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Abstract 

Large Language Models (LLMs) have demonstrated significant capabilities in answering questions 

using techniques such as Chain of Thought (CoT) and Retrieval-Augmented Generation (RAG). CoT 

enables step-by-step reasoning to improve accuracy, while RAG supplements LLMs with relevant 

external information. Retrieval-Augmented Thoughts (RAT) combines CoT and RAG to provide a 

more robust factual foundation and coherence in reasoning chains. However, RAT is limited in its 

ability to handle uncertainty and lacks replanning, often resulting in unnecessary retrievals, 

inefficiencies, and globally inconsistent reasoning. To address these limitations, we introduce iRAT, 

a novel reasoning framework that enhances RAT through retrieval control and replanning. iRAT 

dynamically evaluates uncertainty in initial responses, employs controlled and filtered retrievals to 

obtain only the most relevant context, revises thoughts to align with new content, and uses 

replanning to correct previous thoughts. Evaluations demonstrated that iRAT outperforms RAT in 

HumanEval, MBPP, and GSM8K datasets, while reducing retrievals by a considerable amount. The 

source code is available at github.com/prane-eth/iRAT. The fine-tuned model used for replanning is 

available at huggingface.co/zeeshan5k/iRATReasoningChainEvaluatorv2. 

Keywords: large language models; artificial intelligence; chain-of-thought reasoning; uncertainty-

aware language models; reasoning in LLMs; context-aware reasoning; LLM reasoning frameworks 

 

Introduction 

Background 

Large Language Models (LLMs) are recognized for their effectiveness in addressing user queries 

based on information available through training, fine-tuning, or in-context learning. Among the key 

techniques to enhance their capabilities is “Chain of Thought” (CoT) [1], also known as “reasoning,” 

which prompts LLMs to generate intermediate reasoning steps prior to generating final responses. 

CoT outperforms few-shot prompting with enhanced response accuracy. Another technique is 

Retrieval-Augmented Generation (RAG) [2], which supplements LLMs with new information 

through retrievals from external sources. However, recent findings on reasoning reveal an illusion of 

thinking in LLMs when facing complex tasks [3]. 

Literature Review 

Previous research on Retrieval-Augmented Thoughts (RAT) [4,5], referred to as “old-RAT”, 

utilized CoT combined with RAG, which mitigated hallucinations and incoherent reasoning in the 

LLMs, increasing response accuracy. Old-RAT generates an initial draft, divides it into reasoning 

steps, and retrieves external knowledge at each step to iteratively refine the reasoning process. This 

approach substantially mitigates hallucinations and improves factual grounding. By incorporating 

retrieval rather than relying solely on the LLM’s knowledge base, old-RAT achieves improved 
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performance across various reasoning tasks. However, old-RAT lacks a mechanism to assess 

uncertainty, leading to unnecessary retrievals and thoughts, which reduces its efficiency at scale. 

Furthermore, it fails to optimize reasoning globally and does not employ a model to update previous 

thoughts when new thoughts contradict them, which implies it lacks end-to-end trajectory 

optimization. 

Self-RAG [6] introduces a reflective framework where an LLM dynamically decides whether to 

retrieve, generate, or critique at each step using specialized reflection tokens. This adaptive 

mechanism improves factual accuracy, enables generalization across different tasks, and maintains 

low overhead during inference. While effective, the reflection token training process may exhibit 

instability, and the framework demands significant computational resources during initial training. 

Additionally, the quality of the generated reflection signals significantly affects the performance and 

renders the system sensitive to prompt and domain variations. RAG2 [7] improves factual grounding 

in the medical domain using a rationale-based approach, where the LLM generates intermediate 

rationales to guide retrieval queries and filters retrieved results using a perplexity-based scoring 

model. RAG2 ensures a balanced use of multiple corpora to mitigate source bias and improve 

reliability. However, the system is limited by its domain specificity, limited filtering capacity 

(handling one snippet at a time), and elevated pipeline complexity due to additional rationale. 

Solution 

This study introduces iRAT, an enhanced retrieval-augmented reasoning framework derived 

from old-RAT, and improves reasoning through retrieval control policies and dynamic replanning 

mechanisms to reduce unnecessary retrievals, filter undesirable results, dynamically correct 

intermediate reasoning inaccuracies, and adapt inference pipelines for complex, long-horizon tasks. 

iRAT is designed to be a robust and resource-efficient retrieval-augmented thinking framework 

capable of adapting to complex tasks, enabling higher accuracy and resource efficiency in real-world 

applications compared to old-RAT. 

Methods 

Initial Draft Generation 

The first stage in iRAT employs an LLM to generate an initial draft for each query. The system 

employed an open-source model Llama 3.3 (70B) [8], which is known for its performance despite its 

small size. Each query undergoes a validation process to identify and mitigate potentially harmful 

content, including malicious patterns and unsupported characters. 
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Figure 1. iRAT architecture diagram. Available at: https://github.com/prane-eth/iRAT/blob/main/assets/iRAT-

Full-architecture.jpeg. 

Uncertainty Estimation 

This step measures the model’s confidence in answering a query. The embedding model all-

MiniLM-L6-v2 [9] was selected due to its established performance and small size. This process 

involves generating three initial responses to the query, encoding drafts into embeddings using the 

model, and calculating pairwise cosine similarities of the embeddings to measure the consistency of 

the responses. The average of these pairwise similarity scores represents a self-consistency score, also 

known as “certainty.” The uncertainty is calculated as 1 - average_consistency . 

Retrieval 

Retrieval Decision 

This module triggers retrieval only when uncertainty exceeds a threshold of 30%. This step 

enables selective retrieval to maintain accuracy while reducing resource usage when the model’s 

confidence is high, allowing the optimization of cost and latency. 

Retrieval-Based Revision with Budget Control 

If retrieval is triggered, a process similar to that of old-RAT is employed to revise the draft in 

multiple steps. The text is divided into chunks to create multiple steps. At each step, a search query 

is formulated for the chunk using the selected LLM. The queries are used to fetch paragraphs from 

the web to update the chunk. Budget control policy is enforced to allow only one retrieval per chunk. 

While old-RAT generates one chunk per paragraph, iRAT further minimizes retrievals by merging 
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consecutive chunks, subject to a limit of 500 characters per chunk. Budget control is essential because 

excess retrievals increase computational and financial costs. 

The Google Search API is used to retrieve the top 10 most relevant results according to Google. 

To maintain fairness, URLs containing HumanEval, MBPP, and GSM8K datasets are excluded to 

ensure the model does not receive solutions from the selected datasets. Unlike old-RAT, the system 

supports retrievals from websites such as StackOverflow and Stack Exchange pages by utilizing their 

public API. The system mitigates unsupported URLs, such as YouTube and PDF files, to prevent 

retrieval errors.  

Result Filtering 

SEO spamming [10] in Google’s Search Results may result in irrelevant, low-value, or malicious 

pages that have the potential to mislead LLMs. Most pages include non-informative elements such 

as headers and advertisements, potentially interfering with model comprehension. Long content in a 

web page might lead to information overload, potentially degrading LLM response accuracy and 

increasing inference costs. Hence, spam URLs are filtered based on the page’s URL and domain using 

Google Safe Browsing API [11] and Malicious URLs Dataset [12]. Paragraphs are extracted from page 

content, and the new “Attention-Retrieval” method selects relevant paragraphs. 

The Attention-Retrieval method employs pre-trained re-ranking models to generate ranks and 

scores of retrieved paragraphs based on the query. The model ms-marco-MiniLM-L6-v2 [13] was 

selected due to its optimal model size and the scores on the official web page [14]. Top 8 most relevant 

paragraphs are predicted using the model, and the results are further filtered to select paragraphs 

above a threshold of 50% of score. Consecutive paragraphs are merged, subject to a limit of 500 

characters per paragraph. Similar to old-RAT, the response is revised based on each selected 

paragraph. 

Replanning 

To address the challenge of global end-to-end optimization, this module reviews all the steps 

and generates feedback to enhance previous steps to align the whole chain. This module employs an 

ensemble of a reward model and DeepSeek-R1-Distill-Qwen-1.5B [15], quantized and fine-tuned 

using LoRA [16]. This module mitigates error propagation and reduces contradictions and 

inaccuracies in prior steps, unlike the old-RAT process. The fine-tuned model used for replanning is 

available at huggingface.co/zeeshan5k/iRATReasoningChainEvaluatorv2. 

Final Evaluation 

The system gets evaluated using HumanEval [17] and MBPP [18] datasets for coding tasks, and 

GSM8K [19] dataset for mathematical reasoning tasks. System evaluation employed the pass@k 

metric [20] on HumanEval and MBPP datasets, and the Exact Match (EM) metric [21] to match the 

answers on the GSM8K dataset. The pass@k metric measures the model’s code passing all the test 

cases provided, in the first “k” attempts, while the Exact Match compares the dataset’s answers to 

the model’s answers. An additional metric that was introduced was the average number of retrievals 

required to answer a query. This step compares iRAT with old-RAT on the same machine using the 

same model to enable a fair comparison. 

Results and Discussion 

Performance 

The performance and comparison of old-RAT and iRAT across HumanEval, MBPP, and GSM8K 

datasets are summarized in the tables below. 

Coding task results 
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Table 1. HumanEval and MBPP result comparison of old-RAT and iRAT. 

Method HumanEval pass@1 score MBPP pass@1 score 

Old-RAT 63.41% 63.64% 

iRAT 79.27% 76.36% 

Improvement 15.86% 12.72% 

Mathematical Reasoning Task Results 

Table 2. GSM8K result comparison of old-RAT and iRAT. 

Method GSM8K Exact Match score 

Old-RAT 81.35% 

iRAT 89.39% 

Improvement 8.04% 

The bar charts below compare the scores visually. 

 

Figure 2. Bar charts comparing pass@1 scores of old-RAT and iRAT in (a) HumanEval dataset and  (b) MBPP 

dataset. 

 

Figure 3. Bar charts comparing Exact Match (EM) scores of old-RAT and iRAT in GSM8K dataset. 
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Usage of Retrievals 

A comparison of the average retrievals used per query using old-RAT and iRAT for all three 

datasets is presented in a table below. 

Table 3. Average retrievals per query for RAT and iRAT. 

Dataset 
Average Retrievals 

(old-RAT) 

Average Retrievals 

(iRAT) 
Reduction in retrievals 

HumanEval 4.46 3.16 29.15% 

MBPP 5.24 3.36 35.88% 

GSM8K 3.43 1.76 48.69% 

Discussion 

In HumanEval, the largest increase in accuracy and the smallest reduction in retrievals were 

observed. For MBPP, a relatively moderate improvement in accuracy and a moderate reduction in 

retrievals were observed. GSM8K demonstrated a smaller accuracy gain accompanied by the largest 

reduction in retrievals. A greater improvement in performance was observed in coding tasks 

compared to mathematical tasks, likely due to the old-RAT already achieving over 80% accuracy on 

the latter, suggesting a limited room for further improvement. A substantial reduction in retrievals 

was noted for mathematical tasks compared to coding tasks. iRAT demonstrated its potential to 

enhance accuracy through replanning while reducing retrievals. Notably, a greater reduction in 

retrievals corresponds with a smaller performance gain. Importantly, the reduction in retrievals did 

not negatively impact performance, indicating the effectiveness of trajectory correction. 

Limitations and Future Work 

Future work may explore a self-reflection process using the selected base model itself, as it 

possesses a larger knowledge base than the Chain Evaluator model. Old-RAT references the use of 

vector databases. However, their source code employs Google Search, a procedure that iRAT also 

adopts to enable fair comparison. Future work may compare the performance of both old-RAT and 

iRAT using vector databases, and also compare both systems for queries that require a significantly 

larger number of reasoning steps. Similar to old-RAT, iRAT has been tested using English datasets, 

although future work could extend it to multilingual datasets. The source code was not designed for 

commercial deployment, as it has not been evaluated under high-concurrency conditions. Future 

work may enable support for more websites and PDF files. iRAT has been experimented on coding 

and mathematical reasoning tasks, and may also be experimented across diverse problem domains. 

Conclusions 

This study introduced iRAT, an enhanced reasoning framework developed upon old-RAT, 

incorporating new modules designed to address its limitations. iRAT improves reasoning accuracy 

and resource efficiency through controlled retrieval and replanning mechanisms. These 

enhancements enable iRAT to selectively leverage external knowledge sources and revise 

intermediate reasoning through replanning. Experimental results indicate that the system improves 

correctness and coherence in multi-step reasoning tasks. iRAT improved accuracy while enhancing 

control over resource consumption through the reduction of unnecessary retrievals and processing 

overhead, rendering it more suitable for real-world applications compared to CoT, RAG, and old-

RAT. While several challenges and opportunities for future work remain, iRAT represents a novel 

advancement in adaptable reasoning frameworks. 
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Appendix 

Examples of thoughts generated 

Example 1: (From HumanEval Dataset) 

Explanation of the task: The dataset mentions a function template with a description. The model is expected 

to write the code according to the description and pass all the mentioned test cases. 

 

As mentioned, the workflow of the iRAT is: 

Initial draft generation of user query —> Revise draft through retrievals —> Get feedback from Chain 

Evaluator model -—> Generate a final answer based on the query and the feedback. 

Query:  

Write functional code in Python according to the description. Start your code with: 

from typing import List 

def has_close_elements(numbers: List[float], threshold: float) -> bool: 

    """ Check if in given list of numbers, are any two numbers closer to each other than 

    given threshold. 

    >>> has_close_elements([1.0, 2.0, 3.0], 0.5) 

    False 

    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) 

    True 

    """ 

Old-RAT answer: 

from typing import List 

 

def has_close_elements(numbers: List[float], threshold: float) -> bool: 

  # First, we sort the list of numbers in ascending order 

  numbers.sort() 

  # Then, we iterate over the sorted list to check the difference between adjacent numbers 

  for i in range(len(numbers) - 1): 

      # If the difference between any two adjacent numbers is less than or equal to the threshold, we return 
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True 

      if numbers[i + 1] - numbers[i] <= threshold: 

          return True 

  # If we have checked all pairs of adjacent numbers and haven't found any that are closer than the threshold, 

we return False 

  return False 

 

# Test cases 

print(has_close_elements([1.0, 2.0, 3.0], 0.5))  # False 

print(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))  # True 

iRAT revised draft: 

## Introduction 

The problem requires us to determine if any two numbers in a given list are closer to each other than a given 

threshold. This can be achieved by using the `math.isclose()` function in Python, which checks if two values 

are close to each other. 

 

## Solution 

To solve this problem, we can use a simple function in Python that iterates over the list of numbers and checks 

if any two numbers are closer to each other than the given threshold. Here is the Python code to achieve this: 

```python 

from typing import List 

import math 

 

def has_close_elements(numbers: List[float], threshold: float) -> bool: 

 for i in range(len(numbers)): 

     for j in range(i + 1, len(numbers)): 

         if math.isclose(numbers[i], numbers[j], abs_tol=threshold): 

             return True 

 return False 

 

# Example usage: 

numbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0] 

threshold = 0.3 

result = has_close_elements(numbers, threshold) 
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print(result)  # Output: True 

``` 

 

## Explanation 

The provided function `has_close_elements` takes a list of numbers and a threshold value as input. It iterates 

over the list of numbers and checks if any two numbers are closer to each other than the given threshold using 

the `math.isclose()` function. If it finds any two numbers that are closer to each other than the threshold, it 

returns True. Otherwise, it returns False. 

 

## Advice 

To use this function, simply call it with a list of numbers and a threshold value as arguments. The function 

will return a boolean value indicating whether any two numbers are closer to each other than the threshold. 

Note that this function uses the `math.isclose()` function, which uses a relative or absolute tolerance to 

compare the values. The `abs_tol` parameter is used to specify the absolute tolerance. 

Evaluator Feedback: 

The reasoning chain is correct but the code provided is not functional. For example, the function does not 

return the expected boolean values when tested with the sample inputs. 

iRAT final answer: 

from typing import List 

 

def has_close_elements(numbers: List[float], threshold: float) -> bool: 

for i in range(len(numbers)): 

    for j in range(i + 1, len(numbers)): 

        if abs(numbers[i] - numbers[j]) < threshold: 

            return True 

return False 

 

# Example usage: 

numbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0] 

threshold = 0.3 

result = has_close_elements(numbers, threshold) 

print(result)  # Output: True 

 

numbers = [1.0, 2.0, 3.0] 

threshold = 0.5 
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result = has_close_elements(numbers, threshold) 

print(result)  # Output: False 

Example 2: (From MBPP Dataset) 

Query: 

Write a function to find the largest subset where each pair is divisible.? 

Sample test case: 

assert largest_subset([ 1, 3, 6, 13, 17, 18 ], 6) == 4 

Old-RAT answer: 

## Step 1: Define the problem and the goal 

The goal is to write a function that finds the largest subset of a given list of numbers where each pair of 

numbers is divisible by a given divisor. 

 

## Step 2: Identify the key elements of the problem 

The key elements are the list of numbers, the divisor, and the requirement that each pair of numbers in the 

subset must be divisible by the divisor. 

 

## Step 3: Determine the approach to solve the problem 

To solve this problem, we can use a dynamic programming approach. We will iterate over the list of numbers 

and for each number, we will check if it can be added to the existing subset without violating the divisibility 

condition. 

 

## Step 4: Write the function 

```python 

def largest_subset(nums, divisor): 

   """ 

   Finds the largest subset of a given list of numbers where each pair of numbers is divisible by a given 

divisor. 

   Args: 

       nums (list): A list of integers. 

       divisor (int): The divisor that each pair of numbers in the subset must be divisible by. 

   Returns: 

       int: The size of the largest subset that meets the condition. 

   """ 

   if not nums: 

       return 0 
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   nums.sort() 

   dp = [1] * len(nums) 

 

   for i in range(1, len(nums)): 

       for j in range(i): 

           if nums[i] % nums[j] == 0 and nums[i] % divisor == 0: 

               dp[i] = max(dp[i], dp[j] + 1) 

 

   return max(dp) 

``` 

 

## Step 5: Test the function 

```python 

print(largest_subset([1, 3, 6, 13, 17, 18], 6))  # Output: 4 

``` 

 

The final answer is: 4 

iRAT - revised draft: 

## Introduction to the Problem 

The problem asks us to find the largest subset of a given set of distinct positive integers such that every pair 

of elements in this subset satisfies the condition that one element is divisible by the other. This means for any 

two elements in the subset, either the first element is divisible by the second or the second is divisible by the 

first. If there are multiple solutions, we can return any of them. 

 

## Understanding the Problem 

To efficiently find a subset where any two numbers divide each other, we should think about what makes a 

divisible subset work. A key insight is that if we sort our numbers, we can build this subset more 

systematically. When numbers are sorted, we only need to check if a larger number is divisible by a smaller 

one (not both ways). This approach simplifies the problem and allows us to use dynamic programming to 

solve it. The problem is related to finding subsets with specific properties, similar to the problem of finding 

subsets where the sum of elements is a prime number, as discussed in the provided text. 

 

## Approach to the Solution 

We start by sorting the given list of numbers. Then, we initialize a dynamic programming table where each 

entry represents the size of the largest subset that can be formed using the numbers up to that index. We fill 

up the table by iterating over the list of numbers. For each number, we check all previous numbers to see if 

the current number is divisible by the previous number. If it is, we update the size of the largest subset that 
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can be formed using the current number. This method is similar to the approach used to calculate the number 

of subsets of a set that add up to a prime number, where the formula $C_i[s] = C_{i-1}[s] + C_{i-1}[s-i] + (i == 

s)$ is used to efficiently calculate the result. 

 

## Implementation Details 

Let's break down how to solve this step by step. First, we sort the list of numbers. Then, we initialize the 

dynamic programming table with all elements set to 1, since a single number is always a subset of size 1. We 

then iterate over the sorted list, and for each number, we check all previous numbers. If the current number 

is divisible by a previous number, we update the corresponding entry in the table to be the maximum of its 

current value and the value of the previous entry plus 1. This is because we can extend the subset that ends 

at the previous number by appending the current number to it. 

 

## Reconstructing the Subset 

After filling up the table, we find the entry that corresponds to the maximum value in the table. This entry 

tells us where the largest subset ends. We then reconstruct the subset by backtracking from the last number 

to the beginning of the list, appending each number to the subset if it is divisible by the previous number in 

the subset. The final size of the subset is the answer to the problem. 

 

## Final Answer 

Here is the Python function that implements the above approach: 

```python 

def largest_subset(nums): 

   if not nums: 

       return 0 

   nums.sort() 

   dp = [1] * len(nums) 

   

   for i in range(1, len(nums)): 

       for j in range(i): 

           if nums[i] % nums[j] == 0: 

               dp[i] = max(dp[i], dp[j] + 1) 

   

   max_length = max(dp) 

   subset = [] 

   i = dp.index(max_length) 

   while max_length > 0: 

       subset.append(nums[i]) 
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       max_length -= 1 

       for j in range(i): 

           if nums[i] % nums[j] == 0 and dp[j] == max_length: 

               i = j 

               break 

   return len(subset) 

 

assert largest_subset([1, 3, 6, 13, 17, 18]) == 4 

``` 

 

This solution has a time complexity of O(n^2) due to the nested loops, where n is the number of elements in 

the input list. The space complexity is O(n) for the `dp` table. 

Evaluator Feedback: 

The reasoning is concise and correct, explaining the steps of solving the Largest Subset problem. It provides 

an efficient code. 

iRAT - final answer: 

To solve the problem of finding the largest subset where each pair is divisible, we can follow these steps: 

 

1. Sort the list of numbers in ascending order. 

2. Initialize a dynamic programming table where each entry represents the size of the largest subset that can 

be formed using the numbers up to that index. 

3. Fill up the table by iterating over the list of numbers. For each number, check all previous numbers to see 

if the current number is divisible by the previous number. If it is, update the size of the largest subset that can 

be formed using the current number. 

4. After filling up the table, find the entry that corresponds to the maximum value in the table. This entry tells 

us where the largest subset ends. 

5. Reconstruct the subset by backtracking from the last number to the beginning of the list, appending each 

number to the subset if it is divisible by the previous number in the subset. 

 

Here is the Python function that implements the above approach: 

 

```python 

def largest_subset(nums, n): 

   if not nums: 

       return 0 

   nums.sort() 
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   dp = [1] * len(nums) 

   

   for i in range(1, len(nums)): 

       for j in range(i): 

           if nums[i] % nums[j] == 0: 

               dp[i] = max(dp[i], dp[j] + 1) 

   

   max_length = max(dp) 

   subset = [] 

   i = dp.index(max_length) 

   

   while max_length > 0: 

       subset.append(nums[i]) 

       max_length -= 1 

       for j in range(i): 

           if nums[i] % nums[j] == 0 and dp[j] == max_length: 

               i = j 

               break 

   

   return len(subset) 

 

assert largest_subset([1, 3, 6, 13, 17, 18], 6) == 4 

``` 

 

This solution has a time complexity of O(n^2) due to the nested loops, where n is the number of elements in 

the input list. The space complexity is O(n) for the `dp` table. 

 

The function takes two parameters: `nums` which is the list of numbers, and `n` which is not used in the 

function. The function returns the size of the largest subset where each pair is divisible. 

 

The provided unit test `assert largest_subset([1, 3, 6, 13, 17, 18], 6) == 4` checks if the function returns the 

correct result for the given input. The expected output is 4, which is the size of the largest subset where each 

pair is divisible. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202507.1289.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1289.v2
http://creativecommons.org/licenses/by/4.0/


 15 of 21 

 

Example 3: (From GSM8K Dataset) 

Query Explanation: 

GSM8K dataset contains questions and solutions that mention exact answers after “####” at the end. Each 

question is provided to the model, which is expected to return a response to match the expected answer. 

Query: 

If a bag of marbles costs $20 and the price increases by 20% of the original price every two months, how much 

would a bag of marbles cost after 36 months? 

 

 At the end, write the final answer after "####" at last. 

 For example, if the answer is ABC, write "#### ABC" 

Old-RAT answer: 

To solve this problem, we first need to calculate the price increase every 2 months, which is 20% of the original 

price of $20. 

 

20% of $20 = 0.20 * $20 = $4 

So, every 2 months, the price of the bag of marbles increases by $4. 

Since we want to find the price after 36 months, we need to calculate how many 2-month periods are in 36 

months: 

 

36 months / 2 months = 18 periods 

Now, we can calculate the total price increase after 18 periods: 

 

$4 * 18 = $72 

 

However, this is not the correct way to calculate the price increase, as the 20% increase is applied to the 

original price every 2 months, not added as a fixed amount. 

 

Let's recalculate: 

 

Original price = $20 

Price after 2 months = $20 + (20% of $20) = $20 + $4 = $24 

Price after 4 months = $24 + (20% of $24) = $24 + $4.80 = $28.80 

Price after 6 months = $28.80 + (20% of $28.80) = $28.80 + $5.76 = $34.56 

 

We can see a pattern emerging. The price increase is 20% of the previous price every 2 months. 

 

To simplify the calculation, we can use the formula for compound interest: 

 

A = P * (1 + r)^n 
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where: 

A = final price 

P = original price = $20 

r = monthly interest rate = 20%/2 = 10% per month (compounded every 2 months) 

n = number of periods = 36 months / 2 months = 18 periods 

 

However, since the increase is compounded every 2 months, we should adjust the formula accordingly: 

 

A = P * (1 + 0.20)^n 

 

where: 

n = number of 2-month periods = 18 

 

A = $20 * (1 + 0.20)^18 

A = $20 * (1.20)^18 

A = $20 * 45.4737 

A ≈ $909.47 

 

However, considering the instructions provided and the necessity to follow the format to the letter, it seems 

there was an initial misunderstanding in directly applying the provided text to solve the given problem. The 

original text discusses CAM caps in the context of commercial real estate leases, which does not directly apply 

to calculating the cost of a bag of marbles over time with a percentage increase. The correct approach involves 

recognizing the problem as one of compound interest or geometric progression, where the price increases by 

a fixed percentage at regular intervals. 

 

Given the mistake in directly applying the provided formula and recognizing the error in calculation 

approach, let's correct the methodology for calculating the future price of the marbles based on the correct 

understanding of compound interest or percentage increase over time: 

 

The price increases by 20% every 2 months. To find the price after 36 months, we apply the increase correctly: 

 

- After 2 months: $20 * 1.20 = $24 

- After 4 months: $24 * 1.20 = $28.80 

- After 6 months: $28.80 * 1.20 = $34.56 

- Continuing this pattern for 18 periods (36 months), we calculate the final price using the formula A = P * (1 

+ r)^n, where r = 0.20 (20% increase), and n = 18 (number of 2-month periods). 

 

Correctly calculating this: 

A = $20 * (1.20)^18 

 

Using a calculator for the exact value: 
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A ≈ $20 * 45.4737 

 

A ≈ $909.47 

 

The final answer is: #### $909.47 

iRAT - final answer: 

To find the cost of a bag of marbles after 36 months, given that it initially costs $20 and its price increases by 

20% of the original price every two months, we first need to understand the pattern of the price increase. 

 

The price increase is 20% of the $20 original price. To find 20% of $20, we multiply $20 by 0.20, which equals 

$4. This $4 increase happens every two months. 

 

Since the price increases every two months, over 36 months, the price will increase 36 / 2 = 18 times. 

 

The correct approach to calculating the total price after 36 months involves adding the $4 increase to the price 

every two months, for a total of 18 increases. The formula to calculate the final price after 18 increases would 

be: $20 (original price) + $4 (increase every 2 months) * 18 (number of increases). 

 

Performing the calculation: $20 + $4 * 18 = $20 + $72 = $92. 

 

Therefore, after 36 months, the bag of marbles would cost $92. 

 

#### $92 

Datasets 

HumanEval: OpenAI’s code generation dataset comprises 164 Python programming problems, 

each with a function signature, docstring, body, and multiple unit tests. It is used to evaluate the 

correctness of program synthesis from natural language descriptions. The dataset covers coding 

problems related to language comprehension, algorithms, and basic mathematics, with some tasks 

resembling introductory software engineering interview questions. It includes columns “prompt,” 

“canonical_solution,” “test,” and “entry_point”. 

MBPP: Google’s code generation dataset that includes 974 Python programming problems 

designed to be solvable by beginner programmers. Each problem consists of an English task 

description, a code solution, and three automated test cases. Old-RAT evaluated the test set from 

index 11 to 175, and the same has been used for iRAT. 

GSM8K: OpenAI’s mathematical reasoning dataset that consists of 8790 high-quality and 

linguistically diverse mathematical word problems. It contains questions and answers. Answers 

include a reasoning followed by a number after “####” at the end, which is used to compare with the 

model’s response. 

MS MARCO: Microsoft’s dataset that contains 1 million real user queries, each query paired 

with at most 10 results containing paragraphs, URLs, and the selections of relevant paragraphs. We 

use this to evaluate re-ranking models on coding tasks prior to implementation in the result-filtering 

module. More information is mentioned in a section below. 
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Malicious URLs Dataset: A vast dataset of 651,191 URLs, including 428103 benign or safe URLs, 

96457 defacement URLs, 94111 phishing URLs, and 32520 malware URLs. All non-safe URLs were 

used to filter the query results in the result-filtering module. 

Hardware and Software 

Table A1 summarizes the hardware configurations of the Virtual Machines (VMs) that were used 

for evaluating old-RAT and iRAT. Table A2 lists the Python libraries used for this project and their 

respective versions.  

Table A1. Hardware details. 

Name Value 

Platform Azure 

VM name B4as_v2 

vCPUs 4 

Memory 16 GB 

GPU N/A 

Table A2. Python (v3.12.3) - packages used. 

Package Version 

beautifulsoup4 4.13.4 

cohere 5.15.0 

datasets 3.6.0 

google-api-python-client 2.174.0 

gradio 5.35.0 

html2text 2025.4.15 

html5lib 1.1 

human-eval 1.0.3 

IPython 9.4.0 

jupyter 1.1.1 

langchain 0.3.26 

langchain-community 0.3.27 

last_layer 0.1.33 

loguru 0.7.3 

lxml 6.0.0 

matplotlib 3.10.3 

numpy 2.3.1 

openai 1.93.0 

pysafebrowsing 0.1.4 

python-dotenv 1.1.1 

readability-lxml 0.8.4.1 

requests 2.32.4 

sentence-transformers 5.0.0 

simple-cache 0.35 
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tiktoken 0.9.0 

transformers 4.53.0 

Evaluation of Re-Ranking Models for Coding Tasks 

The Attention-Retrieval method was evaluated on coding tasks using pre-trained re-ranking 

models, which assign ranks and scores based on query and paragraphs. A coding-related subset was 

extracted from the MARCO dataset [22] based on the occurrence of coding-related keywords in the 

queries. The dataset includes 2511 training rows and 310 validation rows. Scores were computed 

using the R-Precision metric, which measures the proportion of relevant paragraphs within the top-

R-ranked results, where R denotes the number of ground-truth relevant paragraphs for a given query. 

For each query, the model was used to predict scores for each paragraph, with the top R scoring 

paragraphs selected. The accuracy of selecting the correct paragraphs was computed. 

Table A3. Accuracy on the coding subset of MARCO. 

Model Parameters Estimated R-Precision Score 

ms-marco-MiniLM-L6-v2 [13] 22.7M 78.71% 

ms-marco-MiniLM-L4-v2 [23] 19.2M 76.45% 

mxbai-rerank-xsmall-v1 [24] 70.8M 73.87% 

Models pre-trained on the MARCO dataset outperformed the larger “mxbai” model on the 

MARCO-derived task. These results demonstrate the suitability of the evaluated models for coding 

tasks. Considering the trade-off between model size and performance, ms-marco-MiniLM-L6-v2 was 

selected for integration into the result-filtering module. The evaluation code is available at: 

https://github.com/prane-eth/iRAT/blob/main/notebooks/Result-filter/AR_evaluate.py#L33. 

Keywords Used to Extract Coding-Related Rows from MARCO 

python, java, JS, c++, css, html, typescript, php, Swift, kotlin, perl, sql, matlab, objective-c, c#, 

fortran, cobol, vba, groovy, haskell, clojure, f#, solidity, xml, json, yaml, protobuf, graphql, django, 

laravel, node.js, tensorflow, pytorch, keras, numpy, scikit-learn, sklearn, hadoop, kubernetes, docker, 

ansible, terraform, azure, AWS, gcp, linux, unix, Git, github, gitlab, bitbucket, jenkins, travis, circleci, 

maven, gradle, webpack, babel, redux, data structure, object-oriented, functional programming, 

algorithm, API, REST, GraphQL, microservices, serverless. 

Chain Evaluator Model - Initial Experiment with Reinforcement Learning (RL) 

As part of our experimental investigation, we trained a supervised reward model to evaluate 

reasoning chains generated by an LLM with robust factual grounding. Each chain was rated on a 

scale from 1 to 5 based on its logical coherence and factual accuracy. However, the reward model, 

based on the RoBERTa-base architecture, demonstrated limited capacity to learn meaningful reward 

signals. Upon further analysis, we determined that the model lacked the embedded world knowledge 

required to interpret and assess the reasoning chains accurately. For instance, evaluating a reasoning 

chain that explains why the sky appears blue necessitates foundational understanding of physical 

phenomena such as light scattering and atmospheric composition—knowledge that the relatively 

small reward model did not possess. 

Unlike the LLM, which implicitly encodes such knowledge through extensive pretraining, the 

reward model operated in isolation, relying primarily on surface-level token patterns without 

sufficient contextual depth. As a result, it was unable to reliably distinguish between valid and flawed 

reasoning. This mismatch in knowledge and interpretive capacity ultimately led us to abandon the 

reward model approach. Instead, we employed the fine-tuned LLM directly as an evaluator, which 

demonstrated substantially improved alignment with reasoning accuracy and coherence. 
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