old-RAT generates an initial draft, divides it into reasoning

steps, and retrieves external knowledge at each step to iteratively refine the reasoning process. This

approach substantially mitigates hallucinations and improves factual grounding. By incorporating

retrieval rather than relying solely on the LLM’s knowledge base, old-RAT achieves improved

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 2 of 21

performance across various reasoning tasks. However, old-RAT lacks a mechanism to assess

uncertainty, leading to unnecessary retrievals and thoughts, which reduces its efficiency at scale.

Furthermore, it fails to optimize reasoning globally and does not employ a model to update previous

thoughts when new thoughts contradict them, which implies it lacks end-to-end trajectory

optimization.

Self-RAG [6] introduces a reflective framework where an LLM dynamically decides whether to

retrieve, generate, or critique at each step using specialized reflection tokens. This adaptive

mechanism improves factual accuracy, enables generalization across different tasks, and maintains

low overhead during inference. While effective, the reflection token training process may exhibit

instability, and the framework demands significant computational resources during initial training.

Additionally, the quality of the generated reflection signals significantly affects the performance and

renders the system sensitive to prompt and domain variations. RAG2 [7] improves factual grounding

in the medical domain using a rationale-based approach, where the LLM generates intermediate

rationales to guide retrieval queries and filters retrieved results using a perplexity-based scoring

model. RAG2 ensures a balanced use of multiple corpora to mitigate source bias and improve

reliability. However, the system is limited by its domain specificity, limited filtering capacity

(handling one snippet at a time), and elevated pipeline complexity due to additional rationale.

Solution

This study introduces iRAT, an enhanced retrieval-augmented reasoning framework derived

from old-RAT, and improves reasoning through retrieval control policies and dynamic replanning

mechanisms to reduce unnecessary retrievals, filter undesirable results, dynamically correct

intermediate reasoning inaccuracies, and adapt inference pipelines for complex, long-horizon tasks.

iRAT is designed to be a robust and resource-efficient retrieval-augmented thinking framework

capable of adapting to complex tasks, enabling higher accuracy and resource efficiency in real-world

applications compared to old-RAT.

Methods

Initial Draft Generation

The first stage in iRAT employs an LLM to generate an initial draft for each query. The system

employed an open-source model Llama 3.3 (70B) [8], which is known for its performance despite its

small size. Each query undergoes a validation process to identify and mitigate potentially harmful

content, including malicious patterns and unsupported characters.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 3 of 21

Figure 1. iRAT architecture diagram. Available at: https://github.com/prane-eth/iRAT/blob/main/assets/iRAT-

Full-architecture.jpeg.

Uncertainty Estimation

This step measures the model’s confidence in answering a query. The embedding model all-

MiniLM-L6-v2 [9] was selected due to its established performance and small size. This process

involves generating three initial responses to the query, encoding drafts into embeddings using the

model, and calculating pairwise cosine similarities of the embeddings to measure the consistency of

the responses. The average of these pairwise similarity scores represents a self-consistency score, also

known as “certainty.” The uncertainty is calculated as 1 - average_consistency .

Retrieval

Retrieval Decision

This module triggers retrieval only when uncertainty exceeds a threshold of 30%. This step

enables selective retrieval to maintain accuracy while reducing resource usage when the model’s

confidence is high, allowing the optimization of cost and latency.

Retrieval-Based Revision with Budget Control

If retrieval is triggered, a process similar to that of old-RAT is employed to revise the draft in

multiple steps. The text is divided into chunks to create multiple steps. At each step, a search query

is formulated for the chunk using the selected LLM. The queries are used to fetch paragraphs from

the web to update the chunk. Budget control policy is enforced to allow only one retrieval per chunk.

While old-RAT generates one chunk per paragraph, iRAT further minimizes retrievals by merging

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/prane-eth/iRAT/blob/main/assets/iRAT-Full-architecture.jpeg
https://github.com/prane-eth/iRAT/blob/main/assets/iRAT-Full-architecture.jpeg
https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 4 of 21

consecutive chunks, subject to a limit of 500 characters per chunk. Budget control is essential because

excess retrievals increase computational and financial costs.

The Google Search API is used to retrieve the top 10 most relevant results according to Google.

To maintain fairness, URLs containing HumanEval, MBPP, and GSM8K datasets are excluded to

ensure the model does not receive solutions from the selected datasets. Unlike old-RAT, the system

supports retrievals from websites such as StackOverflow and Stack Exchange pages by utilizing their

public API. The system mitigates unsupported URLs, such as YouTube and PDF files, to prevent

retrieval errors.

Result Filtering

SEO spamming [10] in Google’s Search Results may result in irrelevant, low-value, or malicious

pages that have the potential to mislead LLMs. Most pages include non-informative elements such

as headers and advertisements, potentially interfering with model comprehension. Long content in a

web page might lead to information overload, potentially degrading LLM response accuracy and

increasing inference costs. Hence, spam URLs are filtered based on the page’s URL and domain using

Google Safe Browsing API [11] and Malicious URLs Dataset [12]. Paragraphs are extracted from page

content, and the new “Attention-Retrieval” method selects relevant paragraphs.

The Attention-Retrieval method employs pre-trained re-ranking models to generate ranks and

scores of retrieved paragraphs based on the query. The model ms-marco-MiniLM-L6-v2 [13] was

selected due to its optimal model size and the scores on the official web page [14]. Top 8 most relevant

paragraphs are predicted using the model, and the results are further filtered to select paragraphs

above a threshold of 50% of score. Consecutive paragraphs are merged, subject to a limit of 500

characters per paragraph. Similar to old-RAT, the response is revised based on each selected

paragraph.

Replanning

To address the challenge of global end-to-end optimization, this module reviews all the steps

and generates feedback to enhance previous steps to align the whole chain. This module employs an

ensemble of a reward model and DeepSeek-R1-Distill-Qwen-1.5B [15], quantized and fine-tuned

using LoRA [16]. This module mitigates error propagation and reduces contradictions and

inaccuracies in prior steps, unlike the old-RAT process. The fine-tuned model used for replanning is

available at huggingface.co/zeeshan5k/iRATReasoningChainEvaluatorv2.

Final Evaluation

The system gets evaluated using HumanEval [17] and MBPP [18] datasets for coding tasks, and

GSM8K [19] dataset for mathematical reasoning tasks. System evaluation employed the pass@k

metric [20] on HumanEval and MBPP datasets, and the Exact Match (EM) metric [21] to match the

answers on the GSM8K dataset. The pass@k metric measures the model’s code passing all the test

cases provided, in the first “k” attempts, while the Exact Match compares the dataset’s answers to

the model’s answers. An additional metric that was introduced was the average number of retrievals

required to answer a query. This step compares iRAT with old-RAT on the same machine using the

same model to enable a fair comparison.

Results and Discussion

Performance

The performance and comparison of old-RAT and iRAT across HumanEval, MBPP, and GSM8K

datasets are summarized in the tables below.

Coding task results

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

http://huggingface.co/zeeshan5k/iRATReasoningChainEvaluatorv2/tree/main
https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 5 of 21

Table 1. HumanEval and MBPP result comparison of old-RAT and iRAT.

Method HumanEval pass@1 score MBPP pass@1 score

Old-RAT 63.41% 63.64%

iRAT 79.27% 76.36%

Improvement 15.86% 12.72%

Mathematical Reasoning Task Results

Table 2. GSM8K result comparison of old-RAT and iRAT.

Method GSM8K Exact Match score

Old-RAT 81.35%

iRAT 89.39%

Improvement 8.04%

The bar charts below compare the scores visually.

Figure 2. Bar charts comparing pass@1 scores of old-RAT and iRAT in (a) HumanEval dataset and (b) MBPP

dataset.

Figure 3. Bar charts comparing Exact Match (EM) scores of old-RAT and iRAT in GSM8K dataset.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 6 of 21

Usage of Retrievals

A comparison of the average retrievals used per query using old-RAT and iRAT for all three

datasets is presented in a table below.

Table 3. Average retrievals per query for RAT and iRAT.

Dataset
Average Retrievals

(old-RAT)

Average Retrievals

(iRAT)
Reduction in retrievals

HumanEval 4.46 3.16 29.15%

MBPP 5.24 3.36 35.88%

GSM8K 3.43 1.76 48.69%

Discussion

In HumanEval, the largest increase in accuracy and the smallest reduction in retrievals were

observed. For MBPP, a relatively moderate improvement in accuracy and a moderate reduction in

retrievals were observed. GSM8K demonstrated a smaller accuracy gain accompanied by the largest

reduction in retrievals. A greater improvement in performance was observed in coding tasks

compared to mathematical tasks, likely due to the old-RAT already achieving over 80% accuracy on

the latter, suggesting a limited room for further improvement. A substantial reduction in retrievals

was noted for mathematical tasks compared to coding tasks. iRAT demonstrated its potential to

enhance accuracy through replanning while reducing retrievals. Notably, a greater reduction in

retrievals corresponds with a smaller performance gain. Importantly, the reduction in retrievals did

not negatively impact performance, indicating the effectiveness of trajectory correction.

Limitations and Future Work

Future work may explore a self-reflection process using the selected base model itself, as it

possesses a larger knowledge base than the Chain Evaluator model. Old-RAT references the use of

vector databases. However, their source code employs Google Search, a procedure that iRAT also

adopts to enable fair comparison. Future work may compare the performance of both old-RAT and

iRAT using vector databases, and also compare both systems for queries that require a significantly

larger number of reasoning steps. Similar to old-RAT, iRAT has been tested using English datasets,

although future work could extend it to multilingual datasets. The source code was not designed for

commercial deployment, as it has not been evaluated under high-concurrency conditions. Future

work may enable support for more websites and PDF files. iRAT has been experimented on coding

and mathematical reasoning tasks, and may also be experimented across diverse problem domains.

Conclusions

This study introduced iRAT, an enhanced reasoning framework developed upon old-RAT,

incorporating new modules designed to address its limitations. iRAT improves reasoning accuracy

and resource efficiency through controlled retrieval and replanning mechanisms. These

enhancements enable iRAT to selectively leverage external knowledge sources and revise

intermediate reasoning through replanning. Experimental results indicate that the system improves

correctness and coherence in multi-step reasoning tasks. iRAT improved accuracy while enhancing

control over resource consumption through the reduction of unnecessary retrievals and processing

overhead, rendering it more suitable for real-world applications compared to CoT, RAG, and old-

RAT. While several challenges and opportunities for future work remain, iRAT represents a novel

advancement in adaptable reasoning frameworks.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 7 of 21

Author Contributions: Zeeshan Ali: Architecture, uncertainty evaluation, and Chain Evaluator model. Praneeth

Vadlapati: Pipeline, result-filter module, evaluation, most of the code and paper, and team leadership. Aryan

Singh: Retrieval module with budget control, dataset analysis, MBPP pre-processing, pipeline wireframe, and

bug fixing in budget control. Alvaro Arteaga: User input scanning, and the idea of spam website filter.

Acknowledgments: We sincerely thank Dr. Leonard D. Brown at the University of Arizona for suggesting

improvements to this work. We thank Alvaro Arteaga (aarteaga@arizona.edu) at the University of Arizona for

contributions to the source code.

Appendix

Examples of thoughts generated

Example 1: (From HumanEval Dataset)

Explanation of the task: The dataset mentions a function template with a description. The model is expected

to write the code according to the description and pass all the mentioned test cases.

As mentioned, the workflow of the iRAT is:

Initial draft generation of user query —> Revise draft through retrievals —> Get feedback from Chain

Evaluator model -—> Generate a final answer based on the query and the feedback.

Query:

Write functional code in Python according to the description. Start your code with:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

 """ Check if in given list of numbers, are any two numbers closer to each other than

 given threshold.

 >>> has_close_elements([1.0, 2.0, 3.0], 0.5)

 False

 >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

 True

 """

Old-RAT answer:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

 # First, we sort the list of numbers in ascending order

 numbers.sort()

 # Then, we iterate over the sorted list to check the difference between adjacent numbers

 for i in range(len(numbers) - 1):

 # If the difference between any two adjacent numbers is less than or equal to the threshold, we return

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:aarteaga@arizona.edu
https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 8 of 21

True

 if numbers[i + 1] - numbers[i] <= threshold:

 return True

 # If we have checked all pairs of adjacent numbers and haven't found any that are closer than the threshold,

we return False

 return False

Test cases

print(has_close_elements([1.0, 2.0, 3.0], 0.5)) # False

print(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)) # True

iRAT revised draft:

Introduction

The problem requires us to determine if any two numbers in a given list are closer to each other than a given

threshold. This can be achieved by using the `math.isclose()` function in Python, which checks if two values

are close to each other.

Solution

To solve this problem, we can use a simple function in Python that iterates over the list of numbers and checks

if any two numbers are closer to each other than the given threshold. Here is the Python code to achieve this:

```python 

from typing import List 

import math 

 

def has_close_elements(numbers: List[float], threshold: float) -> bool: 

 for i in range(len(numbers)): 

     for j in range(i + 1, len(numbers)): 

         if math.isclose(numbers[i], numbers[j], abs_tol=threshold): 

             return True 

 return False 

 

# Example usage: 

numbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0] 

threshold = 0.3 

result = has_close_elements(numbers, threshold) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/


 9 of 21 

 

print(result)  # Output: True 

``` 


Explanation

The provided function `has_close_elements` takes a list of numbers and a threshold value as input. It iterates

over the list of numbers and checks if any two numbers are closer to each other than the given threshold using

the `math.isclose()` function. If it finds any two numbers that are closer to each other than the threshold, it

returns True. Otherwise, it returns False.

Advice

To use this function, simply call it with a list of numbers and a threshold value as arguments. The function

will return a boolean value indicating whether any two numbers are closer to each other than the threshold.

Note that this function uses the `math.isclose()` function, which uses a relative or absolute tolerance to

compare the values. The `abs_tol` parameter is used to specify the absolute tolerance.

Evaluator Feedback:

The reasoning chain is correct but the code provided is not functional. For example, the function does not

return the expected boolean values when tested with the sample inputs.

iRAT final answer:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

for i in range(len(numbers)):

 for j in range(i + 1, len(numbers)):

 if abs(numbers[i] - numbers[j]) < threshold:

 return True

return False

Example usage:

numbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0]

threshold = 0.3

result = has_close_elements(numbers, threshold)

print(result) # Output: True

numbers = [1.0, 2.0, 3.0]

threshold = 0.5

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 10 of 21

result = has_close_elements(numbers, threshold)

print(result) # Output: False

Example 2: (From MBPP Dataset)

Query:

Write a function to find the largest subset where each pair is divisible.?

Sample test case:

assert largest_subset([1, 3, 6, 13, 17, 18], 6) == 4

Old-RAT answer:

Step 1: Define the problem and the goal

The goal is to write a function that finds the largest subset of a given list of numbers where each pair of

numbers is divisible by a given divisor.

Step 2: Identify the key elements of the problem

The key elements are the list of numbers, the divisor, and the requirement that each pair of numbers in the

subset must be divisible by the divisor.

Step 3: Determine the approach to solve the problem

To solve this problem, we can use a dynamic programming approach. We will iterate over the list of numbers

and for each number, we will check if it can be added to the existing subset without violating the divisibility

condition.

Step 4: Write the function

```python 

def largest_subset(nums, divisor): 

   """ 

   Finds the largest subset of a given list of numbers where each pair of numbers is divisible by a given 

divisor. 

   Args: 

       nums (list): A list of integers. 

       divisor (int): The divisor that each pair of numbers in the subset must be divisible by. 

   Returns: 

       int: The size of the largest subset that meets the condition. 

   """ 

   if not nums: 

       return 0 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/


 11 of 21 

 

 

   nums.sort() 

   dp = [1] * len(nums) 

 

   for i in range(1, len(nums)): 

       for j in range(i): 

           if nums[i] % nums[j] == 0 and nums[i] % divisor == 0: 

               dp[i] = max(dp[i], dp[j] + 1) 

 

   return max(dp) 

``` 


Step 5: Test the function

```python 

print(largest_subset([1, 3, 6, 13, 17, 18], 6))  # Output: 4 

``` 


The final answer is: 4

iRAT - revised draft:

Introduction to the Problem

The problem asks us to find the largest subset of a given set of distinct positive integers such that every pair

of elements in this subset satisfies the condition that one element is divisible by the other. This means for any

two elements in the subset, either the first element is divisible by the second or the second is divisible by the

first. If there are multiple solutions, we can return any of them.

Understanding the Problem

To efficiently find a subset where any two numbers divide each other, we should think about what makes a

divisible subset work. A key insight is that if we sort our numbers, we can build this subset more

systematically. When numbers are sorted, we only need to check if a larger number is divisible by a smaller

one (not both ways). This approach simplifies the problem and allows us to use dynamic programming to

solve it. The problem is related to finding subsets with specific properties, similar to the problem of finding

subsets where the sum of elements is a prime number, as discussed in the provided text.

Approach to the Solution

We start by sorting the given list of numbers. Then, we initialize a dynamic programming table where each

entry represents the size of the largest subset that can be formed using the numbers up to that index. We fill

up the table by iterating over the list of numbers. For each number, we check all previous numbers to see if

the current number is divisible by the previous number. If it is, we update the size of the largest subset that

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 12 of 21

can be formed using the current number. This method is similar to the approach used to calculate the number

of subsets of a set that add up to a prime number, where the formula $C_i[s] = C_{i-1}[s] + C_{i-1}[s-i] + (i ==

s)$ is used to efficiently calculate the result.

Implementation Details

Let's break down how to solve this step by step. First, we sort the list of numbers. Then, we initialize the

dynamic programming table with all elements set to 1, since a single number is always a subset of size 1. We

then iterate over the sorted list, and for each number, we check all previous numbers. If the current number

is divisible by a previous number, we update the corresponding entry in the table to be the maximum of its

current value and the value of the previous entry plus 1. This is because we can extend the subset that ends

at the previous number by appending the current number to it.

Reconstructing the Subset

After filling up the table, we find the entry that corresponds to the maximum value in the table. This entry

tells us where the largest subset ends. We then reconstruct the subset by backtracking from the last number

to the beginning of the list, appending each number to the subset if it is divisible by the previous number in

the subset. The final size of the subset is the answer to the problem.

Final Answer

Here is the Python function that implements the above approach:

```python 

def largest_subset(nums): 

   if not nums: 

       return 0 

   nums.sort() 

   dp = [1] * len(nums) 

   

   for i in range(1, len(nums)): 

       for j in range(i): 

           if nums[i] % nums[j] == 0: 

               dp[i] = max(dp[i], dp[j] + 1) 

   

   max_length = max(dp) 

   subset = [] 

   i = dp.index(max_length) 

   while max_length > 0: 

       subset.append(nums[i]) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/


 13 of 21 

 

       max_length -= 1 

       for j in range(i): 

           if nums[i] % nums[j] == 0 and dp[j] == max_length: 

               i = j 

               break 

   return len(subset) 

 

assert largest_subset([1, 3, 6, 13, 17, 18]) == 4 

``` 


This solution has a time complexity of O(n^2) due to the nested loops, where n is the number of elements in

the input list. The space complexity is O(n) for the `dp` table.

Evaluator Feedback:

The reasoning is concise and correct, explaining the steps of solving the Largest Subset problem. It provides

an efficient code.

iRAT - final answer:

To solve the problem of finding the largest subset where each pair is divisible, we can follow these steps:

1. Sort the list of numbers in ascending order.

2. Initialize a dynamic programming table where each entry represents the size of the largest subset that can

be formed using the numbers up to that index.

3. Fill up the table by iterating over the list of numbers. For each number, check all previous numbers to see

if the current number is divisible by the previous number. If it is, update the size of the largest subset that can

be formed using the current number.

4. After filling up the table, find the entry that corresponds to the maximum value in the table. This entry tells

us where the largest subset ends.

5. Reconstruct the subset by backtracking from the last number to the beginning of the list, appending each

number to the subset if it is divisible by the previous number in the subset.

Here is the Python function that implements the above approach:


```python 

def largest_subset(nums, n): 

   if not nums: 

       return 0 

   nums.sort() 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/


 14 of 21 

 

   dp = [1] * len(nums) 

   

   for i in range(1, len(nums)): 

       for j in range(i): 

           if nums[i] % nums[j] == 0: 

               dp[i] = max(dp[i], dp[j] + 1) 

   

   max_length = max(dp) 

   subset = [] 

   i = dp.index(max_length) 

   

   while max_length > 0: 

       subset.append(nums[i]) 

       max_length -= 1 

       for j in range(i): 

           if nums[i] % nums[j] == 0 and dp[j] == max_length: 

               i = j 

               break 

   

   return len(subset) 

 

assert largest_subset([1, 3, 6, 13, 17, 18], 6) == 4 

``` 


This solution has a time complexity of O(n^2) due to the nested loops, where n is the number of elements in

the input list. The space complexity is O(n) for the `dp` table.

The function takes two parameters: `nums` which is the list of numbers, and `n` which is not used in the

function. The function returns the size of the largest subset where each pair is divisible.

The provided unit test `assert largest_subset([1, 3, 6, 13, 17, 18], 6) == 4` checks if the function returns the

correct result for the given input. The expected output is 4, which is the size of the largest subset where each

pair is divisible.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 15 of 21

Example 3: (From GSM8K Dataset)

Query Explanation:

GSM8K dataset contains questions and solutions that mention exact answers after “####” at the end. Each

question is provided to the model, which is expected to return a response to match the expected answer.

Query:

If a bag of marbles costs $20 and the price increases by 20% of the original price every two months, how much

would a bag of marbles cost after 36 months?

 At the end, write the final answer after "####" at last.

 For example, if the answer is ABC, write "#### ABC"

Old-RAT answer:

To solve this problem, we first need to calculate the price increase every 2 months, which is 20% of the original

price of $20.

20% of $20 = 0.20 * $20 = $4

So, every 2 months, the price of the bag of marbles increases by $4.

Since we want to find the price after 36 months, we need to calculate how many 2-month periods are in 36

months:

36 months / 2 months = 18 periods

Now, we can calculate the total price increase after 18 periods:

$4 * 18 = $72

However, this is not the correct way to calculate the price increase, as the 20% increase is applied to the

original price every 2 months, not added as a fixed amount.

Let's recalculate:

Original price = $20

Price after 2 months = $20 + (20% of $20) = $20 + $4 = $24

Price after 4 months = $24 + (20% of $24) = $24 + $4.80 = $28.80

Price after 6 months = $28.80 + (20% of $28.80) = $28.80 + $5.76 = $34.56

We can see a pattern emerging. The price increase is 20% of the previous price every 2 months.

To simplify the calculation, we can use the formula for compound interest:

A = P * (1 + r)^n

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 16 of 21

where:

A = final price

P = original price = $20

r = monthly interest rate = 20%/2 = 10% per month (compounded every 2 months)

n = number of periods = 36 months / 2 months = 18 periods

However, since the increase is compounded every 2 months, we should adjust the formula accordingly:

A = P * (1 + 0.20)^n

where:

n = number of 2-month periods = 18

A = $20 * (1 + 0.20)^18

A = $20 * (1.20)^18

A = $20 * 45.4737

A ≈ $909.47

However, considering the instructions provided and the necessity to follow the format to the letter, it seems

there was an initial misunderstanding in directly applying the provided text to solve the given problem. The

original text discusses CAM caps in the context of commercial real estate leases, which does not directly apply

to calculating the cost of a bag of marbles over time with a percentage increase. The correct approach involves

recognizing the problem as one of compound interest or geometric progression, where the price increases by

a fixed percentage at regular intervals.

Given the mistake in directly applying the provided formula and recognizing the error in calculation

approach, let's correct the methodology for calculating the future price of the marbles based on the correct

understanding of compound interest or percentage increase over time:

The price increases by 20% every 2 months. To find the price after 36 months, we apply the increase correctly:

- After 2 months: $20 * 1.20 = $24

- After 4 months: $24 * 1.20 = $28.80

- After 6 months: $28.80 * 1.20 = $34.56

- Continuing this pattern for 18 periods (36 months), we calculate the final price using the formula A = P * (1

+ r)^n, where r = 0.20 (20% increase), and n = 18 (number of 2-month periods).

Correctly calculating this:

A = $20 * (1.20)^18

Using a calculator for the exact value:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 17 of 21

A ≈ $20 * 45.4737

A ≈ $909.47

The final answer is: #### $909.47

iRAT - final answer:

To find the cost of a bag of marbles after 36 months, given that it initially costs $20 and its price increases by

20% of the original price every two months, we first need to understand the pattern of the price increase.

The price increase is 20% of the $20 original price. To find 20% of $20, we multiply $20 by 0.20, which equals

$4. This $4 increase happens every two months.

Since the price increases every two months, over 36 months, the price will increase 36 / 2 = 18 times.

The correct approach to calculating the total price after 36 months involves adding the $4 increase to the price

every two months, for a total of 18 increases. The formula to calculate the final price after 18 increases would

be: $20 (original price) + $4 (increase every 2 months) * 18 (number of increases).

Performing the calculation: $20 + $4 * 18 = $20 + $72 = $92.

Therefore, after 36 months, the bag of marbles would cost $92.

$92

Datasets

HumanEval: OpenAI’s code generation dataset comprises 164 Python programming problems,

each with a function signature, docstring, body, and multiple unit tests. It is used to evaluate the

correctness of program synthesis from natural language descriptions. The dataset covers coding

problems related to language comprehension, algorithms, and basic mathematics, with some tasks

resembling introductory software engineering interview questions. It includes columns “prompt,”

“canonical_solution,” “test,” and “entry_point”.

MBPP: Google’s code generation dataset that includes 974 Python programming problems

designed to be solvable by beginner programmers. Each problem consists of an English task

description, a code solution, and three automated test cases. Old-RAT evaluated the test set from

index 11 to 175, and the same has been used for iRAT.

GSM8K: OpenAI’s mathematical reasoning dataset that consists of 8790 high-quality and

linguistically diverse mathematical word problems. It contains questions and answers. Answers

include a reasoning followed by a number after “####” at the end, which is used to compare with the

model’s response.

MS MARCO: Microsoft’s dataset that contains 1 million real user queries, each query paired

with at most 10 results containing paragraphs, URLs, and the selections of relevant paragraphs. We

use this to evaluate re-ranking models on coding tasks prior to implementation in the result-filtering

module. More information is mentioned in a section below.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 18 of 21

Malicious URLs Dataset: A vast dataset of 651,191 URLs, including 428103 benign or safe URLs,

96457 defacement URLs, 94111 phishing URLs, and 32520 malware URLs. All non-safe URLs were

used to filter the query results in the result-filtering module.

Hardware and Software

Table A1 summarizes the hardware configurations of the Virtual Machines (VMs) that were used

for evaluating old-RAT and iRAT. Table A2 lists the Python libraries used for this project and their

respective versions.

Table A1. Hardware details.

Name Value

Platform Azure

VM name B4as_v2

vCPUs 4

Memory 16 GB

GPU N/A

Table A2. Python (v3.12.3) - packages used.

Package Version

beautifulsoup4 4.13.4

cohere 5.15.0

datasets 3.6.0

google-api-python-client 2.174.0

gradio 5.35.0

html2text 2025.4.15

html5lib 1.1

human-eval 1.0.3

IPython 9.4.0

jupyter 1.1.1

langchain 0.3.26

langchain-community 0.3.27

last_layer 0.1.33

loguru 0.7.3

lxml 6.0.0

matplotlib 3.10.3

numpy 2.3.1

openai 1.93.0

pysafebrowsing 0.1.4

python-dotenv 1.1.1

readability-lxml 0.8.4.1

requests 2.32.4

sentence-transformers 5.0.0

simple-cache 0.35

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 19 of 21

tiktoken 0.9.0

transformers 4.53.0

Evaluation of Re-Ranking Models for Coding Tasks

The Attention-Retrieval method was evaluated on coding tasks using pre-trained re-ranking

models, which assign ranks and scores based on query and paragraphs. A coding-related subset was

extracted from the MARCO dataset [22] based on the occurrence of coding-related keywords in the

queries. The dataset includes 2511 training rows and 310 validation rows. Scores were computed

using the R-Precision metric, which measures the proportion of relevant paragraphs within the top-

R-ranked results, where R denotes the number of ground-truth relevant paragraphs for a given query.

For each query, the model was used to predict scores for each paragraph, with the top R scoring

paragraphs selected. The accuracy of selecting the correct paragraphs was computed.

Table A3. Accuracy on the coding subset of MARCO.

Model Parameters Estimated R-Precision Score

ms-marco-MiniLM-L6-v2 [13] 22.7M 78.71%

ms-marco-MiniLM-L4-v2 [23] 19.2M 76.45%

mxbai-rerank-xsmall-v1 [24] 70.8M 73.87%

Models pre-trained on the MARCO dataset outperformed the larger “mxbai” model on the

MARCO-derived task. These results demonstrate the suitability of the evaluated models for coding

tasks. Considering the trade-off between model size and performance, ms-marco-MiniLM-L6-v2 was

selected for integration into the result-filtering module. The evaluation code is available at:

https://github.com/prane-eth/iRAT/blob/main/notebooks/Result-filter/AR_evaluate.py#L33.

Keywords Used to Extract Coding-Related Rows from MARCO

python, java, JS, c++, css, html, typescript, php, Swift, kotlin, perl, sql, matlab, objective-c, c#,

fortran, cobol, vba, groovy, haskell, clojure, f#, solidity, xml, json, yaml, protobuf, graphql, django,

laravel, node.js, tensorflow, pytorch, keras, numpy, scikit-learn, sklearn, hadoop, kubernetes, docker,

ansible, terraform, azure, AWS, gcp, linux, unix, Git, github, gitlab, bitbucket, jenkins, travis, circleci,

maven, gradle, webpack, babel, redux, data structure, object-oriented, functional programming,

algorithm, API, REST, GraphQL, microservices, serverless.

Chain Evaluator Model - Initial Experiment with Reinforcement Learning (RL)

As part of our experimental investigation, we trained a supervised reward model to evaluate

reasoning chains generated by an LLM with robust factual grounding. Each chain was rated on a

scale from 1 to 5 based on its logical coherence and factual accuracy. However, the reward model,

based on the RoBERTa-base architecture, demonstrated limited capacity to learn meaningful reward

signals. Upon further analysis, we determined that the model lacked the embedded world knowledge

required to interpret and assess the reasoning chains accurately. For instance, evaluating a reasoning

chain that explains why the sky appears blue necessitates foundational understanding of physical

phenomena such as light scattering and atmospheric composition—knowledge that the relatively

small reward model did not possess.

Unlike the LLM, which implicitly encodes such knowledge through extensive pretraining, the

reward model operated in isolation, relying primarily on surface-level token patterns without

sufficient contextual depth. As a result, it was unable to reliably distinguish between valid and flawed

reasoning. This mismatch in knowledge and interpretive capacity ultimately led us to abandon the

reward model approach. Instead, we employed the fine-tuned LLM directly as an evaluator, which

demonstrated substantially improved alignment with reasoning accuracy and coherence.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/prane-eth/iRAT/blob/main/notebooks/Result-filter/AR_evaluate.py#L33
https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 20 of 21

References

1. J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” 2023, arXiv.

[Online]. Available: http://arxiv.org/abs/2201.11903

2. Y. Gao et al., “Retrieval-Augmented Generation for Large Language Models: A Survey,” 2024, arXiv.

[Online]. Available: http://arxiv.org/abs/2312.10997

3. P. Shojaee, I. Mirzadeh, K. Alizadeh, M. Horton, S. Bengio, and M. Farajtabar, “The Illusion of Thinking:

Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity,”

2025, arXiv. doi: 10.48550/arXiv.2506.06941.

4. Z. Wang, A. Liu, H. Lin, J. Li, X. Ma, and Y. Liang, “RAT: Retrieval Augmented Thoughts Elicit Context-

Aware Reasoning and Verification in Long-Horizon Generation,” in NeurIPS 2024 Workshop on Open-

World Agents, 2024. [Online]. Available: https://openreview.net/forum?id=5QtKMjNkjL

5. “RAT on GitHub.” [Online]. Available: https://github.com/CraftJarvis/RAT

6. A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-RAG: Learning to Retrieve, Generate, and Critique

through Self-Reflection,” 2023, arXiv. [Online]. Available: https://paperswithcode.com/paper/self-rag-

learning-to-retrieve-generate-and

7. J. Sohn et al., “Rationale-Guided Retrieval Augmented Generation for Medical Question Answering,” 2024,

arXiv. [Online]. Available: https://paperswithcode.com/paper/rationale-guided-retrieval-augmented

8. Meta AI, “meta-llama/Llama-3.3-70B-Instruct,” HuggingFace. [Online]. Available:

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

9. Sentence Transformers, “all-MiniLM-L6-v2,” Hugging Face. [Online]. Available:

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

10. J. Bevendorff, M. Wiegmann, M. Potthast, and B. Stein, “Is Google Getting Worse? A Longitudinal

Investigation of SEO Spam in Search Engines,” in Advances in Information Retrieval, N. Goharian, N.

Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, and I. Ounis, Eds., Cham: Springer Nature

Switzerland, 2024, pp. 56–71.

11. Google, “Safe Browsing Lookup API (v4),” Google Developers. [Online]. Available:

https://developers.google.com/safe-browsing/v4/lookup-api

12. M. Siddhartha, “Malicious URLs dataset,” Kaggle. [Online]. Available:

https://paperswithcode.com/dataset/malicious-urls-dataset

13. Cross Encoder, “ms-marco-MiniLM-L6-v2,” Hugging Face. [Online]. Available:

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2

14. “MS MARCO Scores - Pretrained Models,” Sentence Transformers. [Online]. Available:

https://sbert.net/docs/cross_encoder/pretrained_models.html#ms-marco

15. Deepseek AI, “DeepSeek-R1-Distill-Qwen-1.5B,” Hugging Face. [Online]. Available:

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

16. E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models,” 2021, arXiv. [Online]. Available:

http://arxiv.org/abs/2106.09685

17. OpenAI, “HumanEval.” Hugging Face, 2023. [Online]. Available:

https://huggingface.co/datasets/openai/openai_humaneval

18. Google Research, “MBPP.” Hugging Face, 2023. [Online]. Available:

https://huggingface.co/datasets/google-research-datasets/mbpp

19. OpenAI, “GSM8K.” Hugging Face, 2021. [Online]. Available:

https://huggingface.co/datasets/openai/gsm8k

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

 21 of 21

20. S. Kulal et al., “SPoC: Search-based Pseudocode to Code,” in Advances in Neural Information Processing

Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran

Associates, Inc., 2019. [Online]. Available:

https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf

21. P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ Questions for Machine

Comprehension of Text,” in Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, J. Su, K. Duh, and X. Carreras, Eds., Austin, Texas: Association for Computational

Linguistics, Nov. 2016, pp. 2383–2392. doi: 10.18653/v1/D16-1264.

22. Microsoft, “MS MARCO (v2.1).” Hugging Face, 2018. [Online]. Available:

https://huggingface.co/datasets/microsoft/ms_marcoms-marco

23. Cross Encoder, “ms-marco-MiniLM-L4-v2,” Hugging Face. [Online]. Available:

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L4-v2

24. Mixedbread AI, “mxbai-rerank-xsmall-v1.” Hugging Face, 2024. [Online]. Available:

https://huggingface.co/mixedbread-ai/mxbai-rerank-xsmall-v1

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/

