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Abstract 

Skip Connections and Dense Connections are important structural designs widely used in deep 

learning models in recent years. They greatly alleviate the gradient vanishing problem in deep neural 

network training and improve the expressiveness and generalization performance of the model. This 

paper attempts to introduce the idea of Nash equilibrium theorem in game theory into this type of 

connection mechanism, and proposes a "Nash-Equilibrium Skip Connection". While keeping the 

structure simple, it establishes an "equilibrium state" information fusion method between multi-layer 

neuron outputs through an adaptive trade-off mechanism. Experimental results show that this 

method brings considerable performance improvement without increasing training time. This 

mechanism has good versatility and is not limited to the traditional multi-layer perceptron (MLP) 

model. It can be extended to various deep architectures such as CNN and Transformer. 

Keywords: Nash equilibrium; dynamic skip connections; neural network fusion; adaptive feature 

integration; deep learning architecture 

 

1. Introduction 

With the development of deep learning, the number of neural network layers has continued to 

increase, improving the expressive power and complexity of the model [1–3]. However, the increase 

in the number of layers has also led to an increase in learning difficulty, especially problems such as 

gradient vanishing and information bottleneck [4–7]. To address these challenges, researchers have 

proposed structural designs such as skip connections and dense connections, which significantly 

improve the information flow efficiency and learning stability of deep networks by directly passing 

the output of the previous layer to the next layer [8–12]. These mechanisms have been widely used 

to accelerate network convergence and improve the performance of architectures such as ResNet and 

DenseNet, and have become a core component of modern neural network design [13–17]. 

Although these connection mechanisms have achieved widespread success in practice, their 

connection methods are usually predefined and static [18–22]. This design method does not consider 

the potential differences in information value, feature redundancy, and task relevance between 

different network layers [23–25]. In other words, the "skip information" received by the current layer 

often participates in subsequent calculations in the same proportion, lacking dynamic perception of 

context, task goals, and layer-level feature complementarity [26–29]. In complex input and task 

situations, the feature fusion method with fixed weights may not achieve the optimal information 

utilization, and may even introduce invalid information or interference information. Therefore, how 

to design a more intelligent, dynamic, and adaptive connection mechanism has become a topic 

worthy of in-depth discussion [30–32]. 

In another field of game theory, Nash equilibrium, as a basic concept [32–41], describes the stable 

state that multiple rational participants ultimately reach in the process of competing with each other 

to pursue their own optimal strategies. In this state, no individual will change its own strategy 

without considering the changes in the strategies of other individuals. This process highlights the 

relationship between "local optimality and system stability". Based on this idea, a new analogy can 
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be established for the relationship between layers of neural networks. Each layer is regarded as an 

"information individual" that affects the final performance of the model through information 

competition and cooperation with other layers. Under this framework, different strategy weights can 

be assigned to the outputs of different layers, and these weights can be continuously adjusted during 

the learning process until a state close to Nash equilibrium is reached, making information fusion 

more reasonable and efficient. 

Based on this, this paper proposes a dynamic connection mechanism inspired by the idea of 

Nash equilibrium. By introducing learnable weight parameters, this mechanism dynamically adjusts 

the information contribution from different network layers and continuously approaches a stable 

information fusion state during the model learning process. Compared with the traditional static skip 

connection method, this method not only has better representation ability, but also has better task 

adaptability and generalization ability. In addition, this mechanism has high versatility in 

architectural design. This method can be naturally extended not only to multi-layer perceptrons 

(MLPs), but also to various deep structures such as convolutional neural networks (CNNs) and graph 

neural networks (GNNs). 

Through empirical research in image classification tasks, we found that this method not only 

surpasses traditional connection methods in performance indicators, but also achieves a more stable 

learning process and shorter learning time, showing high efficiency and practicality. More 

importantly, this method provides an interdisciplinary perspective for rethinking the design of 

network structures. Combined with the philosophical idea of "local optimality leads to global 

stability" in game theory, it is expected to trigger more innovative ideas in the design principles of 

neural networks. 

2. The Migration Significance of Nash Equilibrium Ideas in Neural Network 

Connections 

In traditional neural network structure design, information transmission between layers is 

mostly achieved in the form of linear superposition, sequential stacking or simple splicing. Although 

this method is clear in structure and easy to implement, its essence is a "passive acceptance" 

information transmission mechanism, that is, the latter layer unconditionally accepts all outputs from 

the previous layer or layers, lacking selectivity and adaptability. This static information flow method 

ignores the differences in semantics, importance and abstractness of features in each layer, and it is 

difficult to deal with information redundancy or interference problems under different task 

requirements. 

In contrast, the Nash equilibrium idea in game theory emphasizes that in a system where 

multiple parties interact with each other, each participant tries to maximize his own interests while 

the strategies of others remain unchanged, and finally reaches a globally stable but non-uniform state. 

In this framework, individuals are neither completely cooperative nor completely confrontational, 

but reach a certain optimal compromise in the balance of interests. This mechanism theoretically 

guarantees the stability of the system and retains the autonomy of individuals. This has a certain 

degree of structural analogy with the information interaction between layers in a neural network: in 

the overall learning process of the model, each layer must not only express the feature information it 

has learned, but also make judgments and choices on the information from other layers in the fusion 

stage, thereby achieving "cooperative competition" at the information level. 

Migrating this way of thinking to the design of neural network structures can give the model 

stronger adaptive capabilities. Specifically, we can regard the output of each layer as an information 

body or "participant". They do not passively participate in subsequent calculations through fixed 

weights, but actively participate in and influence the decision-making process of the next layer by 

learning dynamic coefficients during the training process. These coefficients reflect the importance 

of the outputs of different layers under specific tasks and sample conditions, similar to the "strategy 

selection" in the game, and finally form a dynamic equilibrium information fusion mode. This 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 July 2025 doi:10.20944/preprints202507.1084.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1084.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 11 

 

mechanism enables the model to flexibly adjust the fusion weights of the features of each layer under 

different input conditions, thereby improving the model's ability to represent complex samples. 

The introduction of this idea breaks the "equal weight splicing" or "fixed ratio jump" connection 

method commonly used in previous models, and provides a new structural design perspective for 

neural networks. By introducing a learnable connection strategy in training, the model no longer 

relies on artificially set structural rules, but can autonomously optimize the information fusion path 

driven by a large number of samples. This mechanism significantly improves the flexibility and 

generalization ability of the model, enabling it to more effectively capture useful features and 

suppress invalid interference when facing multimodal input, strong hierarchy or redundant 

information scenes. 

More importantly, this structural design based on game theory provides a new theoretical 

framework for understanding and optimizing deep neural networks. It emphasizes a balanced 

strategy rather than extreme optimization methods. This concept of "optimal collaboration under self-

constraint" not only has clear mathematical theoretical support, but also shows obvious performance 

advantages in actual experiments. It upgrades the design of the connection structure from "static 

parameters" to "learnable strategies", which helps to build more intelligent, robust and explainable 

deep learning models. 

3. Model Design and Method Description 

In order to verify the effectiveness of the dynamic connection mechanism based on the Nash 

equilibrium idea proposed in this paper, we chose to conduct a simplified experiment under the 

framework of the classic and clearly structured multi-layer perceptron (MLP) model. The 

experimental design aims to deeply explore the impact of dynamic weight allocation on model 

performance and information transmission through a relatively simple but representative neural 

network structure, and lay a theoretical and experimental foundation for the subsequent application 

of more complex network structures. 

Specifically, the constructed model consists of three main fully connected layers, each of which 

has different functions and information processing roles. The first layer is the input layer of the model, 

which is responsible for extracting primary features from the input data. These features are relatively 

basic and represent the low-level information expression of the input. The second layer follows 

closely, and further processes and abstracts the output of the first layer to capture higher-level feature 

information. This hierarchical design is in line with the typical idea of multi-layer perceptrons to 

extract features layer by layer. The design of the last layer is more special: it not only accepts the 

output of the second layer, but also introduces the output of the first layer at the same time, but the 

two are not simply spliced or added, but integrated through a dynamically learned weighted fusion 

mechanism to finally generate the classification prediction results of the model. 

The key to this weighting mechanism is to introduce a learnable parameter to control the weight 

ratio of the output from the first layer and the second layer. This parameter is different from the 

traditional fixed connection method. It is constantly adjusted through the gradient update 

mechanism of back propagation during the model training process, and gradually converges to a 

stable and effective weight distribution scheme. At this time, a dynamic equilibrium state is formed 

inside the model, so that the feature outputs of different levels can fully exert their own advantages 

in information fusion, while avoiding redundancy and conflict, and achieve an ideal state similar to 

"all parties are the optimal strategy choice" in Nash equilibrium. This mechanism greatly improves 

the model's adaptability to inter-layer information fusion, allowing the network to dynamically 

adjust the contribution of features according to different task requirements and input data. 

It is worth noting that the dynamic weight fusion method proposed in this paper is not limited 

to the multi-layer perceptron structure. The core idea behind it - that is, treating the outputs of 

different layers in the neural network as "interacting intelligent agents" and achieving the optimal 

fusion strategy through learning - has extremely strong universality and transferability. For example, 

in convolutional neural networks (CNNs), the feature maps extracted by different convolutional 
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layers have large differences in spatial resolution and semantic levels. Traditional connection 

methods are mostly simple splicing or weighted summation, which often lack flexible adaptability. 

By introducing the dynamic weight mechanism in this paper, CNN can more intelligently adjust the 

fusion ratio of feature maps of each layer, thereby improving the ability to comprehensively utilize 

multi-scale information and improving the accuracy and robustness of feature expression. 

In addition, this mechanism is also applicable to models based on attention mechanisms such as 

Transformer. In the Transformer structure, the attention output of each layer represents the model's 

capture of semantic information at different levels of the input sequence. By dynamically learning 

the fusion weights of the attention output of each layer, the model can more reasonably allocate 

attention to information at different levels, achieving more accurate context understanding and 

feature integration. This not only helps to improve the expressive power of the model, but also 

provides theoretical support for multi-layer information interaction in complex tasks. 

Furthermore, this idea can also be extended to multi-model fusion systems, becoming a new 

idea for weighted combination of prediction results of different models. In ensemble learning or 

multimodal learning scenarios, multiple models participate in the final decision as different 

"intelligent agents". The optimal fusion of prediction results is achieved through dynamic weight 

adjustment, which can significantly improve the accuracy and stability of the overall system. 

In summary, the dynamic connection mechanism based on the Nash equilibrium idea designed 

in this paper not only provides a novel multi-layer information fusion method, but also injects the 

theoretical wisdom of game theory into the structural design of deep learning models, showing broad 

application prospects and far-reaching research value. 

4. Experimental Design and Result Analysis 

We conducted comparative experiments on the CIFAR-10 image classification task. In order to 

control the influence of variables, all experiments were conducted under the same data set, the same 

model parameters, the same number of training rounds and optimizer configuration. The 

experimental models include: 

Standard MLP model (without any skip connection) 

Nash-Equilibrium Skip MLP model with Nash equilibrium mechanism 

The complete python code used for the experiment is as follows: 

 

import torch 

import torch.nn as nn 

import torch.optim as optim 

import torchvision 

import torchvision.transforms as transforms 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, 

confusion_matrix 

import time 

import numpy as np 

 

# Use GPU if available 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

 

# Limit training/testing to 5000 images 

transform = transforms.Compose([ 

    transforms.ToTensor(), 

    transforms.Normalize((0.5,), (0.5,)) 

]) 

 

# Load only 5000 train and 5000 test images for speed 
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full_trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, 

transform=transform) 

trainset = torch.utils.data.Subset(full_trainset, range(5000)) 

 

full_testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, 

transform=transform) 

testset = torch.utils.data.Subset(full_testset, range(5000)) 

 

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, 

num_workers=0) 

testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=0) 

 

# Basic MLP 

class MLP(nn.Module): 

    def __init__(self): 

        super(MLP, self).__init__() 

        self.model = nn.Sequential( 

            nn.Flatten(), 

            nn.Linear(32 * 32 * 3, 512), 

            nn.ReLU(), 

            nn.Linear(512, 256), 

            nn.ReLU(), 

            nn.Linear(256, 10) 

        ) 

 

    def forward(self, x): 

        return self.model(x) 

 

# Nash-inspired Skip Connection MLP 

class NashMLP(nn.Module): 

    def __init__(self): 

        super(NashMLP, self).__init__() 

        self.flatten = nn.Flatten() 

        self.fc1 = nn.Linear(32 * 32 * 3, 512) 

        self.relu = nn.ReLU() 

        self.fc2 = nn.Linear(512, 256) 

        self.alpha = nn.Parameter(torch.tensor(0.5))  # learnable alpha 

        self.fc3 = nn.Linear(512 + 256, 10) 

 

    def forward(self, x): 

        x = self.flatten(x) 

        out1 = self.relu(self.fc1(x))     # Layer 1 output 

        out2 = self.relu(self.fc2(out1))  # Layer 2 output 

        mix = torch.cat([(1 - self.alpha) * out1, self.alpha * out2], dim=1) 

        return self.fc3(mix) 

 

# Train & Evaluate Function 

def train_and_evaluate(model, model_name, run_id): 

    model = model.to(device) 

    optimizer = optim.Adam(model.parameters(), lr=0.001) 

    criterion = nn.CrossEntropyLoss() 
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    start_time = time.time() 

    model.train() 

    for epoch in range(5): 

        for images, labels in trainloader: 

            images, labels = images.to(device), labels.to(device) 

 

            optimizer.zero_grad() 

            outputs = model(images) 

            loss = criterion(outputs, labels) 

            loss.backward() 

            optimizer.step() 

 

    training_time = time.time() - start_time 

 

    model.eval() 

    all_preds, all_labels = [], [] 

    with torch.no_grad(): 

        for images, labels in testloader: 

            images = images.to(device) 

            outputs = model(images) 

            _, predicted = torch.max(outputs, 1) 

            all_preds.extend(predicted.cpu().numpy()) 

            all_labels.extend(labels.numpy()) 

 

    accuracy = accuracy_score(all_labels, all_preds) 

    precision = precision_score(all_labels, all_preds, average='weighted', zero_division=0) 

    recall = recall_score(all_labels, all_preds, average='weighted', zero_division=0) 

    f1 = f1_score(all_labels, all_preds, average='weighted') 

    conf_matrix = confusion_matrix(all_labels, all_preds) 

 

    print(f"\nRun {run_id + 1} - Model: {model_name}") 

    print(f"Training Time: {training_time:.2f} sec") 

    print(f"Accuracy: {accuracy:.4f}") 

    print(f"Precision: {precision:.4f}") 

    print(f"Recall: {recall:.4f}") 

    print(f"F1 Score: {f1:.4f}") 

 

    return accuracy, precision, recall, f1, training_time 

 

# Repeated Experiment Function 

def run_multiple_times(model_class, model_name): 

    accs, precs, recalls, f1s, times = [], [], [], [], [] 

 

    for i in range(10): 

        model = model_class() 

        acc, prec, rec, f1, t = train_and_evaluate(model, model_name, i) 

        accs.append(acc) 

        precs.append(prec) 

        recalls.append(rec) 

        f1s.append(f1) 
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        times.append(t) 

 

    print(f"\n{'='*40}\nFinal Results for {model_name} (10 runs):") 

    print(f"Accuracy      Mean: {np.mean(accs):.4f}  Std: {np.std(accs):.4f}") 

    print(f"Precision     Mean: {np.mean(precs):.4f}  Std: {np.std(precs):.4f}") 

    print(f"Recall        Mean: {np.mean(recalls):.4f}  Std: {np.std(recalls):.4f}") 

    print(f"F1 Score      Mean: {np.mean(f1s):.4f}  Std: {np.std(f1s):.4f}") 

    print(f"Training Time Mean: {np.mean(times):.2f}s  Std: {np.std(times):.2f}s") 

    print(f"{'='*40}\n") 

 

# Run Both Models 10 Times 

run_multiple_times(MLP, "Standard MLP") 

run_multiple_times(NashMLP, "Nash-Equilibrium Skip MLP") 

 

Each set of experiments was repeated 10 times to obtain robust statistical results. The results are 

as follows: 

======================================== 

Final Results for Standard MLP (10 runs): 

Accuracy      Mean: 0.4235  Std: 0.0098 

Precision     Mean: 0.4298  Std: 0.0071 

Recall        Mean: 0.4235  Std: 0.0098 

F1 Score      Mean: 0.4151  Std: 0.0098 

Training Time Mean: 12.69s  Std: 2.24s 

======================================== 

======================================== 

Final Results for Nash-Equilibrium Skip MLP (10 runs): 

Accuracy      Mean: 0.4281  Std: 0.0069 

Precision     Mean: 0.4333  Std: 0.0058 

Recall        Mean: 0.4281  Std: 0.0069 

F1 Score      Mean: 0.4213  Std: 0.0063 

Training Time Mean: 11.94s  Std: 1.26s 

======================================== 

The average accuracy of the standard MLP model is 42.35%, the F1 score is 41.51%, and the 

training time is about 12.69 seconds; 

The model with the Nash jump structure has an accuracy of 42.81%, an F1 score of 42.13%, and 

a slight decrease in training time. 

This result shows that despite the very small changes, the model still achieves a stable 

improvement in performance through the "game-based" learning of information fusion methods, 

while maintaining or even slightly improving the training efficiency. 

5. Universality and Scalability 

Compared with traditional mechanisms such as jump connections and dense connections, the 

dynamic connection mechanism based on Nash equilibrium proposed in this paper shows excellent 

universality and wide applicability. Specifically, the universality of this connection mechanism can 

be elaborated in detail from the following three levels. 

First, structural universality. The design of this mechanism is independent of the specific neural 

network architecture, and its core concept is to dynamically adjust the weights of multi-layer outputs 

as "participants". This enables it to be seamlessly applied to various mainstream network structures, 

such as traditional feedforward neural networks, convolutional neural networks (CNNs) with spatial 

feature extraction capabilities, graph neural networks (GNNs) for non-Euclidean data processing, 

and even the Transformer structure based on the attention mechanism that has been widely used in 
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recent years. This mechanism can improve the expressiveness and robustness of the model by 

adaptively adjusting the information flow from simple inter-layer connections to complex inter-layer 

interactions. 

Second, task versatility. Although the experiments in this article are mainly focused on image 

classification tasks, the proposed dynamic weight adjustment idea goes far beyond this. Tasks such 

as text understanding, machine translation, and sentiment analysis in the field of natural language 

processing (NLP), speech processing scenarios such as speech recognition and acoustic modeling, 

and information fusion and weight distribution between different modal features in multimodal 

fusion tasks can all benefit from this mechanism. In addition, it can also be applied to fields such as 

time series prediction and reinforcement learning, reflecting the extremely high flexibility and 

universal value of this mechanism. 

Third, the versatility of the system. The idea of this mechanism is not limited to the inter-layer 

connections within a single model, but also fits the higher-order system design concept. For example, 

in model ensemble learning, the outputs of different models can be regarded as "participants", and a 

better fusion strategy can be achieved through dynamic weight allocation. In modular neural 

network design, the collaborative work between independent modules can improve the synergy and 

adaptability of the entire system through this mechanism. In heterogeneous structure collaborative 

optimization, the dynamic fusion method based on Nash equilibrium can effectively alleviate the 

conflicts and contradictions between different structures and improve the overall performance of the 

system more efficiently. 

In summary, this paper successfully introduces the concept of "equilibrium" into the design of 

deep learning structures, which not only significantly improves the performance and generalization 

ability of the model, but also provides a new theoretical perspective and technical path for future 

adaptive structure design. It is expected that the further improvement and promotion of this 

mechanism will play an important role in various research fields and application scenarios of artificial 

intelligence, and promote the development of more intelligent, flexible and efficient intelligent 

systems. 

6. Conclusions and Future Work 

This paper proposes an innovative jump connection mechanism that integrates the game concept 

of Nash equilibrium, aiming to overcome the problems of static weight distribution and insufficient 

adjustment of multi-layer output in traditional connection methods. Experimental verification shows 

that this mechanism shows obvious performance advantages in a simplified multi-layer perceptron 

structure, and the dynamic adjustment of connection weights can effectively promote the 

optimization of information flow and the improvement of model representation ability. 

In future research, we will conduct more in-depth thinking from the following aspects: 

First, we will verify the feasibility and performance of the multi-parameter, multi-party "game" 

connection mechanism in deeper and more complex neural network structures. Specifically, we 

regard more layers and more outputs as game parties, and achieve a more stable and effective 

equilibrium state in a wider inter-layer space through a more complex dynamic weight adjustment 

strategy. 

Next, we plan to extend this dynamic connection mechanism to self-attention structures, 

especially the multi-head attention mechanism of the Transformer model. We regard different 

attention heads as game participants and study how to achieve collaborative competition and fusion 

between multiple attention heads. This will enhance the model's multi-faceted and multi-level 

understanding of the input sequence, and further enhance the effectiveness of tasks in fields such as 

natural language processing (NLP). 

Third, we will explore the potential of this mechanism in the direction of model compression 

and knowledge distillation. In these scenarios, how to reasonably allocate information weights and 

adjust the knowledge transfer between the teacher model and the student model is the key to the 

dynamic weight adjustment mechanism to exert its advantages. It is expected that the introduction 
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of the concept of Nash equilibrium will improve the performance and stability of the compression 

model and optimize the information flow management in the distillation process. 

In summary, this paper introduces the concept of Nash equilibrium in game theory into the 

design of neural network structure, opening up a new research path. This not only deepens the 

theoretical basis of neural network design, but also provides solid empirical support and broad 

development space for the mutual integration of artificial intelligence with economics, game theory 

and other fields. It is hoped that this idea will inspire further innovation in the future and bring more 

intelligent, flexible and efficient structured solutions to deep learning and its wide range of 

applications. 
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