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Abstract

This research focuses on the application of machine learning to the sensory analysis of mead, which
opens up new possibilities in its classification and understanding. The aim was to use machine
learning algorithms to classify mead types based on their sensory analysis. Machine learning
algorithms such as Random Forest (RF), Adaptive Boosting (AdaBoost), Bootstrap Aggregating
(Bagging), K-Nearest Neighbours (KNN) and Decision Tree (DT) were used in the analysis of
chemical and sensory datasets. The Random Forest and K-Nearest Neighbours (KNN) algorithms
were found to be the most effective in mead recognition, obtaining the highest scores. In contrast, the
AdaBoost algorithm consistently produced the lowest accuracy results. Nonetheless, the Decision
Tree algorithm achieved the highest accuracy value (0.909), indicating its potential in accurate
classification based on aroma characteristics. The results suggest that the choice of an appropriate
classification model can significantly affect the performance of the mead identification process in
practical applications. Machine learning offers new opportunities in optimising mead production
processes. The application of machine learning in the sensory analysis of mead is important for
accurate classification, a better understanding of the factors affecting quality and the optimization of
the production processes of this beverage, contributing to the development of interdisciplinary food
research.

Keywords: machine learning; ensambles of classifiers; mead aroma; sensory analysis; odor-active
compounds

1. Introduction

Honey has been a valued food product for centuries, renowned for its exceptional taste, aroma
and health benefits. As the only available sweetener, honey has been an essential part of the diet since
the beginning of Homo sapiens[1,2]. Its diversity is due to different nectar sources, natural
environments, production techniques and fermentation processes. Depending on the type of plant
from which bees collect nectar, honey can take on other colours, flavours and aromas, making it a
unique product in each region. The processes of fermentation and storage of honey affect its final
properties, including texture, shelf life and nutritional content. The main alcoholic beverage prepared
from honey is mead, known for its unique and distinctive aroma and taste. The literature points to a
number of research efforts to better understand and classify mead. The research by the team of Cicha-
Wojciechowicz et al. (2024) focused on the effects of fermentation techniques and honey type on mead
sensory profile [3], while the team of Pereira et al. (2019) studied the composition of volatile aromatic
compounds [4]. Furthermore, Starowicz and Granvogl (2022) analyzed the effect of heat treatment on
wort aroma changes[5], which is an important step in understanding the technological processes that
influence the quality of this product. These research efforts help to know how different factors in
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different types of honey can affect the sensory and chemical properties of mead. Nowadays,
approaches using modern analytical technologies and machine learning methods are becoming
crucial in the systematic analysis of honey.

The application of machine learning methods to the analysis of mead offers new possibilities for
classifying honey types [6-8], identifying aromatic compounds, and conducting future experiments
in the optimization of production processes. Machine learning algorithms such as classifiers based
on supervised learning such as Random Forest (RF) [9,10], Adaptive Boosting (AdaBoost), Bootstrap
Aggregating (Bagging), K-Nearest Neighbours (KNN) and Decision Tree (DT) [11-13] among others,
can be applied to the analysis of chemical and sensory data sets [14,15]. DTs are some of the most
widely used algorithms in data analysis, which allow the creation of simple yet explainable decision
models. With DT, it is possible to both classify and predict the properties of food products based on
the various descriptors identified in a given research question. In a transparent and easy to interpret
way[16], DTs can be useful in the data analysis process, where the result must be understandable and
practical for DTs to serve as a tool for implementation in the production process. In combination with
other methods, such as RF or AdaBoost, decision trees form so-called ensembles of classifiers. This
approach helps to improve the efficiency of classification and can be a crucial tool for improving
mead production processes, assessing mead quality and distinguishing between different types of
mead based on sensory and chemical data characteristics.

In order to improve the performance of the models, an optimization technique was applied by
tuning the hyperparameters using the GridSearch method, which makes it possible to effectively
identify relevant features of the data, even in the case of high complexity. This type of optimization
not only improves the generalizability of the model, but also significantly increases its efficiency. As
pointed out by Liu et al. (2021) [17], machine learning algorithms can exhibit poor performance due
to inappropriate selection of hyperparameters. Optimization of hyperparameters becomes crucial for
achieving better model performance [18].

The aim of this research was to investigate the possibility of using machine learning to classify
mead types based on their sensory analysis, in particularly employing cluster map and k-means
methods to identify relationships between mead groups based on their sensory characteristics. This
approach will not only allow an accurate classification of mead, but also improve understanding of
the factors that influence its quality.

This research contributes to the development of interdisciplinary research on food products,
combining advanced methods of chemical analysis, sensory evaluation and artificial intelligence.

2. Results and Discussion

2.1. Hierarchical Analysis of Mead Aroma Compounds

A cluster map of odor related characteristics and odor compound concentration characteristics
was generated (Figure 1). It was found that one variable had the highest value relative to the others.
This was the odor sensory attribute, General Odor Intensity, which was the focus of the next stage of
the experiments. Based on this analysis, combinations were made to create learning sets and then a
model mead classification process. It was also observed that for the ‘buckwheat’ type of mead, in
addition to General Odor Intensity, sensory attributes such as Malty, Rum, Honey, Fermented and
Alcoholic achieved high scores. For comparison, the sensory attributes listed for the other types of
tilia and acacia mead were also higher for buckwheat honey than for the other attributes. This means
that these sensory aroma trait variables were more dominant than the aroma compound
concentration traits. This made it possible to accurately understand and prepare classification models
for the selected aroma-sensory attributes. It was also found that the dominant decision class for mead
would be the variable responsible for the type of buckwheat.
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Figure 1. Clustermap of odor descriptors against compound concentrations.

2.2. Interpretation of K-Means of Honey Aroma Compounds

In the next stage of research, K-means analysis (Figure 2) was carried out between the descriptors
(odor sensory attributes) identified from the clustermap patterns. In Table 1, it can be observed that
cluster 2 had the highest value of variance for the senor trait General odor intensity. This was
confirmed from the clustermap analysis that General odor intensity strongly stands out in between
cases in this cluster. It is possible that this descriptor plays a key role in identifying the type of mead.
In this cluster, the General Odor Intensity interaction may facilitate the clustering of cases for other
sensory attributes, which is reflected in the high values for other sensory attributes. For cluster 1,
learning cases the sensory traits of mead aroma showed low intensity among the characteristics. This
means that for this cluster 1, the learning cases do not distinguish among the characteristics. The
highest variance value in this cluster 1 is also determined by the General Odor Intensity, whose mean
value was 3.21. Cluster 0 gave an inter-mediate value between cluster 0 and cluster 1, suggesting that
the General odor intensity descriptor was moderately expressed in the cases from this cluster. The
learning cases in this cluster 0 may have been particularly characteristic of the moderate value of the
aforementioned descriptor. In conclusion General Odor Intensity indeed represented an important
sensory property for mead classification.
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Figure 2. K-Means for descriptors: General_odor_intensity, Honey, Malty, Yeasty, Fermented, Alcoholic, Floral,

Rum.

Table 1. Results of K-Means for descriptors: General_odor_intensity, Honey, Malty, Yeasty, Fermented,
Alcoholic, Floral, Rum.

CLUSTERGeneral_odor_intensity Honey Malty = Yeasty FermentedAlcoholic Floral Rum

0 4.182051 4.125641 3.446154 4.164103 4.312821 4.997436 4.8538464.164103
1 3.210811 2.435135 1.643243 0.943243 1.878378 2.097297 1.2945951.513514
2 8.065625 6.165625 5.453125 2.468750 5.046875 4.656250 2.2531256.203125

2.3. Machine Learning

In the analysis carried out on the basis of 21 different combinations of sensory features on the
input variables classifying the mead, different machine learning algorithms were evaluated for their
performance based on four key measures: accuracy (Acc), precision (Precision), sensitivity (Recall)
and the Fl-score (Table 2). The highest scores were obtained by the Random Forest (6 times) and
KNN (6 times) algorithms. It can be concluded that these models were the most effective in classifying
mead. It can be assumed that Random Forest, due to its use of multiple decision trees and random
feature selection technique, had a high resistance to over-fitting. This translates into its stability and
good performance in different configurations with mead based features [19]. On the other hand,
KNN, based on nearest neighbour voting, also achieved high performance, especially in the
evaluation of the performance metrics of this model [7,20,21]. Research shows that Random Forest,
especially when combined with suitable feature extraction methods, achieves excellent results (e.g.,
Acc above 93%) [8,11,19,22,23]. Employing voting schemes and different distance metrics can further
enhance classification performance. However, it should be noted that KNN is more sensitive to an
increase in the number of features and may be less computationally efficient with large datasets.

In summary, both Random Forest and KNN can be very effective in sensory clas-sification tasks,
but their advantage is due to different mechanisms of operation: RF from the strength of the tree
ensemble and randomness, and KNN from local neighbour voting in feature space [22].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The rest of the machine learning algorithms such as Bagging (6 times), Naive Bayes (3 times) and
Decision Tree (3 times) also performed well, but were not able to outperform Random Forest and
KNN in terms of stability of results in different combinations. Bagging, a technique that involves
training multiple models on different data samples, showed very robust results, but slightly less
stable than the other algorithms. Naive Bayes and Decision Tree, although effective, achieved higher
results, but only for selected correlations.

However, the highest metric for assessing the effectiveness of the model was ob-tained with
Decision Tree for the sensory features General odor intensity, Yeasty, Floral, which reached an
accuracy of 0.909, a precision of 0.929, a recall of 0.909 and an F1-score of 0.911. It was observed that
when optimizing the algorithms with the Grid Search method for the most effective decision tree
model, the value for the tree depth hyperparameter reached a score of 6. Depending on the
combination of sensory features, the Grid Search method produced different results. This is due to
the fact that for the Decision Tree model with data on these sensory features, the optimal tree depth
was 6, whereas in other configurations, both for the Decision Tree and Random Forest models, values
of less or more were obtained. The aim of this was to avoid overfitting the model, as an appropriate
tree depth affects the ability of the model to generalize, and too much depth can lead to the model
fitting the noise in the data rather than capturing the true relationships.

In contrast, the worst results were obtained with the AdaBoost algorithm. In fact, the AdaBoost
model achieved the lowest accuracy value of 0.515 for aroma features such as General Odor Intensity,
Rum and Yeasty, indicating its weaker performance compared to other algorithms. AdaBoost, which
is a boosting algorithm, aims to improve the accuracy of the classifier by iteratively increasing the
weights of incorrect examples and creating new weak classifiers.

Table 2. Machine learning algorithms with best hyperparameters.

No. Descriptors Alorithm AT  Best Hyperparameter
1 'General_odor_intensity’,
'Honey', 'Malty' Random Forest {'max_depth': 7, 'n_estimators": 500}

Decision Tree {'max_depth': 5}
AdaBoost {'learning_rate': 0.01, n_estimators': 50}
Bagging {'n_estimators': 100}
KNN {'metric": 'chebyshev', 'n_neighbors': 3}
Naive_Bayes {'var_smoothing': 1e-09}

) 'General_odor_intensity’,

'Honey', 'Fermented' Random Forest {'max_depth": 6, 'n_estimators": 10}

Decision Tree {'max_depth': 6}
AdaBoost {'learning_rate": 0.01, 'n_estimators': 50}
Bagging {'n_estimators': 50}
KNN {'metric: 'manhattan’, 'n_neighbors': 5}
Naive_Bayes {'var_smoothing': 1e-09}

3 'General_odor_intensity’,

'Honey', 'Rum' Random Forest {'max_depth" 3, 'n_estimators": 10}

Decision Tree {'max_depth': 5}
AdaBoost {'learning_rate": 0.01, 'n_estimators': 50}
Bagging {'n_estimators': 200}
KNN {'metric: 'manhattan’, 'n_neighbors': 2}
Naive_Bayes {'var_smoothing': 1e-09}

4 'General_odor_intensity’,

'Honey', 'Yeasty' Random Forest

Decision Tree

1

{'max_depth': 3, 'n_estimators": 100}
{'max_depth': 3}
{

AdaBoost 'learning_rate": 0.01, 'n_estimators': 50}
Bagging {'n_estimators': 200}
KNN {'metric": 'chebyshev', 'n_neighbors': 3}

Naive_Bayes

{'var_smoothing': 1e-09}
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'General_odor_intensity’,

> 'Honey', 'Floral' Random Forest {'max_depth" 7, 'n_estimators': 50}
Decision Tree {'max_depth': 6}
AdaBoost {'learning_rate': 0.01, n_estimators': 50}
Bagging {'n_estimators': 100}
KNN {'metric": 'euclidean’, 'n_neighbors": 7}
Naive_Bayes {'var_smoothing': 1e-09}
6 'General_odor_intensity’,
'Honey', 'Alcoholic’ Random Forest {'max_depth" 7, 'n_estimators': 1000}
Decision Tree {'max_depth': 5}
AdaBoost {'learning_rate": 0.01, 'n_estimators': 100}
Bagging {'n_estimators': 100}
KNN {'metric: 'minkowski', 'n_neighbors": 2}
Naive_Bayes {'var_smoothing': 1e-09}
” 'General_odor_intensity’,
'Malty', 'Fermented' Random Forest {'max_depth" 4, 'n_estimators': 50}
Decision Tree {'max_depth': 7}
AdaBoost {'learning_rate": 0.01, 'n_estimators': 50}
Bagging {'n_estimators': 50}
KNN {'metric: 'manhattan’, 'n_neighbors": 3}
Naive_Bayes {'var_smoothing': 1e-09}
8 'General_odor_intensity’,
‘Malty', Rum' Random Forest {'max_depth" 7, 'n_estimators": 10}
Decision Tree  {'max_depth'" 5}
AdaBoost {'learning_rate": 0.1, n_estimators': 50}
Bagging {'n_estimators': 100}
KNN {'metric 'manhattan’, 'n_neighbors": 5}
Naive_Bayes {'var_smoothing': 1e-09}
9 'General_odor_intensity’,
'Malty', "Yeasty' Random Forest {'max_depth" 7, 'n_estimators': 50}
Decision Tree {'max_depth': 6}
AdaBoost {'learning_rate": 0.01, 'n_estimators': 50}
Bagging {'n_estimators': 200}
KNN {'metric': 'minkowski', 'n_neighbors": 3}
Naive_Bayes {'var_smoothing': 1e-09}
10 'General_odor_intensity’,
'Malty', 'Floral' Random Forest {'max_depth" 6, 'n_estimators": 10}
Decision Tree  {'max_depth" 4}
AdaBoost {'learning_rate": 0.01, 'n_estimators': 50}
Bagging {'n_estimators': 50}
KNN {'metric": 'chebyshev', 'n_neighbors': 3}
Naive_Bayes {'var_smoothing': 1e-09}
1 'General_odor_intensity’,
'‘Malty', 'Alcoholic' Random Forest {'max_depth" 6, 'n_estimators": 10}
Decision Tree {'max_depth': 4}
AdaBoost {'learning_rate': 0.01, n_estimators': 50}
Bagging {'n_estimators': 50}
KNN {'metric 'manhattan’, 'n_neighbors": 3}
Naive_Bayes {'var_smoothing': 1e-09}
1 'General_odor_intensity’,

'Fermented', 'Rum'’

Random Forest
Decision Tree
AdaBoost
Bagging

KNN

1

{'max_depth': 5, n_estimators': 50}
{'max_depth': 6}

{'learning_rate": 0.1, 'n_estimators': 500}
{

{

1

n_estimators': 100}

1

metric": 'euclidean’, 'n_neighbors": 2}
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{'var_smoothing': 1e-09}

13

'General_odor_intensity’,
'Fermented', "Yeasty'

Random Forest
Decision Tree
AdaBoost
Bagging

KNN
Naive_Bayes

'max_depth': 4, n_estimators': 10}
'max_depth'": 6}

"

learning_rate': 0.01, 'n_estimators': 50}

1

n_estimators': 50}

1

metric" 'euclidean’, 'n_neighbors": 5}

—— —— —— — — —

1

var_smoothing': 1e-09}

14

'General_odor_intensity’,
'Fermented', 'Floral'

Random Forest
Decision Tree
AdaBoost
Bagging

KNN
Naive_Bayes

1

max_depth': 6, 'n_estimators': 100}
'max_depth'": 3}
'learning_rate": 0.01, 'n_estimators': 50}

1

n_estimators': 100}

1

metric: 'manhattan’, 'n_neighbors': 5}

1

—— —— —— —— —— —

var_smoothing': 1e-09}

15

'General_odor_intensity’,
'Fermented', 'Alcoholic'

Random Forest
Decision Tree
AdaBoost
Bagging

KNN

Naive_Bayes

1

{'max_depth': 3, 'n_estimators": 100}
{'max_depth': 3}

{'learning_rate': 0.01, 'n_estimators': 100}
{'n_estimators': 50}

{
{

1

metric" 'euclidean’, 'n_neighbors": 2}

1

var_smoothing': 1e-09}

16

'General_odor_intensity’, 'Rum/,

"Yeasty'

Random Forest
Decision Tree
AdaBoost
Bagging

KNN
Naive_Bayes

'max_depth': 7, n_estimators': 50}
‘max_depth'": 7}

"

learning_rate': 1.0, n_estimators': 50}

1

n_estimators': 100}

1

metric 'manhattan’, 'n_neighbors': 5}

—— —— —— — — —

1

var_smoothing': 1e-09}

17

'General_odor_intensity', ' Rum’,

'Floral'

Random Forest
Decision Tree
AdaBoost
Bagging

KNN
Naive_Bayes

1

max_depth': 4, 'n_estimators': 500}
max_depth': 3}

'learning_rate": 0.1, 'n_estimators': 500}
'n_estimators': 100}

metric: 'chebyshev', 'n_neighbors': 2}
var_smoothing': 1e-09}

1

1

1

—— —— —— — — —

18

'General_odor_intensity’, 'Rum/,

'Alcoholic’

Random Forest
Decision Tree
AdaBoost
Bagging

KNN
Naive_Bayes

1

max_depth': 5, 'n_estimators': 100}
max_depth': 3}

'learning_rate": 0.01, 'n_estimators': 50}
'n_estimators': 100}

metric": 'euclidean’, 'n_neighbors": 3}
var_smoothing': 1e-09}

1

1

1

—_————— — - ——

19

'General_odor_intensity’,

"Yeasty', 'Floral'

Random Forest
Decision Tree
AdaBoost
Bagging

KNN
Naive_Bayes

1

max_depth': 6, 'n_estimators': 100}
'max_depth'": 6}

'learning_rate': 0.01, 'n_estimators': 50}
'n_estimators": 50}

metric: 'chebyshev', 'n_neighbors': 3}
var_smoothing': 1e-09}

1

1

———— —— — — —

20

'General_odor_intensity’,
"Yeasty', 'Alcoholic'

Random Forest
Decision Tree
AdaBoost
Bagging

KNN
Naive_Bayes

1

max_depth': 3, 'n_estimators': 50}
max_depth': 3}

'learning_rate": 0.1, n_estimators': 50}
'n_estimators': 50}

metric: 'chebyshev', 'n_neighbors': 2}
var_smoothing': 1e-09}

1

1

1

—— —— — —— — —

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202507.0872.v1


https://doi.org/10.20944/preprints202507.0872.v1
http://creativecommons.org/licenses/by/4.0/

1:10.20944/preprints202507.08

do

Lo
N
)
N
=
=)
=
o
i
xo
g
(2]
o
a
o)
=
u
>
w
Lo
o
w
[
o
T
©)
Z
o
o
&
=
o
2
=
s
s
2
=
g
2
=
S
g
o

8 of 15

10}

.

n_estimators

27"

pth'

max_de
max_de

{v

Random Forest

tensity', 'Floral’,

'Algoholic'

'General_odor_in

21

_depth": 3}

r

Tree

1S10N

Dec

100}

1

{'learning_rate': 0.01, 'n_estimators

{'n_estimators

AdaBoost
Bagging

KNN

50}

manhattan

.

'n_neighbors': 3}

7

{

{'metric":

{v

1e-09

'.

g

var_smoothin

Naive

Bayes

Accuracy against descriptors

Decision Tree
e AdaBoost
Bagging

Algorithm Al
mmm Random Forest
KNN

=
08
m
e
>
o
5
< 0.6

Naive_Ba

yes

LJljoyody, Jelold, ..hu,mtﬂuc,\k_oﬂo\,ml_mzwu
J1oyooy, A1sess, | ANsusiul Jopo [eisusn
Jelord, *.A1seah, | ANSUSIUL 10poT[RI3UDD
2104od)y, "wny, | ANSuUZIul 1opo”|esauag
BI04, ‘wny, ‘ ANSUSiulIopo |BlsUlny

Kiseay, Ny, LANSUSIUITIcpaT|elausn
2110Y02]Y, ", pajusuLIs, | AJSUSIUI IopD [BISUSD)
Jedald, * pauaud, | ANsusulIopo T elsue D
AIsesn, | paiuswiad, LAISUSIUL IORO | 2lauRD)
Wiy, *,pajuaiulad, A1ISUaUl 10po 13U
2110403)y, "A3eW, | ANsURIul iope T RIBUSD)
Jelal4, A1, ANsusiulIopo”|elaUaD
Jfisesy, L Alep, | AIsusiuliopoTjeIsusD
ny, AN, L AJISuaul lopo” elauan
pAjuaLLIBY, " Ky, *AIsuaiulIopo |eiausg
D1joyod)y, ABUoH, ‘ AJISUBIUN JOpO [BIBUSD)
JRald, ABUOH, L AISUSIUI 0RO [eIsuRn
Jasesy, L ASUOH, "AlSUBIUL JOpO |BIBUSD
iy, ASUOH, ALSUSIUl I0pO |2I9USD)
JpRusuLBY, | ABUOH, ,AJISUBIUI IOPO |RIBUBD)

Ldlel, L AsuoH, AJisusul 1opo”|eiauag

Descriptars

Figure 3. Impact of Descriptors on Algorithm Accuracy.

Recall against descriptors

Decision Tree
- AdaBoost
Bagging

Algorithm Al
. Random Farest
KNN

0.8
.6

f=1
11299y

MNaive_Bayes

JDnoyoo)y, ‘elold, .,}u,mcmu:,\hﬂv.u\_mhmcuu
210402)Y, | A3seak, | Isusjur Iopo T |RIauan
Jeiold, * A1528), * AJISUBIUl IOpO |BISURD)
J31joyely, | wny, | AlIsualulJopo”|e1auan
L2404, Ny, * £3ISUBjuUlIopo | RISUBY
JAlseas, winy, | Alsusiul Jope |eI1sus9)
J2ljoyod)y, | pajuswaad, { AJIsusiul Iopa [giausn
L8404, " pEIUBULIBS, " ASUSIUTI0PO T 2IBUDS)
JAlsesy, ‘pRiusulad, fAJISUSIUN J10poT [BIBUSD
wny, L pajuaulad, L AlsusiuliopoTeisus
Dleyoly, L ANew, | AlIsusiul 1opo [Riauany
Jledold, *Aje, * AJIsusiul 1opo”|elausn
JAisea), A, LAJIsusIul Japo |BISURD
Jwny, A3y, * AIsUsiul 1opo [e1susD)
JpRiuaua4, Alep, AJSuaiulTIopa [eiauag
D1loyo3)y, ‘| ABUoH, *,A3ISUBIUN JOpO” |RIBUBT)
24014, " AUOH, " AISURIUI I0pD” [RIBURD
JAises), L ABUOH, | ANSUSIUIICRO |BIBUBD
Jwiny, L ASUoH, | ANSUSIUL IOPO T |RIBUSS)
JpauBLLIE], " ABUOH,  AJISUBIUITIOPO [BIBURD

Aljel, L AUCH, * ANSUSUITIopoT|RIBUSY

Descriptors

Figure 4. Impact of Descriptors on Algorithm Recall.

Precision against descriptors

Decision Tree
e AdaBoost
Bagging

Algarithm Al
= Random Forest
KNN

o7
0.6

o

0.9
=
208

M
[v]

yes

Naive_Ba

D10Y031Y, ‘elold,  AISUSIUl I0po T |elBus
21jeYo3ly, ‘Alsesy, | AYSUSIUlIopoT|eIRUSD
Jledoly, " Laseay, | A1suLiul Iopo |eisues
SHOYOIIY, WinY, AISUSIUTI0poeT|IsUSD
J|BJold, ", wny,  A)SuUsjul 1opo [2Isuan

JAseay, winy, L AJISUBIUl JOPO [BIBUSD)

21002y, ,PIJUBLLIBS, { AYISUS)UI IOpa |RISUIY

Jledold, ", pajuswiey, | AJ|sUaul Jopo |[elsuag
Ajsean, pajuauuad, ‘ Lisusiuiiopo” |eisusn
JWny, ‘,paIuswIay, | A1ISUSIUl JOPO |BISUST)
D1eYo|y, AR, ' AYSUSIUL IDPOT |RIaUSD)
JEelold, “ Alep, L AlISUSIUI JOpO |BIBUEE
JAisesp, AR, | Asusur lopo |glauag
wny, * Ajep, {AJSUajul I0p0 |EIBURD
JpajuBLLIad, " AlEW, "ANSUSIUITIOPO |2lauas)
DOY0I|Y, LASUCH, ‘ANISUZIUIIOPO [RIRUSD
J|ei1old, ' Asuoy, * AJIsusiur Jopo [21susn
JAisesp, JA3UOH, ' ANSUSIUL IDRO” [RIBUBD
Wy, ' A3UOH, * AJISU2Ul10p0” |B1auaD)
JpajusLIad, ASUcH, * A1SUSIUITIOpO”|RIBUSS)

Ayjem, L A3UcH, ANSUSIUL 0O |2I2URD

Descriptors

)
)
=
()
2
>
o
O
@)
2]
C
(@]
=
IS
|
@)
(]
=
=
@
(]
g
(@)
©
)
©
=
-
°
Q
Qo
=)
2
=
52}
a
)
g
=
©)
L=
=
)
T
()
<
=
>
o
Lo
AN
o
AN
©



https://doi.org/10.20944/preprints202507.0872.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 July 2025 d0i:10.20944/preprints202507.0872.v1

9 of 15
Figure 5. Impact of Descriptors on Algorithm Precision.
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Figure 6. Impact of Descriptors on Algorithm F1-Score.

In Figure 3, it is observed that the Random Forest and K-Nearest Neighbours (KNN) algorithms
generally achieve the highest accuracy results in classifying mead types. In Figure 4, the Random
Forest and KNN algorithms also demonstrate high performance in terms of recall rate. Overall, these
algorithms also provide high precision (Figure 5) scores and F1-Score (Figure 6). Although it is worth
noting that for specific sensory characteristics of the mead, the Decision Tree algorithm obtained the
highest single value for accuracy, recall, precision, and F1-Score. The results clearly indicate that
choosing an appropriate classification model significantly impacts the performance of the mead
identification process in practical applications. Additionally, selecting suitable sensory descriptors is
crucial for achieving optimal mead identification performance.

When tuning the models using the K-NN algorithm, it was observed that the ‘Manhattan’
hyperparameter was the most frequently selected. The reason for this is that it gives a better
assessment of model performance and stability [24]. In the case of the Random Forest algorithm, as
in the case of the Decision Tree algorithm, the choice of hyperparameter was influenced by the
avoidance of over-fitting and, at the same time, the goal of obtaining high model performance. In the
case of the Naive Bayes model, the Grid Search method determined the exact optimal value of
var_smoothing equal to 1e-09 to improve the stability of the model, as well as its generalizability,
avoiding overfitting problems or computational errors associated with zero variance. In summary,
the selection of different hyperparameter values using different machine learning algorithms made
it possible to test on the basis of which sensory characteristics the model effectively classifies the type
of mead. In light of the above and observations in the literature, it is worth investigating the selection
of hyperparameters suitable for a specific task [25]. In the age of modern machine learning and deep
learning tools, it allows that optimization through Grid Search has become rapid. Observations and
literature show that when choosing an optimization technique, it is also worth paying attention to
the size of the dataset for a given problem [26].

2.4. Analysis of Classifier Performance Based on Confusion Matrix Results

In machine learning, confusion matrices are an important tool for evaluating the performance of
classifiers. Confusion matrices allow a detailed analysis of the predictive performance for a test set to
be performed. It has also been observed in the literature that it is the most commonly used
visualization to present among others this in-formation [27-31]. It was found that it is usually
presented to represent a single model. In our study, the recognition behavior of the selected mead
type was also compared between models, which is crucial for selecting the appropriate model in a
future implementation in an application [11,27].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In this experiment, the number of correct and incorrect classifications of mead in-to a particular
class (buckwheat, acacia, tilia) was accurately determined. This analysis led to an understanding of
the extent to which the model correctly classified learning instances related to aroma characteristics
and where it went wrong. The confusion matrix also made it possible to identify specific difficulties
that may have occurred with certain types of mead. Such a solution will be helpful in optimizing the
model, which would lead to an assessment of the overall performance of the classifier, while
attempting to improve these algorithms. A total of 126 confusion matrix plots were generated (Figure:
51-5126), corresponding to 21 combinations of sensory odor features generated from the similarity
map analysis and the K-means method. Each com-bination contained 6 models and for each model a
confusion matrix was plotted for the test set. In each matrix the class number corresponded to the
type of mead, i.e. '1' was acacia, 2' was buckwheat and '3' was tilia. In order to explicitly identify
individual types of mead, the classification analysis of the attributes 'General odor_intensity’,
'Honey' and 'Malty' from Table 1, Random Forest (Figure S1) and Bagging (Figure S4) successfully
classified 11 cases for acacia and at the same time made an error in 1 case by assigning tilia to mead
on the test set. In the class corresponding to buck-wheat-based mead, 8 cases were classified in the
class corresponding to this buck-wheat, while 2 cases were incorrectly classified in the class
corresponding to tilia. In the case of the last type of honey, 9 cases were clearly classified in favor of
tilia honey, while only 2 cases were incorrectly classified in favor of tilia honey. In the second case
(Table 3), for the characteristics 'general_odour_intensity', 'honey', 'fermented’, the Random Forest
model was the most successful, classifying acacia honey in 11 cases, buckwheat-based mead in 9 cases
and tilia honey in 7 cases (Figure S7). In the third case (Table 3), considering the features
'general_odor_intensity’, honey', rum’, the Bagging model was the one that correctly classified acacia
honey in 11 cases, buck-wheat-based mead in 9 cases and tilia honey in 8 cases (Figure 516). The
analysis of the confusion matrix between the models and the selection of sensory attributes showed
that the algorithms were more successful in classifying acacia honey. In the case of buckwheat and
tilia honey, this depended on the choice of model and the sensory characteristics of the mead.
Considering the most effective decision tree model for the sensory attributes
'General_Odor_Intensity’, 'Yeasty', 'Floral' (Figure S109-S114), the confusion matrix on the test set
correctly classified acacia honey in 10 cases, buckwheat-based mead in 9 cases and lime tree honey in
11 cases (Figure S110). In fact, it can be seen that the difficulty in classifying mead is due to the type
of mead, i.e. tilia honey, where in case 19 (Table 3) tilia honey was classified more correctly than
acacia honey. In the group of characteristics related to General_Odor_Intensity, Rum, Yeasty, where
the AdaBoost model performed the worst (Figure S93), the KNN algorithm proved to be the most
successful model correctly classifying tilia mead in 11 cases and buckwheat and tilia mead in 9 cases
(Figure 595).

3. Materials and Methods

3.1. Data Source

For the current research, data from a previously published study were used, including a
quantitative olfactory profile analysis and the quantitation of important odor-active compounds for
twelve types of mead. These meads were produced using three different honey varieties (acacia,
buckwheat, and tilia) and three fermentation methods: spontaneous fermentation, inoculation with
Saccharomyces cerevisiae yeast, and inoculation with Galactomyces Geotrichum molds. Additionally,
both heated and unheated wort variations were analyzed. The methods used for sample analysis
were thoroughly described before [3].

3.2. Data Collection

The research examined a series of sensory attributes: 'general odor intensity', 'honey', ‘malty’,
'fermented’, 'Tum’, 'yeasty', 'floral’, 'alcoholic'. A total of these attributes were created. This process
facilitated the creation of multiple input variables sets used for training the cluster models. The

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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combinations aimed to deepen the under-standing of relationships between the different sensory
characteristics and potentially enhance the performance of the algorithms. By varying these patterns,
it was possible to better capture important features that influence the accuracy of mead classification.
As a result, 21 learning sets were designed for which the input variables were 3 sensory
characteristics. The output variable in each set was the type of honey (acacia, talia, backwheat). The
dataset consisted of 108 learning cases. The train_test_split function was used to split the set into a
training set and a test set. This means that 30% of the learning cases belonged to the test set and 70%
of the learning cases belonged to the training set. The selection of learning cases from the training set
was done by the aforementioned function, which automatically decides which cases should go into
the learning set and which into the test set. The only criterion set by the user is the proportion that
determines how much data is included in the training set and how much in the test set. A random
seed (random_state) was also specified to ensure reproducibility of the distribution, allowing results
to be replicated in future experiments.

3.3. Parameter Selection for Classification Models

In the design of algorithms using ensembles of classifiers, an appropriate architecture was
developed for each model (Table 3), which was then used to the classify the different types of mead.
In addition, during the learning process, the selection of the hyperparameters of each model was
automated in order to obtain only the best model in terms of the evaluation metrics. In this way, it
was possible to optimize the performance of each classifier to obtain the best possible results in the
classification of mead types. The automated hyperparameter selection process also ensured greater
consistency and repeatability of results, eliminating the risk of errors due to manual calibration.

Table 3. The structure of hyperparameters in tuning algorithms for ensembles of classifiers.

Machine learning

Hyperparameters used Value
algorithm type
DecisionTree max_depth 3,4,5,6,7
RandomForest max_depth 3,4,5,6,7
RandomForest n_estimators 10, 50, 100, 200, 500, 1000
AdaBoost n_estimators 50, 100, 200, 500, 1000
AdaBoost learning_rate 0.01,0.1, 1.0
KNN n_neighbors 2,3,5,7
euclidean, manhattan, chebyshev,
KNN metric minkowski
KNN weights 'uniform’, 'distance’
Bagging n_estimators 50,100,200
Naive_Bayes var_smoothing le-9, 1e-8, 1e-7, 1e-6, 1e-5

In view of the fact that machine learning algorithms often contain several hyperparameters, this
study used the optimization of selected hyperparameters to assess the performance of the models
[32]. Within the Random Forest model, a set of hyperparameters was selected that included different
values for the maximum tree depth (max_depth) and the number of estimators (n_estimators). This
allowed different configurations to be tested and the optimum balance between accuracy and model
complexity to be found.

In the research question for decision trees, only the maximum tree depth (max_depth) was
considered as a hyperparameter, with specific values tested (Table 1). These values were intended to
strike a balance between the complexity of the tree and its ability to extract meaningful patterns from
the data.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Two important variables were introduced for the AdaBoost model: the number of estimators
(n_estimators) and the learning rate (learning_rate). These values were tested over a wide range to
optimise the learning rate and the number of weak classifiers in the ensemble.

The K-Nearest Neighbours algorithm used a more complex parametric grid, including the
number of neighbours (n_neighbours), the distance measure (metric) and the way the neighbours
were weighted (weights) (Table 3). Each of these parameters affected classification accuracy and
computation time, so different values were tested to select the best settings.

Bagging (param_grid_bag) considered the parameter n_estimators, which deter-mines the
number of estimators in the ensemble. Three different values were tested (Table 1) in order to find
the optimal number of submodels that best influenced the classification performance.

In the case of the Naive Bayes model, the var_smoothing hyperparameter was used, which was
responsible for adding a small value to the variance of the features to avoid the problem of dividing
by zero. The tested values (Table 3) allowed to check the effect of this parameter on the stability and
accuracy of the model.

3.4. Model Training and Testing

In the next step, the learning process of the designed ensemb]es of classifiers [33-35]was carried
out in order to evaluate their performance in recognizing mead types. During validation on the test
set, the quality of learning was assessed using evaluation metrics such as accuracy, precision, recall
and F1-score. A confusion matrix was also used to analyze the predicted results. The process of model
estimation and learning was carried out using Python version 3.11.11 [36-39].

3.5. Statistical Analysis

In the process of clustering the data using the sklearn.cluster library, the clustering for the cases
defining the different sensory characteristics was plotted on a graph. In the next step, the PCA
(Principal Component Analysis) algorithm was used to re-duce the data to two principal
components, allowing them to be visualized in a two-dimensional graph. The K-Means algorithm
[20,40] grouped the sensory features and the results of the clustering were presented in a graph with
colour-coding for different groups separately. This visualization facilitated the evaluation of the
structure of the learning instances corresponding to the sensory features and allowed us to
understand the preparation of learning sets based on the three sensory features.

As part of the analysis of the sensory feature data, correlations between the different features
were also determined. A cluster map of the sensory features and odors was created to identify feature
similarities that could influence the classification results. Based on the clustermap results, it was
possible to prepare learning sets for selected odor features.

4. Conclusions

Within the scope of our research, we identified mead on the basis of selected sensory
characteristics of aroma, which allowed us to accurately classify this type of mead. By analyzing the
performance of different classification algorithms, we found that Random Forest and K-Nearest
Neighbours (KNN) algorithms proved to be the most effective models for mead recognition. Both
models showed high performance, but it was the Decision Tree algorithm that achieved the highest
accuracy value, suggesting its potential for accurate classification based on odor features. These
results indicate that the choice of an appropriate classification model can significantly affect the
performance of the mead identification process in practical applications. Analysis of the confusion
matrix also showed that acacia honey was more easily identified by the algorithms than tilia or
buckwheat mead. It is worth noting that the high performance of the decision tree algorithm
influenced the fact that the number of classified cases using the confusion matrix method was higher
for lime honey than for acacia honey. The highest model performance result was obtained using the
decision tree for odor sensory attributes such as General odor intensity, Yeasty, Floral, which resulted
in an accuracy value of 0.909, a precision of 0.929, a recall of 0.909 and an F1-score of 0.911.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Future research directions may focus on the optimization of mead production processes using
machine learning methods, which open up new opportunities for experiments aimed at increasing
the efficiency and quality of this beverage. A deeper understanding of the factors influencing the
quality of mead both in terms of its chemical and sensory characteristics is also an important area for
further analysis. In the future, it is also worth focusing on the selection and optimization of
classification models used in practice, because, as the results so far have shown, the appropriate
choice of algorithm significantly affects the effectiveness of mead identification. The difficulties in
distinguishing between buckwheat and lime mead require special attention analysis of the confusion
matrix has shown that they are classified less precisely than acacia honey, which may indicate the
need for further research into improving the classification performance of these particular types of
mead.

It is also worth highlighting the importance of developing interdisciplinary re-search that
combines advanced methods of chemical analysis, sensory evaluation and artificial intelligence. This
approach fosters the creation of modern research tools and the advancement of knowledge on the
quality and characteristics of food products, including mead.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figures 51-5126: Confusion matrix of the classifier ensembles calculated on the

test set for all sensory attributes of the odor.
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