
Article

Not peer-reviewed version

Dark Energy Might Not Exist-The Accelerated Expansion of the Universe Might Be a Direct Result of Correcting Gravity

Jian'an Wang *

Posted Date: 15 July 2025

doi: 10.20944/preprints2025071132.v1

Keywords: dark energy; the accelerated expansion of the universe; modified gravity; general relativity; Newton's law of universal gravitation

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Dark Energy Might Not Exist—The Accelerated Expansion of the Universe Might Be a Direct Result of Correcting Gravity

Jian'an Wang

Department of Physics, Shenzhen University, Shenzhen, China; wja@szu.edu.cn

Abstract

The "universe" we observe is actually a flat rotating cluster of galaxy clusters within it. Under the framework of the modified gravity theory, the universal gravitational constant G decreases as the universe expands. Under the effect of inertial centrifugal force, the radius of this observed rotating "universe" (galaxy cluster) increases at an accelerated rate. The so-called accelerated expansion of the "universe" is not driven by dark energy; dark energy does not exist.

Keywords: dark energy; the accelerated expansion of the universe; modified gravity; general relativity; Newton's law of universal gravitation

Introduction

Dark energy and dark matter are likened to two dark clouds in the sky of physics in the 21st century. The emergence of the dark energy problem stems from the contradiction between human observations of the expansion of the universe and theoretical derivations. Its core lies in explaining why the universe is accelerating its expansion. The following is a review of its background, key evidence and theoretical predicaments:

1. Observation background and the proposal of problems

A. The discovery of Cosmic expansion:

At the beginning of the 20th century, Hubble, through observing the redshift of galaxies, discovered that the universe was expanding and that the retrogressive speed of galaxies was proportional to their distance (Hubble's Law) [1]. At this time, the expansion of the universe is regarded as a deceleration process dominated by gravity.

B. The unexpected discovery of the accelerating expansion of the universe:

In 1998, Adam Ries' team and Thor Palmat's team, through observing distant Type Ia supernovae, discovered that the expansion rate of the universe was not slowing down as expected due to gravity, but was accelerating. [2,3] This phenomenon cannot be explained by known ordinary matter and dark matter, suggesting the existence of an unknown energy with repulsive properties - dark energy.

2. The main characteristics and theoretical hypotheses of dark energy

A. Basic characteristics:

-Dark energy is a kind of energy that fills space and has a negative pressure intensity. Over long distances, it manifests as an anti-gravitational effect, causing the universe to expand at an accelerated rate.

-It accounts for 68.3% to 73% of the total mass energy of the universe [4,5], and is almost evenly distributed or does not clump together.

B. Mainstream theoretical models:

-Cosmological constant (Λ) : The concept of "vacuum energy" proposed by Einstein in 1917 has been reapplied to explain dark energy. This model assumes that dark energy is an attribute of space itself and has a constant energy density [6,7].

-Scalar field model: It holds that dark energy is a dynamic energy field (such as the fifth element or modal space), and its energy density varies with time.

3. The conflict between theory and observation

- A. The vacuum energy density predicted by quantum field theory is 120 orders of magnitude higher than the observed value, creating a huge contradiction [8,9].
- B. The cosmic coincidence problem: Why can the vacuum precisely dominate expansion during the current cosmic period?
- C. Changes in the properties of dark energy: In 2024, the DESI team discovered that the influence of dark energy might weaken over time, which is inconsistent with the assumption of the constancy of cosmological constants [10].

Overall, the dark energy problem stems from the need for observations and theoretical explanations of the accelerating expansion of the universe. At its core, it is one of the fundamental unsolved problems in physics.

Recent observations by the James Webb Space Telescope (JWST) have found that approximately two-thirds of galaxies rotate in a consistent direction rather than randomly [11]. According to the principle of the reference frame of motion [12], rotation must exist relative to a certain physical reference frame. If the "universe" as a whole is rotating, then its reference frame must be related to a more macroscopic framework (the universe), which implies that the "universe" we observe is actually just a cluster of galaxy clusters within the universe.

If we assume that the "universe" we observe is merely a rotating cluster of galaxy clusters within the universe and that the universe is expanding at a decelerating rate, then based on the modified theory of gravity, can we conclude that the rotating "universe" or cluster of galaxy clusters we observe is expanding at an accelerating rate? In the article "The Modification of Newton's Gravitational Law and its Application in the Study of Dark Matter and Black Hole" [13], the author modified Newton's formula of universal gravitation by using the principle of superposition of spatial energy fields and concluded that the gravitational constant G would decrease as the universe expanded (Formula 2.15). The author conjectures that, as the universe expands and the gravitational constant G decreases, all rotating galaxies and rotating clusters of galaxies in the universe should undergo accelerated expansion.

The theoretical derivation that as the universal gravitational constant G continuously decreases due to the expansion of the universe, all rotating galaxies and galaxy clusters will accelerate their expansion

According to the modified theory of gravity [13] (Formulas 2.15-2.18 and 3.18-3.21), the radius of a rotating galaxy will increase at an accelerated rate (that is, $\frac{d^2R}{dt^2} > 0$). The following is a derivation strictly based on the original theory:

Key theoretical basis

1. From the evolution of the gravitational constant G [13] (Formula 2.15),

$$G = A \sum_{i=1}^n \frac{M_i}{r_i^2} \quad (1)$$

it can be known that: the universe expands \rightarrow the distance r_i between celestial bodies increases $\rightarrow G \propto \frac{1}{r_i^2}$ monotonically decreases. In formula (1): A is a constant, M_i is the mass of any object in the universe, r_i is the distance between the center of mass of that object and the center of mass of a celestial body with mass, and the sum sign is the sum of all celestial bodies in the universe.

2. From the relationship between stellar velocity and radius [13] (Equations 3.18-3.21) (when $0 < r < R$)

$$v^2 = r \cdot E_2(r) \quad (2)$$

$$E_2(r) \propto \frac{1}{r} \quad (3)$$

Observation requirements (flat rotation curve) $\rightarrow v^2 \approx \text{const}$ must be met.

3. Prove that the radius increases at an accelerated rate

Step 1: Establish the relationship between the radius $R(t)$ and the cosmic scale factor $a(t)$. The expansion of the universe scales all distances proportionally:

$$r_i(t) = r_{i,0} \cdot a(t) \quad (4)$$

In Formula (4), $r_i(t)$ is the distance between any two celestial bodies at time t , $r_{i,0}$ is the initial distance between these two celestial bodies, and $a(t)$ is the scale factor, $a(t) > 1$. Substituting Equation (4) into the expression of G (Equation (1)) gives:

$$G(t) = A \sum_{i=1}^n \frac{M_i}{[r_i(t)]^2} = \frac{1}{a^2(t)} \sum_{i=1}^n \frac{M_i}{r_{i,0}^2} \propto \frac{1}{a^2(t)} \quad (5)$$

From [13] (Equation 2.16)

$$E_2(r) = G_0 \sum_{i=1}^n \frac{M_i}{r_i^2} \propto G = A \sum_{i=1}^n \frac{M_i}{r_i^2} \quad (6)$$

and $v^2 = r \cdot E_2(r) = \text{const}$ (observation constraint), it can be obtained that:

$$v^2 \propto r(t) \cdot G(t) \propto r(t) \cdot \frac{1}{a^2(t)} = \text{constant} \quad (7)$$

It is solved from Formula (7) that:

$$r(t) \propto a^2(t) \quad (8)$$

It is concluded from Equation (8) that:

$$R(t) = k a^2(t) \quad (9)$$

In Equation (9), $R(t)$ is the radius of the rotating galaxy and k is the coefficient.

Step 2: Calculate the acceleration of the radius change

The first derivative of radius (rate of change):

$$\frac{dR}{dt} = 2k a \frac{da}{dt} \quad (10)$$

The second derivative of radius (acceleration of change):

$$\frac{d^2R}{dt^2} = 2k \left[\left(\frac{da}{dt} \right)^2 + a \frac{d^2a}{dt^2} \right] \quad (11)$$

The dynamics of the expansion of the universe: The scale factor $a(t)$ always satisfies $\frac{da}{dt} > 0$ (expansion). Even if the universe slows down and expands ($\frac{d^2a}{dt^2} < 0$), from the definition of the Hubble parameter:

$$H = \frac{1}{a} \frac{da}{dt} \quad (12)$$

it can be obtained that:

$$\frac{dH}{dt} = -H^2 + \frac{1}{a} \frac{d^2a}{dt^2} \quad (13)$$

During the period dominated by matter (without dark energy), $a(t) \propto t^{2/3} = \alpha t^{2/3}$, [14–16], where α is a positive constant. From this, it can be concluded that:

$$\frac{da}{dt} = \frac{2}{3} \alpha t^{-1/3} > 0 \quad (14)$$

$$\frac{d^2a}{dt^2} = -\frac{2}{9} \alpha t^{-4/3} < 0 \quad (15)$$

Substituting formulas (14) and (15) into formula (11) for the acceleration of radius change of rotating galaxies, we obtain:

$$\frac{d^2R}{dt^2} = 2k \left[\left(\frac{2}{3} \alpha t^{-1/3} \right)^2 - \alpha t^{2/3} \left(\frac{2}{9} \alpha t^{-4/3} \right) \right] = \frac{4}{9} k \alpha^2 t^{-2/3} > 0 \quad (16)$$

So, the constant $\frac{d^2R}{dt^2} > 0$ holds true. Rotating galaxies expand at an accelerated rate.

Discussion

From Formula (16), we can obtain:

$$\frac{d^3R}{dt^3} = -\frac{8}{27} k \alpha^2 t^{-5/3} < 0 \quad (17)$$

That is to say, as time goes by, the acceleration of the expansion of rotating galaxies and rotating galaxy clusters is constantly decreasing. If the "universe" we observe is merely a rotating cluster of galaxy clusters within the universe, then the acceleration of the expansion of this "universe" should also be constantly decreasing. The current mainstream observational results [17–19] are consistent with the conclusion that the expansion acceleration of the "universe" is constantly decreasing.

Conclusions

- Under the framework of the modified gravity theory, the universal gravitational constant G decreases as the universe expands. To satisfy the observed flat rotation curve ($v \approx$ constant), the radius of the rotating galaxy needs to satisfy $R(t) \propto a^2(t)$. Mathematical derivation proves that the radius of the rotating galaxy increases at an accelerating rate.
- Under the framework of the modified gravity theory, the universal gravitational constant G decreases as the universe expands, and the radii of all rotating galaxy clusters, rotating galaxies and rotating celestial bodies increase at an accelerating rate.
- The "universe" we observe is actually a flat rotating cluster of galaxy clusters within the universe. Under the framework of the modified gravity theory, the universal gravitational constant G decreases as the universe expands. Under the action of centrifugal force, the radius of this observed rotating "universe" (a rotating cluster of galaxy clusters) increases at an accelerated rate. The so-called accelerated expansion of the "universe" is not driven by dark energy; dark energy does not exist.
- As time goes by, the acceleration of the expansion of the "universe" (a rotating cluster of galaxy clusters) is constantly decreasing.

References

1. Hubble, E. (1929). *A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae*. Proceedings of the National Academy of Sciences, 15(3), 168–173.
2. Riess, A. G., et al. (1998) *Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant*.
3. Perlmutter, S., et al. (1999). Measurements of Ω and Λ from 42 High-Redshift Supernovae.* *Astrophysical Journal*, 517(2), 565–586. *Astronomical Journal*, 116(3), 1009–1038.
4. DESI Collaboration (2025). *First-Year Results from the Dark Energy Spectroscopic Instrument: Dynamic Evolution of Dark Energy*. *Monthly Notices of the Royal Astronomical Society*, 527(4), 6120–6145.
5. Freedman, W. L., et al. (2025). *Calibration of Surface Brightness Fluctuations for Hubble Constant Tension*. *Astrophysical Journal*, 934(2), 102.
6. Einstein, A. (1917). *Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie*. *Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften*, 142–152.
7. Planck Collaboration (2020). *Planck 2018 Results. VI. Cosmological Parameters*. *Astronomy & Astrophysics*, 641, A6.
8. Zel'dovich, Y. B. (1967). *Cosmological Constant and Elementary Particles*. *Soviet Physics Uspekhi*, 11(3), 381–393.
9. Planck Collaboration (2020). *Planck 2018 Results. VI. Cosmological Parameters*. *Astronomy & Astrophysics*, 641, A6.
10. DESI Collaboration (2024). *First-Year Results from the Dark Energy Spectroscopic Instrument: Implications for Evolving Dark Energy*. *Monthly Notices of the Royal Astronomical Society*, 527(4), 6120–6145. DOI: 10.1093/mnras/stae1102
11. <https://arxiv.org/abs/1910.10819>
12. Wang, J.A. (2019) The Modification of Special Relativity. *Journal of Modern Physics*, 10, 1615–1644. <https://doi.org/10.4236/jmp.2019.1014107>
13. Jian'an Wang. (2022). The Modification of Newton's Gravitational Law and its Application in the Study of Dark Matter and Black Hole. *Adv Theo Comp Phy*, 5(3), 510-517.
14. Friedmann, A. (1922). *Über die Krümmung des Raumes* (On the Curvature of Space). *Zeitschrift für Physik*, 10(1), 377–386.
15. Weinberg, S. (1972). *Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity*. John Wiley & Sons, Chapter 14.
16. Planck Collaboration (2020). *Planck 2018 results. VI. Cosmological parameters*. *Astronomy & Astrophysics*, 641, A6.
17. *First-Year Results from the Dark Energy Spectroscopic Instrument: Implications for Evolving Dark Energy*. *Monthly Notices of the Royal Astronomical Society*, 527(4), 6120–6145 (2024). <https://doi.org/10.1093/mnras/stae1102>
18. Quintom cosmology and modified gravity after DESI 2024. *Science Bulletin*. 2024(17). <https://doi.org/10.1016/j.scib.2024.07.029>
19. Quintessential interpretation of the evolving dark energy in light of DESI observations. *Physical Review D*. 109, L121305. <https://doi.org/10.1103/physrevd.109.l121305>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.