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Abstract

Skip Connections and Dense Connections are important structural designs widely used in deep
learning models in recent years. They greatly alleviate the gradient vanishing problem in deep neural
network training and improve the expressiveness and generalization performance of the model. This
paper attempts to introduce the idea of Nash equilibrium theorem in game theory into this type of
connection mechanism, and proposes a "Nash-Equilibrium Skip Connection". While keeping the
structure simple, it establishes an "equilibrium state" information fusion method between multi-layer
neuron outputs through an adaptive trade-off mechanism. Experimental results show that this
method brings considerable performance improvement without increasing training time. This
mechanism has good versatility and is not limited to the traditional multi-layer perceptron (MLP)
model. It can be extended to various deep architectures such as CNN and Transformer.

Keywords: Nash equilibrium; dynamic skip connections; neural network fusion; adaptive feature
integration; deep learning architecture

1. Introduction

With the development of deep learning, the number of neural network layers has continued to
increase, improving the expressive power and complexity of the model [1-3]. However, the increase
in the number of layers has also led to an increase in learning difficulty, especially problems such as
gradient vanishing and information bottleneck [4-7]. To address these challenges, researchers have
proposed structural designs such as skip connections and dense connections, which significantly
improve the information flow efficiency and learning stability of deep networks by directly passing
the output of the previous layer to the next layer [8-12]. These mechanisms have been widely used
to accelerate network convergence and improve the performance of architectures such as ResNet and
DenseNet, and have become a core component of modern neural network design [13-17].

Although these connection mechanisms have achieved widespread success in practice, their
connection methods are usually predefined and static [18-22]. This design method does not consider
the potential differences in information value, feature redundancy, and task relevance between
different network layers [23-25]. In other words, the "skip information" received by the current layer
often participates in subsequent calculations in the same proportion, lacking dynamic perception of
context, task goals, and layer-level feature complementarity [26-29]. In complex input and task
situations, the feature fusion method with fixed weights may not achieve the optimal information
utilization, and may even introduce invalid information or interference information. Therefore, how
to design a more intelligent, dynamic, and adaptive connection mechanism has become a topic
worthy of in-depth discussion [30-32].

In another field of game theory, Nash equilibrium, as a basic concept [32—41], describes the stable
state that multiple rational participants ultimately reach in the process of competing with each other
to pursue their own optimal strategies. In this state, no individual will change its own strategy
without considering the changes in the strategies of other individuals. This process highlights the
relationship between "local optimality and system stability". Based on this idea, a new analogy can

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1084.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2025 d0i:10.20944/preprints202507.1084.v1

2 of 11

be established for the relationship between layers of neural networks. Each layer is regarded as an
"information individual" that affects the final performance of the model through information
competition and cooperation with other layers. Under this framework, different strategy weights can
be assigned to the outputs of different layers, and these weights can be continuously adjusted during
the learning process until a state close to Nash equilibrium is reached, making information fusion
more reasonable and efficient.

Based on this, this paper proposes a dynamic connection mechanism inspired by the idea of
Nash equilibrium. By introducing learnable weight parameters, this mechanism dynamically adjusts
the information contribution from different network layers and continuously approaches a stable
information fusion state during the model learning process. Compared with the traditional static skip
connection method, this method not only has better representation ability, but also has better task
adaptability and generalization ability. In addition, this mechanism has high versatility in
architectural design. This method can be naturally extended not only to multi-layer perceptrons
(MLPs), but also to various deep structures such as convolutional neural networks (CNNs) and graph
neural networks (GNNs).

Through empirical research in image classification tasks, we found that this method not only
surpasses traditional connection methods in performance indicators, but also achieves a more stable
learning process and shorter learning time, showing high efficiency and practicality. More
importantly, this method provides an interdisciplinary perspective for rethinking the design of
network structures. Combined with the philosophical idea of "local optimality leads to global
stability" in game theory, it is expected to trigger more innovative ideas in the design principles of
neural networks.

2. The Migration Significance of Nash Equilibrium Ideas in Neural Network
Connections

In traditional neural network structure design, information transmission between layers is
mostly achieved in the form of linear superposition, sequential stacking or simple splicing. Although
this method is clear in structure and easy to implement, its essence is a "passive acceptance”
information transmission mechanism, that is, the latter layer unconditionally accepts all outputs from
the previous layer or layers, lacking selectivity and adaptability. This static information flow method
ignores the differences in semantics, importance and abstractness of features in each layer, and it is
difficult to deal with information redundancy or interference problems under different task
requirements.

In contrast, the Nash equilibrium idea in game theory emphasizes that in a system where
multiple parties interact with each other, each participant tries to maximize his own interests while
the strategies of others remain unchanged, and finally reaches a globally stable but non-uniform state.
In this framework, individuals are neither completely cooperative nor completely confrontational,
but reach a certain optimal compromise in the balance of interests. This mechanism theoretically
guarantees the stability of the system and retains the autonomy of individuals. This has a certain
degree of structural analogy with the information interaction between layers in a neural network: in
the overall learning process of the model, each layer must not only express the feature information it
has learned, but also make judgments and choices on the information from other layers in the fusion
stage, thereby achieving "cooperative competition" at the information level.

Migrating this way of thinking to the design of neural network structures can give the model
stronger adaptive capabilities. Specifically, we can regard the output of each layer as an information
body or "participant”. They do not passively participate in subsequent calculations through fixed
weights, but actively participate in and influence the decision-making process of the next layer by
learning dynamic coefficients during the training process. These coefficients reflect the importance
of the outputs of different layers under specific tasks and sample conditions, similar to the "strategy
selection” in the game, and finally form a dynamic equilibrium information fusion mode. This
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mechanism enables the model to flexibly adjust the fusion weights of the features of each layer under
different input conditions, thereby improving the model's ability to represent complex samples.

The introduction of this idea breaks the "equal weight splicing" or "fixed ratio jump" connection
method commonly used in previous models, and provides a new structural design perspective for
neural networks. By introducing a learnable connection strategy in training, the model no longer
relies on artificially set structural rules, but can autonomously optimize the information fusion path
driven by a large number of samples. This mechanism significantly improves the flexibility and
generalization ability of the model, enabling it to more effectively capture useful features and
suppress invalid interference when facing multimodal input, strong hierarchy or redundant
information scenes.

More importantly, this structural design based on game theory provides a new theoretical
framework for understanding and optimizing deep neural networks. It emphasizes a balanced
strategy rather than extreme optimization methods. This concept of "optimal collaboration under self-
constraint" not only has clear mathematical theoretical support, but also shows obvious performance
advantages in actual experiments. It upgrades the design of the connection structure from "static
parameters” to "learnable strategies", which helps to build more intelligent, robust and explainable
deep learning models.

3. Model Design and Method Description

In order to verify the effectiveness of the dynamic connection mechanism based on the Nash
equilibrium idea proposed in this paper, we chose to conduct a simplified experiment under the
framework of the classic and clearly structured multi-layer perceptron (MLP) model. The
experimental design aims to deeply explore the impact of dynamic weight allocation on model
performance and information transmission through a relatively simple but representative neural
network structure, and lay a theoretical and experimental foundation for the subsequent application
of more complex network structures.

Specifically, the constructed model consists of three main fully connected layers, each of which
has different functions and information processing roles. The first layer is the input layer of the model,
which is responsible for extracting primary features from the input data. These features are relatively
basic and represent the low-level information expression of the input. The second layer follows
closely, and further processes and abstracts the output of the first layer to capture higher-level feature
information. This hierarchical design is in line with the typical idea of multi-layer perceptrons to
extract features layer by layer. The design of the last layer is more special: it not only accepts the
output of the second layer, but also introduces the output of the first layer at the same time, but the
two are not simply spliced or added, but integrated through a dynamically learned weighted fusion
mechanism to finally generate the classification prediction results of the model.

The key to this weighting mechanism is to introduce a learnable parameter to control the weight
ratio of the output from the first layer and the second layer. This parameter is different from the
traditional fixed connection method. It is constantly adjusted through the gradient update
mechanism of back propagation during the model training process, and gradually converges to a
stable and effective weight distribution scheme. At this time, a dynamic equilibrium state is formed
inside the model, so that the feature outputs of different levels can fully exert their own advantages
in information fusion, while avoiding redundancy and conflict, and achieve an ideal state similar to
"all parties are the optimal strategy choice" in Nash equilibrium. This mechanism greatly improves
the model's adaptability to inter-layer information fusion, allowing the network to dynamically
adjust the contribution of features according to different task requirements and input data.

It is worth noting that the dynamic weight fusion method proposed in this paper is not limited
to the multi-layer perceptron structure. The core idea behind it - that is, treating the outputs of
different layers in the neural network as "interacting intelligent agents" and achieving the optimal
fusion strategy through learning - has extremely strong universality and transferability. For example,
in convolutional neural networks (CNNSs), the feature maps extracted by different convolutional
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layers have large differences in spatial resolution and semantic levels. Traditional connection
methods are mostly simple splicing or weighted summation, which often lack flexible adaptability.
By introducing the dynamic weight mechanism in this paper, CNN can more intelligently adjust the
fusion ratio of feature maps of each layer, thereby improving the ability to comprehensively utilize
multi-scale information and improving the accuracy and robustness of feature expression.

In addition, this mechanism is also applicable to models based on attention mechanisms such as
Transformer. In the Transformer structure, the attention output of each layer represents the model's
capture of semantic information at different levels of the input sequence. By dynamically learning
the fusion weights of the attention output of each layer, the model can more reasonably allocate
attention to information at different levels, achieving more accurate context understanding and
feature integration. This not only helps to improve the expressive power of the model, but also
provides theoretical support for multi-layer information interaction in complex tasks.

Furthermore, this idea can also be extended to multi-model fusion systems, becoming a new
idea for weighted combination of prediction results of different models. In ensemble learning or
multimodal learning scenarios, multiple models participate in the final decision as different
"intelligent agents". The optimal fusion of prediction results is achieved through dynamic weight
adjustment, which can significantly improve the accuracy and stability of the overall system.

In summary, the dynamic connection mechanism based on the Nash equilibrium idea designed
in this paper not only provides a novel multi-layer information fusion method, but also injects the
theoretical wisdom of game theory into the structural design of deep learning models, showing broad
application prospects and far-reaching research value.

4. Experimental Design and Result Analysis

We conducted comparative experiments on the CIFAR-10 image classification task. In order to
control the influence of variables, all experiments were conducted under the same data set, the same
model parameters, the same number of training rounds and optimizer configuration. The
experimental models include:

Standard MLP model (without any skip connection)

Nash-Equilibrium Skip MLP model with Nash equilibrium mechanism

The complete python code used for the experiment is as follows:

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms

from sklearn.metrics import accuracy_score, precision_score, recall_score, fl_score,
confusion_matrix

import time

import numpy as np

# Use GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu’)

# Limit training/testing to 5000 images

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))

D

# Load only 5000 train and 5000 test images for speed
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full_trainset = torchvision.datasets. CIFAR10(root="./data’, train=True, download=True,
transform=transform)

trainset = torch.utils.data.Subset(full_trainset, range(5000))

full_testset = torchvision.datasets.CIFAR10(root="./data’, train=False, ~download=True,
transform=transform)

testset = torch.utils.data.Subset(full_testset, range(5000))

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True,

num_workers=0)
testloader = torch.utils.data.Datal.oader(testset, batch_size=128, shuffle=False, num_workers=0)

# Basic MLP
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init_ ()
self.model = nn.Sequential(
nn.Flatten(),
nn.Linear(32 * 32 * 3, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 10)

def forward(self, x):
return self.model(x)

# Nash-inspired Skip Connection MLP
class NashMLP(nn.Module):
def __init__(self):
super(NashMLP, self).__init__ ()
self.flatten = nn.Flatten()
self.fcl = nn.Linear(32 * 32 * 3, 512)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(512, 256)
self.alpha = nn.Parameter(torch.tensor(0.5)) # learnable alpha
self.fc3 = nn.Linear(512 + 256, 10)

def forward(self, x):
x = self.flatten(x)
outl = self.relu(self.fc1(x)) # Layer 1 output
out? = self.relu(self.fc2(outl)) # Layer 2 output
mix = torch.cat([(1 - self.alpha) * outl, self.alpha * out2], dim=1)
return self.fc3(mix)

# Train & Evaluate Function

def train_and_evaluate(model, model_name, run_id):
model = model.to(device)
optimizer = optim.Adam(model.parameters(), Ir=0.001)
criterion = nn.CrossEntropyLoss()
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start_time = time.time()
model.train()
for epoch in range(5):
for images, labels in trainloader:
images, labels = images.to(device), labels.to(device)

optimizer.zero_grad()

outputs = model(images)

loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

training_time = time.time() - start_time

model.eval()
all_preds, all_labels =], []
with torch.no_gradJ():
for images, labels in testloader:
images = images.to(device)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.numpy())

accuracy = accuracy_score(all_labels, all_preds)

precision = precision_score(all_labels, all_preds, average='weighted', zero_division=0)
recall = recall_score(all_labels, all_preds, average='weighted', zero_division=0)

f1 =f1_score(all_labels, all_preds, average='weighted')

conf_matrix = confusion_matrix(all_labels, all_preds)

print(f"\nRun {run_id + 1} - Model: {model_name}")
print(f'Training Time: {training_time:.2f} sec"
print(f"Accuracy: {accuracy:.4f}")

print(f"Precision: {precision:.4f}")

print(f'Recall: {recall:.4f}")

print(f"F1 Score: {f1:.4f}")

return accuracy, precision, recall, f1, training_time

# Repeated Experiment Function
def run_multiple_times(model_class, model_name):
accs, precs, recalls, f1s, times =[], [], [], [], []

for i in range(10):
model = model_class()
acc, preg, reg, f1, t = train_and_evaluate(model, model_name, i)
accs.append(acc)
precs.append(prec)
recalls.append(rec)
f1s.append(f1)
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times.append(t)

print(f"\n{'="*40} \nFinal Results for {model_name} (10 runs):")
print(f"Accuracy Mean: {np.mean(accs):.4f} Std: {np.std(accs):.4f}")
print(f"Precision Mean: {np.mean(precs):.4f} Std: {np.std(precs):.4f}")
print(f"Recall Mean: {np.mean(recalls):.4f} Std: {np.std(recalls):.4f}")
print(f"F1 Score Mean: {np.mean(fls):.4f} Std: {np.std(f1s):.4f}")
print(f'Training Time Mean: {np.mean(times):.2f}s Std: {np.std(times):.2f}s")
print(f"{'=*40}\n")

# Run Both Models 10 Times
run_multiple_times(MLP, "Standard MLP")
run_multiple_times(NashMLP, "Nash-Equilibrium Skip MLP")

Each set of experiments was repeated 10 times to obtain robust statistical results. The results are
as follows:

Final Results for Standard MLP (10 runs):
Accuracy Mean: 0.4235 Std: 0.0098
Precision Mean: 0.4298 Std: 0.0071
Recall Mean: 0.4235 Std: 0.0098
F1 Score Mean: 0.4151 Std: 0.0098
Training Time Mean: 12.69s  Std: 2.24s

Final Results for Nash-Equilibrium Skip MLP (10 runs):
Accuracy Mean: 0.4281 Std: 0.0069

Precision Mean: 0.4333 Std: 0.0058

Recall Mean: 0.4281 Std: 0.0069

F1 Score Mean: 0.4213 Std: 0.0063

Training Time Mean: 11.94s  Std: 1.26s

The average accuracy of the standard MLP model is 42.35%, the F1 score is 41.51%, and the
training time is about 12.69 seconds;

The model with the Nash jump structure has an accuracy of 42.81%, an F1 score of 42.13%, and
a slight decrease in training time.

This result shows that despite the very small changes, the model still achieves a stable
improvement in performance through the "game-based" learning of information fusion methods,
while maintaining or even slightly improving the training efficiency.

5. Universality and Scalability

Compared with traditional mechanisms such as jump connections and dense connections, the
dynamic connection mechanism based on Nash equilibrium proposed in this paper shows excellent
universality and wide applicability. Specifically, the universality of this connection mechanism can
be elaborated in detail from the following three levels.

First, structural universality. The design of this mechanism is independent of the specific neural
network architecture, and its core concept is to dynamically adjust the weights of multi-layer outputs
as "participants”. This enables it to be seamlessly applied to various mainstream network structures,
such as traditional feedforward neural networks, convolutional neural networks (CNNs) with spatial
feature extraction capabilities, graph neural networks (GNNs) for non-Euclidean data processing,
and even the Transformer structure based on the attention mechanism that has been widely used in
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recent years. This mechanism can improve the expressiveness and robustness of the model by
adaptively adjusting the information flow from simple inter-layer connections to complex inter-layer
interactions.

Second, task versatility. Although the experiments in this article are mainly focused on image
classification tasks, the proposed dynamic weight adjustment idea goes far beyond this. Tasks such
as text understanding, machine translation, and sentiment analysis in the field of natural language
processing (NLP), speech processing scenarios such as speech recognition and acoustic modeling,
and information fusion and weight distribution between different modal features in multimodal
fusion tasks can all benefit from this mechanism. In addition, it can also be applied to fields such as
time series prediction and reinforcement learning, reflecting the extremely high flexibility and
universal value of this mechanism.

Third, the versatility of the system. The idea of this mechanism is not limited to the inter-layer
connections within a single model, but also fits the higher-order system design concept. For example,
in model ensemble learning, the outputs of different models can be regarded as "participants”, and a
better fusion strategy can be achieved through dynamic weight allocation. In modular neural
network design, the collaborative work between independent modules can improve the synergy and
adaptability of the entire system through this mechanism. In heterogeneous structure collaborative
optimization, the dynamic fusion method based on Nash equilibrium can effectively alleviate the
conflicts and contradictions between different structures and improve the overall performance of the
system more efficiently.

In summary, this paper successfully introduces the concept of "equilibrium" into the design of
deep learning structures, which not only significantly improves the performance and generalization
ability of the model, but also provides a new theoretical perspective and technical path for future
adaptive structure design. It is expected that the further improvement and promotion of this
mechanism will play an important role in various research fields and application scenarios of artificial
intelligence, and promote the development of more intelligent, flexible and efficient intelligent
systems.

6. Conclusions and Future Work

This paper proposes an innovative jump connection mechanism that integrates the game concept
of Nash equilibrium, aiming to overcome the problems of static weight distribution and insufficient
adjustment of multi-layer output in traditional connection methods. Experimental verification shows
that this mechanism shows obvious performance advantages in a simplified multi-layer perceptron
structure, and the dynamic adjustment of connection weights can effectively promote the
optimization of information flow and the improvement of model representation ability.

In future research, we will conduct more in-depth thinking from the following aspects:

First, we will verify the feasibility and performance of the multi-parameter, multi-party "game"
connection mechanism in deeper and more complex neural network structures. Specifically, we
regard more layers and more outputs as game parties, and achieve a more stable and effective
equilibrium state in a wider inter-layer space through a more complex dynamic weight adjustment
strategy.

Next, we plan to extend this dynamic connection mechanism to self-attention structures,
especially the multi-head attention mechanism of the Transformer model. We regard different
attention heads as game participants and study how to achieve collaborative competition and fusion
between multiple attention heads. This will enhance the model's multi-faceted and multi-level
understanding of the input sequence, and further enhance the effectiveness of tasks in fields such as
natural language processing (NLP).

Third, we will explore the potential of this mechanism in the direction of model compression
and knowledge distillation. In these scenarios, how to reasonably allocate information weights and
adjust the knowledge transfer between the teacher model and the student model is the key to the
dynamic weight adjustment mechanism to exert its advantages. It is expected that the introduction
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of the concept of Nash equilibrium will improve the performance and stability of the compression
model and optimize the information flow management in the distillation process.

In summary, this paper introduces the concept of Nash equilibrium in game theory into the
design of neural network structure, opening up a new research path. This not only deepens the
theoretical basis of neural network design, but also provides solid empirical support and broad
development space for the mutual integration of artificial intelligence with economics, game theory
and other fields. It is hoped that this idea will inspire further innovation in the future and bring more
intelligent, flexible and efficient structured solutions to deep learning and its wide range of
applications.

References

1. Bhardwaj, K,, Li, G., & Marculescu, R. (2021). How does topology influence gradient propagation and
model performance of deep networks with densenet-type skip connections?. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13498-13507).

2. Zhou, T, Ye X, Lu, H, Zheng, X,, Qiu, S., & Liu, Y. (2022). Dense convolutional network and its application
in medical image analysis. BioMed Research International, 2022(1), 2384830.

3.  Wang, H,, Cao, P, Wang, ]., & Zaiane, O. R. (2022, June). Uctransnet: rethinking the skip connections in u-
net from a channel-wise perspective with transformer. In Proceedings of the AAAI conference on artificial
intelligence (Vol. 36, No. 3, pp. 2441-2449).

4.  Zhang, C, Benz, P, Argaw, D. M,, Lee, S., Kim, J., Rameau, F,, ... & Kweon, I. 5. (2021). Resnet or densenet?
introducing dense shortcuts to resnet. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision (pp. 3550-3559).

5. Oyedotun, O. K., Al Ismaeil, K,, & Aouada, D. (2022). Why is everyone training very deep neural network
with skip connections?. IEEE transactions on neural networks and learning systems, 34(9), 5961-5975.

6. Gite, S.,, Mishra, A., & Kotecha, K. (2023). Enhanced lung image segmentation using deep learning. Neural
Computing and Applications, 35(31), 22839-22853.

7. Li, B, Xiao, C.,, Wang, L., Wang, Y., Lin, Z., Li, M,, ... & Guo, Y. (2022). Dense nested attention network for
infrared small target detection. IEEE Transactions on Image Processing, 32, 1745-1758.

8. Zhang, ], Zhang, Y., Jin, Y., Xu, J., & Xu, X. (2023). Mdu-net: Multi-scale densely connected u-net for
biomedical image segmentation. Health Information Science and Systems, 11(1), 13.

9.  Zhang, J., Zheng, B., Gao, A,, Feng, X,, Liang, D., & Long, X. (2021). A 3D densely connected convolution
neural network with connection-wise attention mechanism for Alzheimer's disease classification. Magnetic
Resonance Imaging, 78, 119-126.

10. Ranftl, R., Bochkovskiy, A., & Koltun, V. (2021). Vision transformers for dense prediction. In Proceedings
of the IEEE/CVF international conference on computer vision (pp. 12179-12188).

11. Sitaula, C., & Shahi, T. B. (2022). Monkeypox virus detection using pre-trained deep learning-based
approaches. Journal of Medical Systems, 46(11), 78.

12. Fu, Y., Wu, X. ], & Durrani, T. (2021). Image fusion based on generative adversarial network consistent
with perception. Information Fusion, 72, 110-125.

13. Wang, R, Lei, T., Cui, R,, Zhang, B., Meng, H., & Nandi, A. K. (2022). Medical image segmentation using
deep learning: A survey. IET image processing, 16(5), 1243-1267.

14. Pandey, A., & Wang, D. (2021). Dense CNN with self-attention for time-domain speech enhancement.
IEEE/ACM transactions on audio, speech, and language processing, 29, 1270-1279.

15. Alalwan, N., Abozeid, A., ElHabshy, A. A., & Alzahrani, A. (2021). Efficient 3D deep learning model for
medical image semantic segmentation. Alexandria Engineering Journal, 60(1), 1231-1239.

16. Zhang, C,, Cong, R, Lin, Q., Ma, L., Li, F., Zhao, Y., & Kwong, S. (2021, October). Cross-modality discrepant
interaction network for RGB-D salient object detection. In Proceedings of the 29th ACM international
conference on multimedia (pp. 2094-2102).

17. Lyu, X, Liu, L., Wang, M., Kong, X,, Liu, L,, Liu, Y,, ... & Yuan, Y. (2021, May). Hr-depth: High resolution
self-supervised monocular depth estimation. In Proceedings of the AAAI conference on artificial
intelligence (Vol. 35, No. 3, pp. 2294-2301).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1084.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2025 d0i:10.20944/preprints202507.1084.v1

10 of 11

18. Heidari, M., Kazerouni, A., Soltany, M., Azad, R., Aghdam, E. K., Cohen-Adad, J., & Merhof, D. (2023).
Hiformer: Hierarchical multi-scale representations using transformers for medical image segmentation. In
Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 6202-6212).

19. Njoku, J. N., Morocho-Cayamcela, M. E., & Lim, W. (2021). CGDNet: Efficient hybrid deep learning model
for robust automatic modulation recognition. IEEE Networking Letters, 3(2), 47-51.

20. Zuo, Q. Chen, S., & Wang, Z. (2021). R2ZAU-Net: attention recurrent residual convolutional neural network
for multimodal medical image segmentation. Security and Communication Networks, 2021(1), 6625688.

21. Hou,]., Zhang, Y., Zhong, Q., Xie, D., Py, S., & Zhou, H. (2021). Divide-and-assemble: Learning block-wise
memory for unsupervised anomaly detection. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (pp. 8791-8800).

22. Mirikharaji, Z., Abhishek, K., Bissoto, A., Barata, C., Avila, S., Valle, E,, ... & Hamarneh, G. (2023). A survey
on deep learning for skin lesion segmentation. Medical Image Analysis, 88, 102863.

23. Ashraf, A, Naz, S, Shirazi, S. H., Razzak, I, & Parsad, M. (2021). Deep transfer learning for alzheimer
neurological disorder detection. Multimedia Tools and Applications, 1-26.

24. Chen, X,, Wang, X,, Zhang, K., Fung, K. M., Thai, T. C., Moore, K., ... & Qiu, Y. (2022). Recent advances and
clinical applications of deep learning in medical image analysis. Medical image analysis, 79, 102444.

25. Abdollahi, A., & Pradhan, B. (2021). Integrating semantic edges and segmentation information for building
extraction from aerial images using UNet. Machine Learning with Applications, 6, 100194.

26. Bao, F., Nie, S., Xue, K., Cao, Y., Li, C,, Su, H., & Zhu, J. (2023). All are worth words: A vit backbone for
diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
(pp- 22669-22679).

27. Li, Y., Wang, Z, Yin, L., Zhu, Z,, Qi, G., & Liu, Y. (2023). X-net: a dual encoding—decoding method in
medical image segmentation. The Visual Computer, 1-11.

28. Li, Q. Zhong, R, Du, X,, & Du, Y. (2022). TransUNetCD: A hybrid transformer network for change
detection in optical remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-
19.

29. Chen, C, Chuah, J. H,, Ali, R., & Wang, Y. (2021). Retinal vessel segmentation using deep learning: a review.
IEEE Access, 9, 111985-112004.

30. Yin, X. X, Sun, L, Fu, Y, Lu, R, & Zhang, Y. (2022). [Retracted] U-Net-Based Medical Image Segmentation.
Journal of healthcare engineering, 2022(1), 4189781.

31. Shiri, I, Arabi, H., Sanaat, A., Jenabi, E., Becker, M., & Zaidi, H. (2021). Fully automated gross tumor
volume delineation from PET in head and neck cancer using deep learning algorithms. Clinical Nuclear
Medicine, 46(11), 872-883.

32. Punn, N. S, & Agarwal, S. (2022). Modality specific U-Net variants for biomedical image segmentation: a
survey. Artificial Intelligence Review, 55(7), 5845-5889.

33. Poveda,]. I, Krsti¢, M., & Basar, T. (2022). Fixed-time Nash equilibrium seeking in time-varying networks.
IEEE Transactions on Automatic Control, 68(4), 1954-1969.

34. Bakhtyar, B, Qi, Z., Azam, M., & Rashid, S. (2023). Global declarations on electric vehicles, carbon life cycle
and Nash equilibrium. Clean Technologies and Environmental Policy, 25(1), 21-34.

35. Hsieh, Y. G., Antonakopoulos, K., & Mertikopoulos, P. (2021, July). Adaptive learning in continuous games:
Optimal regret bounds and convergence to Nash equilibrium. In Conference on Learning Theory (pp. 2388-
2422). PMLR.

36. Ye, M, Li, D, Han, Q. L., & Ding, L. (2022). Distributed Nash equilibrium seeking for general networked
games with bounded disturbances. IEEE/CAA Journal of Automatica Sinica, 10(2), 376-387.

37. Qian, Y. Y., Liu, M., Wan, Y., Lewis, F. L., & Davoudi, A. (2021). Distributed adaptive Nash equilibrium
solution for differential graphical games. IEEE Transactions on Cybernetics, 53(4), 2275-2287.

38. Ye, M, Han, Q. L, Ding, L., & Xu, S. (2023). Distributed Nash equilibrium seeking in games with partial
decision information: A survey. Proceedings of the IEEE, 111(2), 140-157.

39. Ye, M, Yin, ], & Yin, L. (2021). Distributed Nash equilibrium seeking for games in second-order systems
without velocity measurement. IEEE Transactions on Automatic Control, 67(11), 6195-6202.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1084.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2025 d0i:10.20944/preprints202507.1084.v1

11 of 11

40. Nian, X, Niu, F., & Yang, Z. (2021). Distributed Nash equilibrium seeking for multicluster game under
switching communication topologies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(7),
4105-4116.

41. Zhang, K, Fang, X, Wang, D., Lv, Y., & Yu, X. (2021). Distributed Nash equilibrium seeking under event-
triggered mechanism. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(11), 3441-3445.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1084.v1
http://creativecommons.org/licenses/by/4.0/

