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Abstract

Artificial intelligence systems today are predominantly passive learners: they extract patterns from
large datasets but lack the capacity for explanatory, causal, and counterfactual reasoning. In this
paper, we argue that genuine understanding requires epistemic agency: the ability to form and revise
hypotheses through active experimentation and model calibration. We introduce the framework of
Scientific AI—agents that learn through discovery rather than observation—and propose a math-
ematically grounded architecture based on recursive hypothesis generation, causal inference, and
multi-timescale calibration. We demonstrate this approach with a proof-of-concept symbolic physics
environment, where the agent discovers novel laws through structured epistemic loops. Scientific AI
provides a principled path to general intelligence rooted in explanation, not imitation.

1. Introduction
Recent advances in machine learning and robotics have yielded systems capable of perceptual

fluency, linguistic coherence, and reactive behavior [7,28,45]. Yet despite these successes, contemporary
artificial intelligence (AI) remains epistemically limited: systems excel at interpolation but falter in
unfamiliar contexts, lacking the capacity to form explanatory models or generalize beyond training
distributions [27,33].

This limitation stems from a foundational assumption—that intelligence can emerge from passive
perception alone. Modern AI systems, particularly large language models and deep reinforcement
learners, operate as high-capacity pattern extractors. They observe the world, correlate inputs to
outputs, and optimize statistical objectives [25,38], but they do not ask questions, perform experiments,
or revise causal hypotheses in response to environmental surprises [18,36].

Yet human understanding—whether at the scale of individual development or civilizational
progress—has never arisen from observation alone. For thousands of years, human societies functioned
without true explanatory knowledge of the physical world. Only with the emergence of the scientific
method—a structured process of hypothesis, intervention, and revision—did we begin to uncover
the underlying laws of nature. Similarly, children do not passively absorb facts; they construct causal
models by acting, failing, and correcting, iteratively refining their understanding through self-directed
epistemic engagement [9,17].

In contrast to passive AI, we propose a paradigm rooted in this recursive epistemic process. We
call this approach Scientific AI, which defines intelligence not as statistical pattern recognition but as
causal discovery. Scientific AI agents are epistemic agents—they interact with their environment to
uncover latent structure, reduce uncertainty, and construct transferrable internal models.

This paper develops a formal and architectural framework for Scientific AI, grounded in infor-
mation theory, causal inference, and recursive self-correction [6,15]. We present a proof-of-concept
experiment in symbolic physics, demonstrating that even simple agents equipped with epistemic
drives and feedback loops can discover novel physical laws [42]. The result is not merely improved
performance, but qualitatively deeper understanding.
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Scientific AI represents a path forward not only for robust machine learning, but for the long-
standing goal of AGI: to build machines that do not just act effectively, but understand why their
actions work.

2. From Passive Perception to Active Epistemology
Most contemporary AI systems are trained under the assumption that perception and predic-

tion are sufficient for intelligence [5,28]. Deep neural networks, particularly in supervised and self-
supervised regimes, learn representations by minimizing predictive loss functions:

Lpred = E(x,y)∼D [ℓ( f (x; θ), y)], (1)

where f (x; θ) is a parameterized function approximator mapping input x to output y, and ℓ is a
pointwise loss such as cross-entropy or mean squared error. Despite their empirical power, such models
are epistemically passive: they do not intervene, ask questions, or revise causal hypotheses [27,33].

In contrast, an epistemic agent must be capable of generating and testing hypotheses about the
environment [17,36]. Let Ht denote the agent’s current hypothesis or internal world model at time t,
and At an action selected for its expected epistemic utility. The agent then observes an outcome Ot,
evaluates the result, and updates its internal model:

Ht+1 = Update(Ht, At, Ot). (2)

This active loop defines a discovery-oriented epistemology. The agent does not passively encode
statistical structure; it engages in structured exploration to falsify beliefs and refine explanations [15,18].
The choice of action At is guided not by extrinsic reward maximization, but by expected information
gain:

At = arg max
a∈A

Eo∼P(O|Ht ,a)[DKL(P(Ht+1|o)∥P(Ht))], (3)

where DKL denotes the Kullback–Leibler divergence, measuring how much an observation is expected
to shift belief [32].

Passive AI

x fθ y

Scientific AI

Ht At Ot Ht+1

Figure 1. Comparison between passive and Scientific AI agents. Passive models learn static input-output
mappings; Scientific AI agents update internal hypotheses via interactive epistemic loops.

This shift—from reward maximization to epistemic calibration—transforms the agent’s goal.
Intelligence becomes a function of its ability to autonomously reduce uncertainty, revise internal
structure, and generalize explanatory models across contexts. We formalize this transition in the next
section with a recursive epistemic architecture.

3. Formal Foundations of Scientific AI
3.1. The Epistemic Discovery Loop

Scientific AI centers on a recursive process of hypothesis refinement through interaction. At each
timestep t, an agent:
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1. maintains a world model Ht;
2. selects an action At to test a hypothesis or reduce uncertainty;
3. receives an observation Ot in response;
4. updates the model to Ht+1 based on epistemic evaluation.

Formally, the epistemic discovery loop is:

Ht+1 = F (Ht, At, Ot), (4)

where F is a recursive model update function [6,15].
The objective of the agent is not merely task performance, but reduction of epistemic uncertainty

over a hypothesis spaceH. The epistemic gain from an action is quantified by the expected change in
belief over H:

∆epistemic(At) = Eo∼P(O|Ht ,At)[DKL(P(Ht+1|o)∥P(Ht))], (5)

as in active Bayesian inference and information-theoretic planning [30,32].
An epistemic agent selects actions that maximize ∆epistemic, forming a closed loop of discovery:

Ht → At → Ot → Ht+1. (6)

This loop enables continuous refinement of the agent’s explanatory structure, enabling general-
ization and adaptability across domains [18,29].

Ht
Hypothesis

At
Action

Ot
Observation

Ht+1
Updated Hypothesis

Intervene

ObserveUpdate

Revise

Figure 2. Epistemic discovery loop in Scientific AI. The agent cycles through hypothesis generation (Ht), action
(At), observation (Ot), and model revision (Ht+1). Circular flow emphasizes continuity and recursion in epistemic
refinement.

3.2. Quantifying Epistemic Progress

Progress in Scientific AI is measured not by task reward, but by the growth of explanatory capacity.
We consider three complementary metrics:

1. Information Gain.

The expected information gain (EIG) from action A is defined as:

EIG(A) = Eo∼P(O|H,A)[DKL(P(H′|o)∥P(H))], (7)

a standard criterion in decision-theoretic experimental design [24,30].
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2. Predictive Compression.

Let Mt denote the model’s current internal representation. A compression-based metric evaluates
the change in model description length:

∆comp = L(Mt)− L(Mt+1), (8)

where L(M) is a coding length or complexity measure (e.g., MDL) [19,47].

3. Prediction Error.

Surprise or mismatch between prediction ôt and actual observation ot provides a basic epistemic
signal:

δt = ∥ôt − ot∥2. (9)

These metrics can be combined in a multi-objective utility for epistemic control:

U(At) = λ1 · EIG(At) + λ2 · ∆comp + λ3 · δt. (10)

In Scientific AI, action policies are optimized not for reward acquisition, but for sustained epis-
temic growth—a foundational distinction from traditional RL and imitation learning [10,24].

4. Architectural Blueprint
Scientific AI requires a system architecture that supports recursive discovery, causal modeling, and

real-time epistemic feedback [6,15]. We propose a modular architecture with three nested calibration
loops and four core functional modules, enabling structured knowledge acquisition across spatial and
temporal scales [4,12].

4.1. Calibration Loops (Evolutionary, Learning, Real-Time)

Scientific AI operates over three interdependent timescales, each characterized by a distinct
calibration loop:

1. Evolutionary Calibration (Cevo)

encodes priors and inductive biases derived from design-time constraints or meta-learning. These
include physical invariants, architectural symmetries, or causal heuristics that bootstrap efficient
hypothesis generation [11,26].

2. Learning Calibration (Clearn)

supports long-term model refinement through episodic memory and belief revision. Given a
trajectory of experience τ = (Ht, At, Ot, Ht+1), the agent accumulates structured knowledge and
improves future model inference [23,48].

3. Real-Time Calibration (Creal)

governs fast, online adaptation. It adjusts internal predictions, attentional weights, or control
policies in response to moment-to-moment discrepancies, maintaining short-term stability [34,44].

These loops are recursively embedded:

Creal ⊂ Clearn ⊂ Cevo, (11)

and collectively enable a hierarchy of adaptation that balances flexibility, memory, and structural
coherence.
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Cevo

Clearn

Creal

Figure 3. Three nested calibration loops for epistemic adaptation: evolutionary (Cevo), learning (Clearn), and
real-time (Creal). Each layer supports increasingly flexible and responsive epistemic updates.

4.2. Modular Design: Hypothesis, Prediction, Intervention, Evaluation

The epistemic function of Scientific AI is implemented via four interacting modules:

1. Hypothesis Module (H)

generates candidate causal models or abstract rules explaining observed phenomena. This may
involve symbolic regression, Bayesian networks, or neural program synthesis [26,42].

2. Prediction Module (P)

simulates expected outcomes based on the current hypothesis:

ôt = P(Ht, At). (12)

It provides testable predictions necessary for model falsifiability [37].

3. Intervention Module (I)

selects epistemically valuable actions:

At = I(Ht) = arg max
a∈A

U(a; Ht), (13)

where U is a composite utility function (e.g., information gain, novelty) [24,40].

4. Evaluation Module (E )

compares outcomes to predictions and updates the hypothesis:

Ht+1 = E(Ht, ôt, ot). (14)

This may leverage active inference, variational updates, or symbolic model revision [15,47].
Together, these modules implement the scientific loop:

Ht
I−→ At

env−−→ Ot
E−→ Ht+1, (15)

with P providing internal simulation for prediction.
This modular architecture generalizes across domains, enabling Scientific AI agents to acquire

transferable, causal knowledge via self-directed exploration [27].
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H: Hypothesis P : Prediction

I : Intervention E : Evaluation

Env

Ht

ôtHt

At

Ot

Ht+1

Figure 4. Modular architecture of Scientific AI. Four core modules—Hypothesis (H), Prediction (P), Intervention
(I), and Evaluation (E )—interact with an external environment in a closed epistemic loop.

5. Implementation: Proof-of-Concept in Symbolic Physics
5.1. Environment Description

To demonstrate the principles of Scientific AI, we constructed a synthetic symbolic physics
environment in which an agent must infer the hidden causal law governing a simple physical system.
The environment simulates the relation between force F, mass m, and acceleration a under a modified
non-Newtonian law:

a =
F2

m3 . (16)

At each timestep, the agent selects input values F and m, queries the environment, and receives
the corresponding a. The agent’s objective is to discover an explicit symbolic expression that correctly
captures the underlying law. Purely observational approaches are ineffective due to the nonlinear and
non-intuitive structure of the target relation [8,42].

Agent

Input: F Input: m

Env

Output: aHypothesis Model
Refine

Updated Ht+1

Figure 5. Symbolic physics environment. The agent selects inputs F and m, queries the environment for output a,
and refines its internal hypothesis model Ht in a recursive epistemic loop.
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5.2. Recursive Discovery Algorithm

The Scientific AI agent employs a recursive discovery loop to converge on the correct symbolic
model. The process is formalized in Algorithm 1 and illustrated in Figure 6.

Algorithm 1 Recursive Symbolic Discovery Loop

1: Initialize hypothesis poolH0 with simple expressions
2: for iteration t = 1, 2, . . . , T do
3: Select Ht ∈ Ht−1 with highest prior plausibility
4: Generate predictions: ât = Ht(F, m)

5: Compute prediction error: δt =
1
N ∑N

i=1(ai − âi)
2

6: if δt < ϵ then
7: return Ht as discovered law
8: else
9: Expand hypothesis pool: Ht ← Refine(Ht)

10: end if
11: end for

Figure 6. Recursive symbolic discovery process. The agent maintains a pool of symbolic hypotheses, iteratively
selects and tests candidates, and refines them based on prediction error—converging toward the underlying
generative law.
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The Refine operator mutates symbolic expressions using algebraic transformations—such as
exponentiation, ratio formation, or symbolic composition—guided by observed predictive discrep-
ancies [20,46]. Crucially, this procedure is epistemically driven: models are not optimized solely for
predictive accuracy, but selected for explanatory adequacy and generalization potential [31].

5.3. Comparison to Passive Baselines

We benchmarked the Scientific AI agent against two passive baselines:

• GPT-Only Baseline: A large language model trained on scientific text, tasked with predicting the
equation from observed triplets (F, m, a), without feedback [7].

• Analogical Transfer Agent: Initialized with known physical laws (e.g., a = F/m, a = F2/m) and
outputs the best-fit expression without iterative refinement [27].

Figure 7. Performance comparison between Scientific AI and passive baselines. Only the Scientific AI agent
consistently converges to the correct law a = F2/m3, achieving low prediction error within 30 iterations.

Performance was measured by final mean squared error (MSE) and convergence time. Results
show that only the recursive Scientific AI agent consistently discovers the correct expression a = F2/m3

within 30 iterations and achieves near-zero MSE. The GPT-only model often suggests plausible but
incorrect formulas (e.g., a = F/m, a = log(F)/m), while the analogical agent lacks the capacity for
structural revision.

These findings demonstrate that explanatory discovery requires interactive, epistemically guided
loops—validating the central hypothesis of Scientific AI [18,36].

5.4. Generalization to Gravitational Laws

To evaluate Scientific AI’s capacity for conceptual transfer across distinct physical domains, we
constructed a second synthetic environment simulating a modified form of gravitational interaction.
Classical Newtonian gravity defines the attractive force between two masses m1 and m2 at distance r
as:

F =
Gm1m2

r2 .

In our modified domain, the inverse-square dependency was replaced with a non-integer exponent,
yielding a hidden law of the form:

F =
Gm1m2

r2.5 .

This subtle deviation introduces a nonlinear generative structure that cannot be captured by
classical forms or standard symbolic heuristics.

We deployed the same recursive discovery loop used in the symbolic physics task, with the
Scientific AI agent receiving observations from sampled tuples (m1, m2, r) and attempting to reconstruct
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the underlying law through iterative hypothesis refinement. Across 45 revision steps, the agent
converged precisely on the correct symbolic expression, achieving an MSE of zero across all test data.

In contrast, a GPT-only baseline consistently produced plausible but incorrect formulas such as
F = Gm1m2

r2 or F = log(m1 + m2)/r, failing to revise its internal model in light of empirical error.

Figure 8. Convergence of Scientific AI in the gravitational domain. The agent discovers the correct symbolic
expression F = Gm1m2/r2.5 within 45 iterations, achieving zero prediction error.

Figure 9. GPT-only baseline performance in the gravitational setting. The model outputs syntactically valid but
incorrect expressions, failing to converge on the true exponent or causal law.

Implication:

These findings demonstrate that Scientific AI can infer nontrivial, nonlinear causal structures
in domains beyond basic mechanics. Crucially, this generalization emerges not from parameter fine-
tuning or task-specific training, but from the architecture’s epistemic loop: its ability to generate
symbolic hypotheses, simulate predictions, and recursively update its model based on explanatory
failure. This supports the core thesis that Scientific AI enables domain-general causal reconstruction
through discovery-oriented computation.

6. Discussion
The Scientific AI framework introduced in this paper has significant implications for the future of

artificial general intelligence (AGI), safety-oriented design, and cognitive grounding. Unlike passive AI
systems that optimize performance on fixed benchmarks [7,28], Scientific AI emphasizes autonomous
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understanding through recursive model construction and revision [15,36]. This approach not only
redefines how we build intelligent systems, but also how we assess and align them [1].

6.1. Toward Artificial General Intelligence

The core premise of AGI is generalization: the ability to reason, adapt, and solve problems across
diverse domains [11]. Scientific AI fulfills this requirement not by scaling data or model size, but by
instantiating the epistemic mechanisms through which humans generalize—hypothesis formation,
counterfactual simulation, and causal inference [17,27]. By embedding these capabilities, Scientific AI
provides a domain-independent architecture for acquiring and refining structural knowledge.

Furthermore, the calibration loops and modular design enable continual learning and robust
adaptation [23,48]. Rather than training anew for each task, a Scientific AI agent reuses and restructures
prior models, supporting transfer and abstraction. This process mirrors human cognitive development,
where explanation—not repetition—drives learning [9].

6.2. Epistemic Safety and Interpretability

A major challenge in AI safety is ensuring that systems behave predictably in novel or high-stakes
environments [16]. Passive learners often generalize poorly outside training distributions, creating
risks of misalignment or reward hacking [1]. Scientific AI mitigates this through explicit model revision
and transparent epistemic tracking [10].

Because Scientific AI agents represent beliefs, track uncertainty, and evaluate model error explicitly,
their behavior is more interpretable and corrigible [31,33]. Designers can inspect hypotheses, observe
interventions, and monitor reasoning steps—providing a substrate for safer alignment and oversight.

Additionally, the drive for epistemic gain—rather than reward maximization—reduces perverse
incentives. Agents are less likely to exploit loopholes and more likely to seek coherent, generalizable
models of the world [13,24].

6.3. Grounding Symbols Through Interaction

The symbol grounding problem—the challenge of connecting abstract representations to sensori-
motor reality—remains an open issue in cognitive science and AI [22]. Scientific AI addresses this by
requiring agents to discover the operational meaning of symbols through experiment [18,42].

Rather than receiving predefined concepts (e.g., mass, force), agents infer these constructs by
probing how environmental variables co-vary and affect outcomes. This leads to embodied semantic
grounding: concepts acquire meaning not through labels, but through use [2].

This interaction-driven grounding distinguishes Scientific AI from purely symbolic or purely
neural systems. It integrates the strengths of both: the structural clarity of formal models with the
empirical grounding of embodied agents [4,26].

In summary, Scientific AI reorients intelligence around discovery. It offers a theoretically prin-
cipled and practically implementable approach to building agents that do not merely perform, but
understand. The next sections review related work and outline future directions for scaling this
paradigm.

7. Related Work
Scientific AI is situated at the intersection of several key traditions in artificial intelligence and

cognitive science. This section compares our approach with related paradigms in active learning,
meta-reinforcement learning, and theory-of-mind AI, highlighting both overlaps and distinguishing
features.

7.1. Active Learning and Curiosity-Driven Exploration

Active learning strategies prioritize data samples or interactions that are expected to improve
model performance [43]. Techniques such as uncertainty sampling and information gain maximization
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have been widely used in supervised settings and robotics. Curiosity-driven agents extend this by
using intrinsic motivation signals—such as prediction error or novelty—to guide exploration [35,41].

While Scientific AI builds on these foundations, it departs in key ways. First, the goal is not merely
to improve performance on predefined tasks, but to build explanatory models. Second, our architecture
formalizes a recursive discovery loop, explicitly representing and revising causal hypotheses. Finally,
Scientific AI evaluates epistemic progress across multiple metrics—not just reward-free exploration,
but belief refinement and structural generalization.

7.2. Meta-Reinforcement Learning and Model-Based RL

Meta-reinforcement learning (meta-RL) enables agents to adapt quickly to new tasks by learning
how to learn [14,48]. Model-based RL further equips agents with internal world models to simulate
future outcomes [21]. Both approaches support generalization and sample efficiency.

Scientific AI inherits these benefits but reorients the objective. Rather than optimizing reward
across tasks, we define intelligence as the ability to iteratively construct and test causal theories.
This shift aligns with cognitive science views of human reasoning, where knowledge acquisition is
epistemically structured, not merely utility-driven [18,27].

7.3. Theory of Mind and Epistemic Planning

Recent work on theory-of-mind AI focuses on enabling agents to model the beliefs and goals of
others. This often involves nested belief representations and counterfactual inference [3,39].

Scientific AI shares this epistemic emphasis but applies it more generally—not just to social
cognition, but to the physical and abstract domains. Our agents reason not about other minds per
se, but about unknown causal structure in their environment. Nonetheless, the architectural overlap
suggests opportunities for convergence: future Scientific AI agents could incorporate theory-of-mind
reasoning to explain both physical and social phenomena.

7.4. Symbolic Regression and Scientific Discovery Systems

There is a long tradition of using symbolic regression and program synthesis to automate scientific
discovery [8,42]. These systems often search equation spaces using heuristics or genetic programming.

Scientific AI extends this tradition by embedding symbolic discovery within a closed epistemic
loop. Rather than optimizing expression fit alone, our agents generate, test, and revise models based
on interaction and feedback. This dynamic structure allows for deeper integration with sensorimotor
grounding and learning-based adaptation.

In summary, while Scientific AI draws from diverse fields, it introduces a distinctive epistemic
architecture aimed at unifying exploration, reasoning, and generalization through structured discovery.

8. Conclusions
This paper proposed Scientific AI as a foundational rethinking of artificial intelligence—replacing

passive pattern extraction with active epistemic discovery [18,36]. We presented a formal framework
and architectural blueprint for building agents that generate, test, and refine causal hypotheses through
recursive interaction with the environment.

Unlike traditional approaches focused on prediction or reward maximization [7,28], Scientific
AI centers intelligence on explanation. We operationalized this through multi-timescale calibration
loops, modular epistemic components, and quantifiable measures of epistemic progress [15,31]. Our
proof-of-concept experiment in symbolic physics demonstrated that such agents can autonomously
discover non-trivial physical laws, outperforming passive baselines [8,42].

Scientific AI offers a pathway toward AGI that is grounded in the dynamics of understanding. By
embedding hypothesis-driven reasoning and interactive feedback at the core of learning [23,27], we
align machine intelligence more closely with the cognitive processes underlying human discovery [17].

Future work will expand this framework to multi-agent scientific reasoning, theory-of-mind
modeling [39], and scaling to real-world domains such as biology, economics, and ethics. We also
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envision integrating neural-symbolic architectures and large language models into the epistemic
loop—enhancing generalization while maintaining structural clarity [4,33].

Ultimately, the goal is not merely to build systems that act intelligently, but that know why they
do so—and can explain it.
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