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Abstract

Clustered time-to-event data are quite common in survival analysis and finding a suitable model
to account for dispersion as well as censoring is an important issue. In this article, we present a
flexible model for repeated, overdispersed time-to-event data with right censoring. Building on
the work by Molenberghs et al. [1], we present here a general model by incorporating generalized
gamma and normal random effects in a Weibull distribution to accommodate overdispersion and
data hierarchies, respectively. Due to the intractable integrals involved in the likelihood function and
its derivatives, Monte Carlo approach is used to approximate the involved integrals. The maximum
likelihood estimates of the parameters in the model are then numerically determined. An extensive
simulation study is then conducted to evaluate the performance of the proposed model and the method
of inference developed here. Finally, the usefulness of the model is demonstrated by analyzing a data
on recurrent asthma attacks in children and a recurrent bladder data set known in the survival analysis
literature.

Keywords: clustered time-to-event data; recurrent time-to-event data; generalized gamma frailty
model; Monte Carlo approximation; lifetime analysis

1. Introduction
Clustered time-to-event data are commonly encountered in contemporary medical and statistical

studies. It is important to accommodate data hierarchies that can result from repeated measurements
of survival outcomes on the same subject [2]. In addition, overdispersion [3] as well as censored
observations are most likely to be found in the data. Therefore, it is crucial to build a suitable model to
capture the aforementioned features present in the data.

Models that simultaneously deal with issues of overdispersion and data hierarchy in survival
analysis is not so common. Molenberghs et al. [4] proposed a general framework to model non-
Gaussian outcomes, accommodating overdispersion and data hierarchies through two separate sets
of random effects. The case of time-to-event data is one specific application under their broad class
of models. Molenberghs et al. [1] extended and presented a model for repeated, overdispersed
time-to-event data that are also subject to censoring. These authors [1] combined conjugate random
effect for overdispersion with generalized linear mixed model (GLMM [5,6]) in which normal random
effects are embedded within the linear predictor for clustering. Two estimation methods-a partial
marginalization approach to full maximum likelihood and a pairwise-likelihood version of pseudo-
likelihood- were presented and compared, based on a limited simulation study as well as two real
data analysis. Molenberghs et al. [1] chose gamma distribution to be the frailty random effects to
capture overdispersion. This convenient choice was motivated through the concept of conjugacy.
However, convenience does not assure a good fit to the observed data. To overcome this limitation, we
propose here a new model that is flexible to provide adequate fit to the repeated and overdispersed
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time-to-event data, while also accommodating right censoring. The frailty random effect in this paper
is assumed to follow a generalized gamma distribution, previously studied by Balakrishnan and
Peng [7]. The generalized gamma distribution has one more parameter than the gamma distribution,
and is therefore more flexible and less parametric [7]. Moreover, this distribution also includes the
well-known gamma, lognormal and Weibull models all as special cases.

The rest of this paper is organized as follows. Key ingredients for our model formulation and
the new combined model are the subjects of Section 2. Section 3 discusses an estimation method
for the proposed model. In Section 4, an extensive simulation study is conducted to investigate the
performance of the proposed estimation method and to compare the performance of the proposed
model with the existing one [1]. The illustration of the proposed model with two motivating data sets
is made in Section 5. Finally, some concluding remarks are made in Section 6.

2. Generalized Gamma Frailty and Normal Random Effects Model
2.1. Generalized Gamma Distribution

The generalized gamma (GG) distribution has been applied in many areas of statistical appli-
cations, due mainly to its flexible form. A random variable Y > 0 is said to follow the generalized
gamma distribution if its density function is as follows:

f (y; q, σ, λ) =

|q|(q−2)q−2
(λy)q−2(q/σ) exp[−q−2(λy)q/σ]/[Γ(q−2)σy], q ̸= 0

(
√

2πσy)−1 exp{−[log(λy)]2/(2σ2)}, q = 0
, (1)

where -∞ < q < ∞ and σ > 0 are shape parameters and λ > 0 is a scale parameter. It was first
developed by Stacy [8] and a review of the generalized gamma distribution is available in [9]. This
distribution was studied by Prentice [10], wherein a parameterization was proposed that allowed the
maximum likelihood estimates to be computed using standard algorithms. The application of the
generalized gamma distribution in an accelerated failure time model was addressed by Lawless [11].
Yamaguchi [12], Peng et al. [13] and Balakrishnan and Pal [14] investigated the use of the distribution
in the context of cure rate model. Shin et al. [15] proposed a statistical model for speech signals based
on the generalized gamma distribution. Cox et al. [16] provided a taxonomy of hazard functions for
the generalized gamma distribution, while Balakrishnan and Peng [7] proposed a frailty model using
the generalized gamma distribution as the frailty distribution.

Generalized gamma distribution is a broad family of distributions that includes exponential,
gamma, and Weibull distributions as subfamilies, and lognormal as a limiting distribution. For exam-
ple, the distribution reduces to the gamma distribution when q

σ = 1; it is the lognormal distribution
when q = 0 (the limit of f (y; q, σ, λ) when q → 0); and it is the Weibull distribution when q = 1. As
the generalized gamma distribution can offer a considerable amount of flexibility, in this way, it can
be used to capture more features of the data that may be missed when any of its special cases is used
instead. The mean of the generalized gamma distribution given in (2), exists only when q > 1

σ , and is
given by

Γ(q−2 + σ
q )

Γ(q−2)(q−2)σ/qλ
. (2)

If the mean is set to one, then

λ =
Γ(q−2 + σ

q )

Γ(q−2)(q−2)σ/q . (3)

We can then substitute (3) to (1), and also get the variance as

Γ(q−2 + 2 σ
q )Γ(q

−2)

Γ2(q−2 + σ
q )

− 1. (4)
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2.2. Weibull-Generalized Gamma-Normal Model

A random variable Y follows an exponential family of distributions if its density is of the form

f (y) = f (y|η, ϕ) = exp{ϕ−1[yη − ψ(η)] + c(y, ϕ)}, (5)

where η is termed as the natural parameter, ϕ is called the dispersion parameter, and ψ(·) and c(·)
are some known functions. In the regression context, the model needs to incorporate measured
covariates to explain variability among outcome values, and this is referred to as a generalized linear
model. Y1, ..., YN is a set of independent outcomes, and x1, ..., xN represent the corresponding p-
dimensional vectors of covariate values. Then, Yi’s are assumed to have densities f (yi|ηi, ϕ) that
belong to the exponential family in (5), while µi’s are modeled as functions of the covariates. It is
assumed that µi = h(x′iξ), with ξ is a vector of p fixed unknown regression coefficients and h−1(·) is
called the link function. In most applications, the natural link function is used, i.e., h(·) = ψ′(·) with
µi = h(x′iξ) = ψ′(x′iξ) = ψ′(ηi). This is equivalent to assuming ηi = x′iξ. As overdispersion is often
present in time-to-event data, we can use a two-stage approach to construct an overdispersed model.
Consider a distribution for the outcome, given a random effect, f (yi|θi), and assume a distribution for
the random effect, f (θi). The marginal distribution is then produced as

f (yi) =
∫

f (yi|θi) f (θi)dθi. (6)

If f (yi|θi) follows a Weibull distribution, and f (θi) follows a gamma distribution, then we obtain a
Weibull-Gamma model. The choice of gamma distribution for the random effect is motivated through
the concept of conjugacy, so that the marginal distribution has a closed-form expression. Although
gamma distribution is convenient to use, the convenience, however, does not assure that the fit will
be good. The generalized gamma distribution has one more parameter than the gamma distribution,
and so can be more flexible enabling better modelling of the data. This can be generalized to clustered
data in survival analysis, where Yij can be used to denote the jth outcome value in cluster i, for
i = 1, 2, 3, ..., N and j = 1, 2, ..., ni. On the other hand, it is possible to include normal random effects in
the linear predictor of the generalized linear model, giving rise to the family known as generalized
linear mixed model. Conditional on q-dimensional random effects bi ∼ N(0, D), the outcomes Yij are
independent with exponential-family densities of the form

fi(yij|bi, ξ, ϕ) = exp{ϕ−1[yijλij − ψ(λij)] + c(yij, ϕ)}, (7)

with
η[ψ′(λij)] = η(µij) = η[E(Yij|bi, ξ)] = x′ijξ + z′ijbi, (8)

where xij and zij are p-dimensional and q-dimensional vectors of known covariate values, η(·) is a
known link function, ξ is a p-dimensional vector of unknown fixed regression coefficients, and ϕ is a
scale (overdispersion) parameter. f (bi|D) is the density of N(0, D) distribution for the random effects
bi. Now, combination of overdispersion and normal random effect leads to the following combined
model

fi(yij|bi, ξ, θij, ϕ) = exp{ϕ−1[yijλij − ψ(λij)] + c(yij, ϕ)}. (9)

The conditional mean is E(Yij|bi, ξ, θij) = µc
ij = θijkij, where θij ∼ Gij(νij, σ2

ij) and kij = g(x′ijξ + z′ijbi).
The relationship between mean and natural parameter now is λij = h(µc

ij) = h(θijkij). Random
effects θij can capture overdispersion, and kij can be considered as the generalized linear mixed model
component that can capture the in-between cluster effect. In the present work, we consider the general

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 July 2025 doi:10.20944/preprints202507.1191.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1191.v1
http://creativecommons.org/licenses/by/4.0/


4 of 12

Weibull model for repeated measures, with both generalized gamma and normal random effects, of
the following hierarchical form:

f (yi|θi, bi) =
ni

∏
j=1

λρθijy
ρ−1
ij exp(x′ijξ + z′ijbi) exp(−λyρ

ijθije
x′ijξ+z′ijbi), (10)

f (bi) =
1

(2π)q/2|D|1/2
e−

1
2 bi

′D−1bi , (11)

f (θi) =
ni

∏
j=1

|q|(q−2)q−2
(pθij)

q−2(q/σ) exp[−q−2(pθij)
q/σ]

[Γ(q−2)σθij]
. (12)

To make the parameters in the model identifiable, the mean of the generalized gamma distribution is

usually set to be one. As the mean of the generalized gamma distribution is
Γ(q−2+ σ

q )

Γ(q−2)(q−2)σ/q p
, with the

mean set to one, we then have p =
Γ(q−2+ σ

q )

Γ(q−2)(q−2)σ/q .

3. Likelihood Function and Estimation Method
In a frailty model, one of the most common methods used for estimating the unknown parameters

of the model is the maximum likelihood method, as used, for example, in Balakrishnan and Peng
[7]. In this paper, we make use of the marginal likelihood approach as a direct way for finding the
maximum likelihood estimates of the unknown parameters in the combined generalized gamma and
normal random effect model. However, one of the difficulties in the parameter estimation is that the
likelihood function involves many integrals which render it to be intractable. For this reason, we
can approximate the integral in the likelihood function directly and then maximize it to obtain the
maximum likelihood estimates of the parameters of interest. The likelihood contribution of subject i
(cluster i) is

fi(yi|ϑ, D, ϑi, Σi) =
∫ ni

∏
j=1

fij(yij|ϑ, bi, θi) f (bi|D) f (θi|ϑi, Σi)dbidθi, (13)

while the likelihood function is given by

L(ϑ, D, ϑi, Σi) =
N

∏
i=1

∫ ni

∏
j=1

fij(yij|ϑ, bi, θi) f (bi|D) f (θi|ϑi, Σi)dbidθi. (14)

A numerical method, with the use of Monte Carlo simulation, is implemented to approximate the
integral Ii in the likelihood function, where

Ii =
∫ ni

∏
j=1

fij(yij|ϑ, bi, θi) f (bi|D) f (θi|ϑi, Σi)dbidθi, (15)

and it is approximated as

Ii = Eθi

[
Ebi

[
ni

∏
j=1

fij(yij|ϑ, bi, θi)

]]

=
1

N1 × N2

N1

∑
k1=1

N2

∑
k2=1

ni

∏
j=1

fij(yij|ϑ, b(k1), θ(k2)
),

(16)
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where b(k1), k1 = 1, 2, ..., N1, and θ(k2)
, k2 = 1, 2, ..., N2, are realizations of normal random variables

and generalized gamma random variables, respectively. Now, to accommodate right-censoring in the
data, for each j, we integrate the conditional distribution over the time interval [Cij,+∞]:

S(Cij|θij, bi) =
∫ ∞

Cij

fij(yij|bi, θi)dyij. (17)

For the case of Weibull-GG-Normal model, we have

S(Cij|θij, bi) =
∫ ∞

Cij

λρθijy
ρ−1
ij exp(x′ijξ + z′ijbi) exp(−λyρ

ijθije
x′ijξ+z′ijbi)dyij

= exp(−λex′ijξ+z′ijbi θijC
ρ
ij).

(18)

The maximum likelihood estimates of the parameters are then obtained numerically through quasi-
Newton-Raphson algorithm. The standard errors are also obtained numerically from this approxima-
tion.

4. Simulation Study and Model Discrimination
An extensive simulation study has been conducted in order to evaluate the performance of the

proposed model and the associated estimation method. In the simulation study, three different cluster
sizes have been considered to examine the impact of sample size on the proposed model: n = 100,
n = 200, and n = 400. Each cluster can be treated as one subject, and the number of observations for
one subject was then generated randomly from a normal distribution N(µ = 8, σ2 = 4). 10%, 25% and
50% censoring rates have also been introduced through a Bernoulli distribution (with π = 0.9, 0.75,
and 0.5). True values of the treatment effects used in the simulation study are chosen to be ϵ0 = 2 and
ϵ1 = 0.1. The parameter in the normal distribution to model the cluster effect has been set as

√
d = 0.5.

Gamma, Weibull and lognormal distribution with mean 1 and variance 0.5 have been used to model
over-dispersion in the simulated data sets. We then generated 500 random samples from each scenario,
and then fitted the three special distributions along with the generalized gamma distribution of the
proposed model to these simulated data sets.

Table 1 presents the bias and mean square errors (MSEs) (×100) of estimated treatment effect,
normal random effect and frailty variance when the data are simulated with 10% censoring rate.
Looking at the estimated treatment effect, all models perform well in estimation, even when the frailty
distributions differ from the correct one. It is interesting to note that the MSEs are the smallest when
Gamma frailty model is being fitted; also, in most cases, the MSEs are the second smallest when the
generalized gamma frailty is being fitted. When the number of clusters increase from 100 to 400, we
notice a trend of the MSEs tending to become smaller. When examining the estimated normal random
effect, models with Weibull and generalized gamma frailty have smaller bias than models with Gamma
and Lognormal frailty. The bias and MSEs are the smallest when the generalized gamma model is
being fitted. There is also a trend that as the number of clusters increases, the bias and MSEs tend to
become smaller. There are noticeable differences in estimating the variance of the frailty distribution
among the model considered. When the fitted model matches the true model, the bias and MSEs are
quite small. However, it is evident that the lognormal frailty model tends to have very large bias while
estimating the variance except for the case when the true frailty distribution is lognormal. This shows
that Weibull-Lognormal-Normal Model is not robust.

Model discrimination is motivated by the fact that the generalized gamma distribution encom-
passes some commonly used distributions as special cases. Choosing the scale and shape parameters
from this broad family of distributions suitably, we can adequately fit an appropriate model to a
data set. The model discrimination study will allow us to investigate how often a true model gets
selected and others get rejected, considering the generality and flexibility of the generalized gamma
distribution. The model discrimination is carried out here based on an information-based criterion.
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In our model selection, we use Akaike’s information criterion (AIC) as the criterion to discriminate
among the candidate models. AIC is given by −2l̂ + 2p, where l̂ is the maximized log-likelihood value
and p is the number of model parameters to be estimated. It is to be noted that the model with the
minimum value of AIC is the model that best describes the data.

Table 1. MSEs and bias (× 100) of estimated treatment effect ξ1, normal random effect
√

d, and frailty variance ν

with 10% censoring rate.

True
Fitted Models

Parameter Gamma Lognormal Weibull GG
Bias MSE Bias MSE Bias MSE Bias MSE

n = 100
Gamma ξ1 = 0.1 0.47 0.19 -0.27 2.15 -0.32 1.70 0.20 1.25

ν = 0.5 -0.65 0.20 65.68 50.46 -7.50 0.97 9.87 9.16√
d = 0.5 3.13 0.49 -0.17 0.71 -0.42 0.54 -0.18 0.42

Lognormal ξ1 = 0.1 1.78 0.20 0.62 1.47 0.79 1.83 0.68 1.47
ν = 0.5 -5.71 1.18 1.58 1.25 -27.59 7.83 -8.47 8.31√
d = 0.5 2.80 0.53 -0.76 0.40 -0.66 0.49 -0.86 0.44

Weibull ξ1 = 0.1 0.44 0.22 0.35 2.59 0.86 2.02 0.66 1.49
ν = 0.5 0.71 0.09 123.45 171.49 3.21 0.80 14.46 15.26√
d = 0.5 3.86 0.81 3.22 0.92 1.39 0.53 1.20 0.46

n = 200
Gamma ξ1 = 0.1 0.58 0.23 0.50 1.20 0.27 0.99 0.11 0.56

ν = 0.5 -0.03 0.08 64.03 44.18 -7.37 0.80 6.40 5.74√
d = 0.5 2.57 0.33 1.00 0.33 0.88 0.24 0.98 0.20

Lognormal ξ1 = 0.1 1.86 0.12 0.25 0.75 -0.29 0.98 0.07 0.85
ν = 0.5 -5.65 1.09 0.21 0.65 -27.90 7.89 -7.84 3.79√
d = 0.5 3.12 0.52 0.04 0.18 0.18 0.25 -0.02 0.23

Weibull ξ1 = 0.1 0.18 0.13 0.69 1.51 1.09 0.90 0.93 0.69
ν = 0.5 0.70 0.03 123.48 165.46 3.05 0.56 8.50 7.64√
d = 0.5 3.52 0.85 3.50 0.71 1.16 0.28 1.23 0.27

n = 400
Gamma ξ1 = 0.1 0.86 0.06 0.13 0.63 0.13 0.52 0.50 0.23

ν = 0.5 0.12 0.06 62.72 41.13 -7.61 0.74 4.92 4.47√
d = 0.5 2.50 0.25 1.57 0.19 0.86 0.13 1.27 0.12

Lognormal ξ1 = 0.1 2.16 0.11 0.52 0.32 0.21 0.46 0.51 0.36
ν = 0.5 -4.75 0.87 0.55 0.31 -27.60 7.67 -4.92 3.02√
d = 0.5 2.52 0.31 0.69 0.08 0.56 0.11 0.66 0.10

Weibull ξ1 = 0.1 0.24 0.09 0.39 0.93 0.47 0.52 0.41 0.36
ν = 0.5 0.73 0.04 124.71 161.58 3.78 0.45 6.53 4.13√
d = 0.5 4.09 1.13 5.67 0.74 1.99 0.24 1.70 0.17

The number of times that the correct model gets chosen and the incorrect models get selected
have been computed.

Table 2 presents the selection rates based on AIC for the cases with 10% censoring rate. From
Table 2, it can be seen that the selection rate of the correct model ranges from 31.2% to 40.0% if the
true distribution is gamma; from 54.4% to 67.8% if the true distribution is lognormal; and from 49.6%
to 62.2% if the true distribution is Weibull. It can also be seen that as the sample size increases, the
selection rates for the correct model also increases, as expect. We observe that the generalized gamma
always has the highest selection rate, which is also close to the correct selection rates. For example,
when the true model is gamma and the sample size is 100, the selection rate of generalized gamma is
47%. It tells us that it contains all 31.2% of the time the correct gamma is selected, and the remaining
15.8% of the time some other member of generalized gamma distribution is selected.

If one is interested in testing the validity of one model within the generalized gamma family,
likelihood ratio test can be performed. But that will only test for the validity of one model, and would
not lead to the problem of selecting the best model.
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Table 2. Selection rates (selection rates of the correct model in bold) based on AIC with 10% censoring rate

True Model Fitted Model
Gamma Lognormal Weibull GG

n = 100
Gamma 0.312 0.202 0.328 0.470
Lognormal 0.078 0.544 0.306 0.616
Weibull 0.262 0.092 0.496 0.646

n = 200
Gamma 0.400 0.138 0.276 0.586
Lognormal 0.048 0.614 0.284 0.668
Weibull 0.290 0.040 0.514 0.670

n = 400
Gamma 0.348 0.102 0.314 0.584
Lognormal 0.062 0.678 0.188 0.750
Weibull 0.192 0.020 0.622 0.788

5. Illustrative Real-Life Data Analyses
In this section, we will illustrate the performance of the proposed model with two real data sets

from the survival analysis literature.

5.1. Asthma Study

Asthma is claimed to be the most common chronic condition in children globally, and it is
associated with accelerated loss of lung function [17]. The data of interest are the recurrent asthma
attacks in children, studied by Duchateau and Janssen [2]. In this study, a clinical trial is conducted
with young children with higher risk of developing asthma to examine the effectiveness of a new
application of an existing anti-allergic drug. There are 232 such children in the study and followed up
to 600 days; they are randomized to either the treatment (new application of the drug) or placebo group
(standard application of the drug). A child can develop more than one asthma attack, so intermittent
events are ordered in time and clustered within one child. A calendar time format is chosen to represent
the data, where the time at-risk for a particular event is the time from the end of the previous event
(asthma attack) to the start of the next event (start of the next asthma attack). During the course of
the study, the start and end dates of different at-risk periods are recorded for one patient, and these
at-risk periods are separated either by an asthmatic event or by a period in which the patient is not
under observation. The goal of the study is then to investigate whether the new application of the
anti-allergic drug has an effect on reducing the frequency and length of the asthma attacks in children.
In Table 3, the data for the first two patients are presented, for example.

Table 3. Recurrent Asthma Attacks Data for the First Two Patients

Patient ID Drug Begin End Status
1 0 0 15 1
1 0 22 90 1
1 0 96 325 1
1 0 329 332 1
1 0 338 369 1
1 0 370 412 1
1 0 418 422 1
1 0 426 474 1
1 0 477 526 1
1 0 530 600 0
2 1 0 180 1
2 1 189 267 1
2 1 273 581 1
2 1 582 600 0
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In this section, various frailty distributions under the proposed generalized gamma frailty and
normal random effects framework are fitted for the time-to-event data introduced above. Our aim is to
determine the impact of different frailty distributions on estimating the treatment effects, and to find a
model that provides the best fit to these data.

We first consider an exponential model by setting ρ = 1 in the model of the form in (18). The
predictor has a form of κij = ξ0 + ξ1Ti + bi, where Ti takes on the value 1 if the patient is in the
treatment group and 0 if in the control group, and bi ∼ N(0, d). We fit the data with the generalized
gamma frailty and normal random effect model and its three special cases: gamma, lognormal and
Weibull frailty and normal random effect models. The obtained results are reported in Table 4. Wald
tests have been carried out to assess the estimated treatment effects and the corresponding results
are presented in Table 5. It is seen that the treatment effect ξ1 are reasonably close to each other.
The generalized gamma, which contains lognormal, has the smallest AIC. This suggests that using
generalized gamma can aviod the use of the wrong model as the generalized gamma could direct us
effectively to the correct model. From Table 5, the p-values appear to be around 0.14, which suggests
that the treatment effect is identifiable in all of the four fitted models.

Table 4. Asthma study without censoring: estimates (standard errors) of parameters from the four fitted frailty
models with normal random effects

Parameter Gamma Lognormal Weibull GG
Intercept ξ0 -3.995(0.501) -4.009(15.681) -4.011(8.922) -4.009(15.681)
Treatment effect ξ1 -0.082(0.084) -0.084(0.084) -0.092(0.085) -0.084(0.084)
Scale parameter λ 0.814(0.404) 0.878(13.771) 0.804(7.170) 0.878(13.771)
Shape parameter α∗ 6.995(0.001) - - -
Shape parameter q - - - 0
Shape parameter σ - 0.462(0.057) 3.693(0.608) 0.462(0.057)
SD random effect

√
d 0.472(0.041) 0.460(0.041) 0.486(0.042) 0.460(0.041)

logL -9314.007 -9310.748 -9317.422 -9310.748
AIC 18638.014 18631.496 18644.843 18631.496

∗ : α = q−2 for Gamma

Table 5. Asthma study without censoring: Wald test results for the assessment of treatment effect

Model Z-value p-value
Exponential-Gamma-Normal -1.0550 0.1457
Exponential-Lognormal-Normal -1.0024 0.1581
Exponential-Weibull-Normal -1.0873 0.1385
Exponential-GG-Normal -1.0547 0.1458

Next, we take censoring into consideration when fitting all four models to the asthma data.
The corresponding results are presented Table 6. In both Tables 4 and 6, it is important to note that
the standard errors of the two parameters, ξ0 and λ, are quite large. This could be the result of
overdispersion being present in the data. In order to address this issue, it would make sense to set the
scale parameter λ to be 1. We then re-fit all four models, and the corresponding results are shown in
Tables 7 and 8, for data without and with censoring, respectively.

Next, we take censoring into consideration when fitting all four models to the asthma data.
The corresponding results are presented Table 6. In both Tables 4 and 6, it is important to note that
the standard errors of the two parameters, ξ0 and λ, are quite large. This could be the result of
overdispersion being present in the data. In order to address this issue, it would make sense to set the
scale parameter λ to be 1. We then re-fit all four models, and the corresponding results are shown in
Tables 7 and 8, for data without and with censoring, respectively.
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Table 6. Asthma study with censoring: estimates (standard errors) of parameters from the four fitted frailty
models with normal random effects

Parameter Gamma Lognormal Weibull GG
Intercept ξ0 -4.021(0.070) -3.988(13.552) -4.033(23.971) -3.988(13.552)
Treatment effect ξ1 -0.112(0.099) -0.108(0.099) -0.127(0.101) -0.108(0.099)
Scale parameter λ 0.787(0.0001) 0.822(11.140) 0.780(18.705) 0.822(11.140)
Shape parameter α∗ 3.836(0.001) - - -
Shape parameter q - - - 0
Shape parameter σ - 0.630(0.058) 2.310(0.256) 0.630(0.058)
SD random effect

√
d 0.567(0.001) 0.560(0.050) 0.561(0.051) 0.5601(0.050)

logL -8326.454 -8319.916 -8328.188 -8319.916
AIC 16662.908 16649.832 16666.376 16649.832

∗ : α = q−2 for Gamma

Table 7. Asthma study without censoring: estimates (standard errors) of parameters from the four fitted frailty
models with normal random effects; refitted with scale parameter λ = 1

Parameter Gamma Lognormal Weibull GG
Intercept ξ0 -4.207(0.058) -4.244(0.069) -4.158(0.077) -4.197(0.065)
Treatment effect ξ1 -0.092(0.082) -0.081(0.084) -0.097(0.084) -0.088(0.086)
Shape parameter α∗ 7.839(0.0002) - - -
Shape parameter q - - - -0.510(0.001)
Shape parameter σ - 3.715(0.609) 0.440(0.059) 0.461(0.009)
SD random effect

√
d 0.473(0.0004) 0.482(0.040) 0.461(0.040) 0.473(0.043)

logL -9313.029 -9315.605 -9314.543 -9312.541
AIC 18634.058 18639.210 18637.086 18635.082

∗ : α = q−2 for Gamma

Table 8. Asthma study with censoring: estimates (standard errors) of parameters from the four fitted frailty
models with normal random effects; refitted with scale parameter λ = 1

Parameter Gamma Lognormal Weibull GG
Intercept ξ0 -4.258(0.089) -4.184(0.090) -4.282(0.082) -4.184(0.090)
Treatment effect ξ1 -0.112(0.113) -0.108(0.099) -0.127(0.101) -0.108(0.099)
Shape parameter α∗ 3.5634(0.0016) - - -
Shape parameter q - - - 0
Shape parameter σ - 0.630(0.058) 2.310(0.256) 0.630(0.058)
SD random effect

√
d 0.562(0.007) 0.560(0.050) 0.561(0.051) 0.560(0.050)

logL -8324.160 -8319.916 -8328.188 -8319.916
AIC 16656.320 16647.832 16664.376 16647.832

∗ : α = q−2 for Gamma

From Tables 7 and 8, it is evident that the standard errors are now lower and reasonable. Wald
tests have again been performed to test the significance of the estimated treatment effects from all of
the models based on the results in Tables 7 and 8. Wald tests suggest that the treatment effects are
still identifiable in models both with and without censoring. From Table 9, we observe that estimated
treatment effects and the standard deviation of the normal random effects are similar in the four
models.
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Table 9. Asthma study: Wald test results for the assessment of treatment effect; refitted with scale parameter λ = 1

Model Z-value p-value
Exponential-Gamma-Normal without censoring -1.1262 0.1300
Exponential-Lognormal-Normal without censoring -1.1567 0.1237
Exponential-Weibull-Normal without censoring -0.9667 0.1669
Exponential-GG-Normal without censoring -1.0315 0.1512
Exponential-Gamma-Normal with censoring -0.9885 0.1615
Exponential-Lognormal-Normal with censoring -1.0983 0.1360
Exponential-Weibull-Normal with censoring -1.2637 0.1032
Exponential-GG-Normal with censoring -1.1079 0.1340

5.2. Bladder Study

The model proposed here is further illustrated by the bladder dataset, which is available from
survival package in R [18,19]. The study was conducted by the Veterans Administration Cooperative
Urological Rsearch Group. This study involved patients with superficial bladder tumors at the start
of the trial. Following the transurethral removal of tumors, the patients were randomly treated by
placebo, thiotepa or pyridoxine. Most patients experienced repeated tumor recurrences and new
tumors were removed at each follow-up. The recurrence times of tumor were recorded. The subset
of 85 patients who were assigned to either thiotepa or placebo has been used for analysis here. The
exponential model taking ρ = 1 with generalized gamma frailty and its special cases are fitted with
the data. The corresponding results are presented in Table 10. It is observed that the model with
generalized gamma frailty has the smallest AIC, which suggests once again the usefulness of the
generalized gamma frailty in picking the best model in a flexible and efficient way.

Table 10. Bladder study: estimates (standard errors) of parameters from the four fitted frailty models with normal
random effects with censoring

Parameter Gamma Lognormal Weibull GG
Treatment effect ξ1 -0.349(0.125) -0.316(0.323) -0.533(0.337) -0.533(0.337)
Scale parameter λ 0.187(0.012) 0.051(0.028) 0.072(0.037)) 0.072(0.037)
Shape parameter α∗ 0.528(0.002) - - -
Shape parameter q - - - -
Shape parameter σ - 0.132(1.010) 4.307(8.419) 4.307(8.419)
SD random effect

√
d 0.240(0.013) 1.069(0.200) 1.057(0.206) 1.057(0.206)

logL -449.5437 -441.8936 -441.6807 -441.6807
AIC 891.7872 891.3614 891.3614

∗ : α = q−2 for Gamma

6. Discussion and Conclusions
Building on the work of Molenberghs et al. [1], in this article, we have extended the combined

model of gamma frailty and normal random-effects for repeated survival data by using generalized
gamma frailty distribution. Particular attention has been given to Weibull models for overdispersed,
clustered time-to-event outcomes, with generalized gamma and normal random effects. Censoring
has also been accommodated in the data. Model selection and goodness-of-fit are critical issues in
frailty models for time-to-event data. Due to the latent nature of frailties in modelling, it is often
challenging to determine an appropriate frailty distribution for a given data set. Balakrishnan and
Peng [7] proposed generalized gamma distribution in a frailty model context thereby significantly
improving the fit of the frailty model to the observed data. The generalized gamma distribution is a
flexible frailty distribution with two parameters besides the scale parameter, and it includes gamma,
lognormal and Weibull as special cases. The integration of the generalized gamma distribution to the
combined model can therefore provide more flexibility for modelling clustered time-to-event data.

The combined Weibull-gamma-normal model proposed by Molenberghs et al. [1] enjoys the
so-called strong conjugacy property, and closed-form expressions for the marginal distribution can
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be derived conveniently and then made use of subsequently in the maximum likelihood estimation.
The computational challenge faced in considering the generalized gamma distribution as the frailty
distribution is handled conveniently by using Monte Carlo approximation for the integrals involved
in the likelihood function. The performance of the proposed model has been evaluated through an
extensive simulation study. The estimates of treatment effect and normal random effect coefficients
are seen to be accurate. As the sample size increases, the bias and MSEs of the estimates decrease. In
addition, we observe that a lower censoring rate leads to a more accurate estimation of the parameters
in the proposed model. A model discrimination is also carried out between Weibull-generalized
gamma-normal model and its three special cases: Weibull-gamma-normal, Weibull-lognormal-normal,
and Weibull-Weibull-normal model. Data sets are simulated from the four models, and the four
candidate models are then fitted to each data set. The model selection has been done based on AIC or
the value of the maximized log-likelihood function. From our analysis, we observe that the selection
rates of the correct model increase as the sample size increases. Finally, a recurrent asthma attack
in children data set and a recurrent bladder data set are used to illustrate the proposed Weibull-
generalized gamma-normal random effect model. The proposed model is sufficient and flexible
enough to provide the best fit for the recurrent asthma data set and the recurrent bladder data set.

In our model formulation, the generalized gamma and normal random effects capture overdisper-
sion and between-subject association. Although the proposed model is flexible and widely applicable
for univariate time-to-event outcomes, it is possible to generalize to bivariate or multilevel repeated
time-to-event settings. Furthermore, regarding censoring, we have confined the analysis to right-
censored outcomes. However, the methoodology can be extended with no trouble to left-censoring
and interval censoring. All computations have been implemented in R. Readers who are interested in
the proposed model can request a copy of all datasets and software codes from the authors.
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