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Abstract 

Structural rearrangements at calorimetric glass transition are behind drastic changes of materials 

characteristics causing differences of glasses from melts. Structural description of materials includes 

both species (atoms, molecules) and connecting bonds which are directly affected by changing 

conditions such as the increase of temperature. At and above the glass transition a macroscopic 

percolation cluster made up of configurons (broken bonds) is formed, an account of which enables 

unambiguous structural differentiation of glasses from melts. Connection of transition caused by 

configuron percolation is also discussed in relation to Noether theorem, Anderson localization and 

melting criteria of condensed matter. 
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1. Introduction 

While the calorimetric glass transition in amorphous materials is an obvious effect mechanically 

expressed by the solid-like behaviour such as brittleness of glasses against liquid-like behaviour 

including plasticity of molten state the underlying microscopic, atomic-size mechanisms and 

structural rearrangements responsible for the transition itself are still poorly understood. This 

resulted in widely spread affirmations that there is no structural difference between glasses and 

liquids and that both glasses and liquids are the same fluid state of matter which differ from each 

other only by the magnitude of viscosity or relaxation times [1]. Apart from the fact that the viscosity 

being even used on the logarithmic scale cannot serve as a criterion of glass transition - see e.g. Table 

4 of Ref. [2] which shows that the viscosity at the calorimetric glass transition spans over four orders 

of magnitude from 108.8 to 1013 Pas – it is now acknowledged that “the treatment of vitrification as a 

process of continuously breaking ergodicity with entropy loss and a residual entropy tending to zero 

in the limit of zero absolute temperature is in disagreement with the absolute majority of 

experimental and theoretical investigations of this process and the nature of the vitreous state”, a 

conclusion which has been explicitly illustrated by model computations [3]. 

This overview outlines the importance of distinguishing structural differences of amorphous 

materials below and above the glass transition temperature and highlights the role of the system in 

understanding the nature of transformation of glasses into melts. The focus is on utilisation of 

configuron percolation theory (CPT) aiming to use it on treating experimental data. Considering 

glass-liquid transition as melting of amorphous solids we formulate the melting criterion of solids as 

the condition of increase of Hausdorff-Besicovitch dimensionality of the set (SB) of configurons 

(broken bonds) from zero to 𝐷𝐻 = 𝑑𝑖𝑚𝐻|𝑆𝐵| ≥ 2.5. The constant volume jump of heat capacity at the 

glass transition then closely follows the equipartition theorem resulting from change of 

dimensionality of configurons set from 0 in the glassy phase to DH in the liquid ΔC𝑉 ≈ ΔC𝑉
𝑡𝑟𝑎𝑛𝑠 =

0.5𝐷𝐻𝑅, where R is the gas constant. 
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2. Structural Differences Between Glasses and Melts 

Glasses drastically differ from liquids structurally – thermally disrupted bonds in glasses 

constitute a small and often negligible fraction of the total number of chemical bonds which provide 

the integrity and rigidity of condensed matter while liquids are overloaded by broken bonds. 

Obviously the materials become gaseous if all chemical bonds between atoms or molecules are 

broken while we expect that they will melt when a significant and well-determined threshold fraction 

of bonds is broken [4]. Melting is accompanied by a clearly seen change of atomic arrangements in 

crystalline materials which transform from solid to liquid state via the first-order phase 

transformation in the Ehrenfest sense while for glasses the rearrangements of initially disorderedly 

distributed species (atoms, molecules) are almost indetectable. Meantime it is well recognised that 

the topology of the phase space of glasses drastically changes at the glass transition by reducing its 

dimensionality [5–9]. One can also state that topologically glasses differ from liquids in the real space 

which is characterised by the set theory via a fractal Hausdorff-Besicovitch (HB) dimensionality (set 

dimension) DH equals to  2.5, while glasses hold an integer DH which is equal to the dimension of 

physical space d = 3 [4,10–15]. The dimension of the set of chemical bonds of materials {SB} is 

determined by Minkowski box-covering of the set by boxes with side ε via limit: 

𝑑𝑖𝑚𝐻(𝑆𝐵) = 𝐷𝐻 = lim
𝜀→0

log 𝑁(𝑆𝐵,𝜀)

log(1/𝜀)
, (1) 

where N(𝑆𝐵 ,ε) is the number of boxes of the grid intersecting {SB} [16]. The structural difference 

between glasses and liquids is hence schematically illustrated by Figure 1. 

 

Figure 1. Schematic of interphases between the crystalline, vitreous and molten states of Me2O3 condensed 

matter where Me is a three-valent metal: A: Crystal-glass interface; B- Crystal-melt interface; C: Glass-melt 

interphase. Both crystals and glasses are fully polymerised practically without any broken bonds at low 

temperatures. Melts are much less polymerised containing many finite size clusters and many broken bonds 

compared to solids where these are not present. Most of publications including recognised handbooks attribute 

the same schematic image to both glasses and liquids erroneously not revealing the large fraction of broken 

bonds in liquids compared to glasses. 

This contributed to a misleading belief that glasses having a disordered distribution of atoms 

similarly to liquids are just liquids but having a very high viscosity which is arbitrarily set to be higher 

than about 1012 Pas aiming to consider an amorphous material in the glassy state [1,17–27]. The belief 

that glasses are the same liquids but at high viscosity is amplified by relatively small differences in 

the X-ray and neutron diffraction patterns exhibited by glasses and liquids as illustrated by Figure 2 

with details provided in [28] (See also Figure 2 of ref. [29]). 
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Figure 2. The pair-distribution function PDF of liquid and vitreous Ni with the inset showing a bulk Ni supercell 

obtained using molecular dynamic simulations (adapted from [28]). 

Meantime not the changes in viscosity but the connectivity between species (atoms and 

molecules) constituting the condensed matter is the governing parameter dictating the state of 

condensed matter [4,14,30–33]. Indeed, the viscosity at the calorimetric glass transition can be 

significantly larger or many orders of magnitude smaller than 1012 Pas [2,34–36] whilst ordered liquid 

crystals flow at a quite low viscosity being an ordered state of matter. Table 1 from [33] illustrates 

this statement by characterising phase states of condensed matter as a function of ordering and 

connectivity. 

Table 1. Phases of materials as a function of connectivity and ordering of atomic constituents. 

Degree of Ordering 
Degree of Connectivity 

Low High 

High 
Liquid crystals; Liquid quasi-

crystals 
Crystals; Quasi-crystals 

Medium Liquid glasses Glass-crystalline materials  

Low Melts Glass 1 

1 The connectivity between atomic species can be diminished not only by an increase of temperature: the 

irradiation of glasses, which breaks the interatomic chemical bonds, leads to fluidization of glasses [37,38]. 

Direct visualisation of oxide glass structure in line with the existing modified random network 

model [31] is available [39,40]. Structural differences between glasses and melts have been revealed 

a long time ago with Wendt and Abraham pioneering the identification of Tg based on them [41]. 

They have observed the different temperature behaviour of pair distribution functions (PDF) g(r) 

below and above the glass transition and proposed an empirical (statistically based) criterion for the 

glass transition by defining the empirical parameter RWA = gmin/gmax, where gmin and gmax are the 

magnitudes of the first minimum and first maximum of the PDF. It was found that the glass transition 

caused by changes of temperature (T), pressure (P) or both T and P always occurs when RWA  0.139 

– 0.142. It was shown later that this threshold coincides with the percolation threshold RWA = c [42] 

given by the universal Scher−Zallen critical density in the 3D space c = θc = 0.15 ± 0.01 [43,44]. Among 

the most important experimental works confirming the structural differences between glasses and 

melts was the work by Mattern et.al, [45] which analysed the thermal behaviour of the structure of 

Pd40Cu30Ni10P20 bulk metallic glass using high-temperature X-ray synchrotron diffraction. The 

temperature dependence of structure factor S(q) followed the Debye theory up to the Tg while above 

it was altered indicating on structural changes in the liquid. The temperature dependence of 

structural parameters is different in glass and in supercooled liquid (see Figure 3) whilst the atomic 
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pair correlation functions PDF(r)=g(r) reveals changes in short-range-order parameters of the first 

and the second neighbourhood with temperature. Figure 3 demonstrates that for amorphous Ni. 

 

 

(A) (B) 

Figure 3. Variation with temperature of structural factor and pair distribution function on crossing the glass 

transition temperature: (A) the first maximum of the structure factor S(q)max and its shifting position q1 reflecting 

the thermal expansion of Pd40Cu30Ni10P20 bulk metallic glass [45]. (B) the first sharp diffraction minimum PDFmin 

of amorphous Ni near Tg = 930 K [42]. 

Whilst Figure 2 demonstrated the fact that the PDFmin always increases on increase of 

temperature Figure 3A shows an evident kink of structure factor S(q) at Tg, Figure 3B demonstrates 

that the rate of increase of PDFmin has the same kink at Tg and becomes higher exactly above it. The 

changes in the structure of amorphous material at Tg cause thus changes in the macroscopic 

properties of the material and first of all in its thermal expansion – the thermal expansion coefficient 

of liquid is larger compared to that of glass. 

In addition to the well-recognised short-range order (SRO) the medium-range order (MRO) is 

revealed in both glasses and liquids where it is emphasised that the atomic pair-distribution function 

of simple liquids and glasses shows exponentially decaying oscillations beyond the first peak as a 

representative of MRO [46–49]. The structural coherence length that characterizes the exponential 

decay freezes at the glass transition and attenuates on increase of temperature [47]. 

3. Role of Configurons in the Phase Transformation 

A straightforward description of glass transition as a percolation-type phase transformation 

between the highly connected glassy state and less connected liquid phase (see Table 1) is provided 

by the configuron percolation theory (CPT) [10–14] which can be considered as one of the variants of 

the well-known two-state model also referred to as a two-level system which has been successfully 

used by glass researchers [50–53]. The liquid phase is typically treated in the two-state models as a 

mixture of two types of structural units with the internal variable being the molar fraction of one or 

the other type of them where the CPT uses as units the chemical bonds either intact or broken 

(configurons) which provide one or another state of matter – see Table 1. Notable that coupling of the 

two-state model with well-investigated relaxation models has also been demonstrated in many works 

[54–60]. Benigni [50] has accounted vibrational contributions to the thermodynamic functions using 

weighted sums of Einstein functions and configurational contributions to the liquid and glass phase 

functions applying a single internal variable the freezing kinetics of which on cooling being calculated 

with an Adam-Gibbs logarithmic relaxation law [61]. The main conclusions of CPT of glass transition 

are as follows [62]: 
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• Universality – all disordered systems should exhibit percolation-type transformations from solid-

like at higher degrees of connectivity (e.g. lower temperatures) to liquid-like (plastic) at lower 

degrees of connectivity at higher temperatures. 

• Singularities for derivative parameters – thermal expansion, heat capacity, shear modulus, and 

other properties of glasses show a relatively sudden change at the glass transition temperature. 

Derivative parameters of amorphous materials thus show typical features of second-order phase 

transformations e.g. theoretically they diverge at Tg. 

• Dimensionality change - the HB dimensionality of the system of configurons (broken bonds) 

changes at Tg from 0 in glasses to fractal DH  2.5 for melts. 

• Dynamic (twinkling) fractals – The glass–liquid transition is accompanied by the formation of a 

percolation macroscopic cluster made up of broken bonds – configurons – which is dynamic in 

nature — similar to Wool's twinkling fractals [63–65]. The cluster is dynamical and changes with 

time due to configuron diffusion. Nonetheless, at any moment of time there, is a percolating 

cluster made of configurons above the Tg whereas no such macroscopic clusters can be seen in 

the glassy state e.g. below the Tg. The characteristic linear scale which describes the branch sizes 

of dynamic clusters formed by configurons is the correlation length ξ(T); 

• Fractal medium range order – the higher cooling rate the larger remnant fractal cluster frozen at 

liquid–glass transition. Correlation length gives the average size of clusters made of broken 

bonds at T < Tg. At T > Tg it shows the average size of atomic clusters formed. Second-order phase 

transitions in ordered substances are typically associated with a change in the crystal lattice 

symmetry, and the symmetry is lower in the ordered phase than in the less ordered phase. In 

the spirit of Landau's ideas, the transition from a glass to a liquid spontaneously breaks the 

symmetry of bonds e.g. of the configuron system. At glass–liquid transition the amorphous 

material changes the group of isometries from the Euclidian to the fractal space group of 

isometries at length scales smaller than ξ(T). 

• Two activation energies of viscosity – the viscous flow has a variable activation energy above the 

glass transition temperature Q(T) which is high for glasses and low at high temperatures (Table 

2). 

Table 2. Viscous flow types and the CPT universal viscosity equation also known as DDO model [66,67]. 

Table 1. 

Low  

(in the glass)  

T <Tg 

Intermediate  

(in the supercooled 

melt)  

Tg<T<TA 

High  

(in the melt) 

T>TA=(1.100.15)Tm 

Extremely High  

Viscous flow type  

Arrhenian 

with  

high 

activation 

energy QH 

Non-Arrhenian,  

apparent variable 

activation energy Q(T)  

Arrhenian with   

low activation energy 

QL 

Non-activated, 

growing with 

temperature rise 

Universal 

viscosity equation 
1 

𝜂(𝑇) = 𝐴1𝑇 [1 + 𝐴2 𝑒𝑥𝑝 (
𝑄𝐿

𝑅𝑇
)] [1 + 𝐶 𝑒𝑥𝑝 (

𝑄𝐻 − 𝑄𝐿 

𝑅𝑇
)] 

1 The universal viscosity equation resulting from CPT correctly predicts the minima of viscosities at very high 

temperatures [68]. 

Fractal structures formed near the glass transition are dynamic structures. On melting glasses 

transform to melts which are supercooled melts above the Tg and transform to real melts at higher 

temperatures e.g. at and above the melting temperature Tm (Figure 4). 
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Figure 4. Temperature dependence of density and Hausdorff-Besicovitch (HB) dimensionalities of bonds in 

materials following CPT. 

The CPT approach also provides an explicit picture of the melting of solids enabling to reveal 

the reason for first-order solid-to-liquid phase transformation for crystalline solids and second-order 

continuous solid-to-liquid transformation for amorphous materials [4,62]. The mechanism behind 

one or another type of melting lies in the mobility of configurons which is high for crystals because 

of periodicity of crystalline lattice resulting in equivalence of their positions within the lattice and is 

low within the disordered lattices of amorphous materials due to fast localisation of excitations 

following Anderson’s localisation mechanism [69–72]. Due to their high mobility in crystals 

configurons are quickly migrating to areas of already formed liquid near impurities or surfaces where 

they condense or partly recombine adding the heat of condensation and recombination and thus 

effectively arresting the temperature referred as melting point Tm whereas configurons are highly 

localised (almost immobile) in amorphous materials forming geometrically clysters when their 

concentration becomes enough high without practical release of any heat due to absence of 

condensation and recombination processes. In crystals that resembles boiling process for water when 

the temperature is arrested at the boiling temperature with the difference that configurons rather 

than vapour bubbles are moving through the structure of crystals and are localised in amorphous 

substances. 

Symmetry changes are characteristic for all phase transformations including melting of materials 

which is transition from their solid to liquid form. Crystalline materials obey this law with obvious 

changes of symmetry group from that of a crystal to that of the group of Euclidean isometries of a 

Euclidean space 𝔼𝑛  comprising all translations, rotations, and reflections and arbitrary finite 

combinations of them where n=3 for three-dimensional space [73]. Symmetry changes are not so 

obvious for the glass transition i.e. the transition of amorphous materials from the vitreous to molten 

state because both these states belong to the E(3). Symmetry changes become evident for the phase 

space which account not only for the space location but also for momentum. The breaking of 

symmetry during phase transitions plays a crucial role in determining the system’s behaviour and 

the nature of the glass transition [74–76]. Within the CPT the main symmetry change is the change of 

dimensionality of space accessible to configurons from 0 in the glass to the fractal one DH in the liquid 

– i.e. here we observe an increase of dimensionality which can be linked with the new degrees of 

freedom related to translational motion. Following many publications such as [2,4–15,30–37,42,50,62–

67,77,78] we therefore conclude that the glass transition is a true phase transformation – a specific 

case within critical phenomena generically termed topological phase transitions which are amenable 

to the scaling approach and characterized by diverging length and time at the transition. 
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4. The Jump of Heat Capacity 

In the experiment the glass transition is always observed as a second-order phase transformation 

following the Ehrenfest classifications of phase transitions: there is a continuity of material volume 

and entropy (although with a kink at Tg) and there is a discontinuity of their derivatives at the 

transition. That specifically allowed the International Union of Pure and Applied Chemistry (IUPAC) 

to define the glass transition as a second-order transition in which a supercooled melt yields, on 

cooling, a glassy structure so that below the glass-transition temperature the physical properties vary 

in a manner similar to those of the crystalline phase [79]. In practice, namely the kinks and 

discontinuities observed using e.g. DSC are used to detect the Tg hence most of the data published 

are those which belong to the so-called calorimetric glass transition [80]. 

Observing that melting of substances has only small effects on the volume, cohesive forces, and 

specific heat which permitted Frenkel to conclude that ‘‘the character of the heat motion in liquid 

bodies, at least near the crystallization point, remains fundamentally the same as in solid bodies, 

reducing mainly to small vibrations about certain equilibrium positions’’ [79]. Moreover, he has also 

argued that these equilibrium positions are irregular in a liquid, just as in an amorphous solid, but 

while the equilibrium positions are permanent in a solid, they are not so in a liquid; rather each liquid 

atom oscillates for a time about the same equilibrium position, then jumps to a new one [82]. Wallace 

has refined Frenkel’s qualitative picture of the liquid state of matter by formulating the hypothesis 

that the liquid contains a universal ion-motional disordering entropy of NkBW relative to the solid 

where kB is Boltzmann constant and W = 0.80 [83]. He observed from experiment that for large-N 

systems the constant-density entropy of melting contains the universal disordering contribution of 

NkBW suggesting that the random structural valleys, which are static structure potentials as sums of 

harmonic normal modes, are of universal number wN, where ln(w) =W and experimental estimate 

for  is 0.80. Thus, the Hamiltonians of structural valley in materials is the static structure potential, 

a sum of harmonic normal modes, and an anharmonic correction [84]. Using this approach he has 

shown that in quasi-harmonic approximation, the liquid theory for entropy agrees with the 

experiment at elevated temperatures, to within 1–2% of the total entropy [83,84]. Based on the CPT 

picture of melting (see below) we conclude that the Wallace parameter W is equal to HB 

dimensionality of percolation clusters formed by configurons at melting DH divided by the 

dimensionality of space d, i.e. that W = DH /d  0.8. 

The glass transition in amorphous materials is typically revealed using differential scanning 

calorimetry (DSC) which always reveals a jump of constant pressure and constant volume heat 

capacity Cp, Cv at the glass transition temperature Tg [80]. The appearance of this jump, which is 

an obvious and generally accepted indication of a phase transformation is well understood and 

confirmed as an appearance in the system of new translational degrees of freedom for atomic or 

molecular constituents of matter [85,86]. We note that always Cp > Cv due to the relationship Cp = Cv 

+ V2B, where V is the molar volume,  is the coefficient of thermal expansion (CTE), and B is the 

bulk modulus, and thus always Cp > Cv. Typically one holds Cv  0.85Cp [86]. Recent computer 

experiments by Cockrell and Grimes [87] have unambiguously confirmed that immediately above 

the glass transition temperature effectively all atoms in inorganic glasses are mobile while in the 

glassy state the fraction of mobile atoms is negligible which stands in line with CPT of glass transition 

and its conclusions. They concluded that the atoms’ atomic mobility is a universal marker of the glass 

transition which emphasises the role of structural changes resulting in mobilisation of atoms at the 

glass transition. Moreover, molecular dynamic simulations by [88] have revealed that the jump Cp 

of amorphous silica at the glass transition is entirely determined by the component of structural 

energy. 

The heat capacity behaviour at glass transition generically has two prominent features: (i) it 

diverges on the increase of temperature towards Tg and (ii) has a distinct jump from the lower heat 

capacity of glass which is almost the same as of a crystal to that of a liquid [89]. Figure 5 modified 

from [84] shows both these features. 
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Figure 5. The jump of constant pressure heat capacity at the glass transition of diopside. Courtesy Reinhard 

Conrad. 

The first feature – the divergence of heat capacity – is given within CPT as a universal law so on 

approaching the glass transition temperature the heat capacity follows the dependence [11–14]: 

ΔC𝑉 ∝ 1/|𝑇 − 𝑇𝑔|
1−𝛽

, (2) 

where =0.41 is the critical index in the three-dimensional space [44]. One can note that 

experimentally measured critical exponents α for several metallic glasses varied from 0.16 to 0.54 [90] 

with deviations of α from 1- possibly resulting from a more complex percolating scheme of these 

metallic systems. 

The magnitude of the jump of heat capacity at glass transition is dictated by the liberation of 

new degrees of freedom including translational (trans), which can be also related as due to structural 

changes, vibrational (vib) and rotational (rot) ones: ΔC𝑉 = ΔC𝑉
𝑡𝑟𝑎𝑛𝑠 + ΔC𝑉

𝑣𝑖𝑏 + ΔC𝑉
𝑟𝑜𝑡  the main 

component of which is typically the translational one ΔC𝑉 ≈ ΔC𝑉
𝑡𝑟𝑎𝑛𝑠  [85]. In principle at the 

transition from one phase (glassy) to another (liquid) some of vibrational degrees can be lost thus the 

jump can effectively be diminished which may be the case for some materials oxide and even metallic 

materials. Within CPT the constant volume heat capacity jump at the glass transition is directly 

related to structural changes and to the appearance of new translational degrees of motion, and is as 

follows: 

ΔC𝑉
𝑡𝑟𝑎𝑛𝑠 = 𝐷𝐻𝑅/2, (3) 

reflecting the equipartition theorem for the change of HB dimensionality of configurons from 0 in the 

glassy phase to DH in the liquid (Figure 4). Experimentally it was found that the constant pressure 

jump of heat capacity at glass transition Cp in a variety of metallic glasses is almost an invariable 

value (13.69 J/molK), and is close to 3R/2 = 12.47 J/molK (where R = 8.3145 J/molK is gas constant), 

which can be quantitatively described by the atomic transitional diffusion [86]. Additionally, it was 

found that the ratio Cv/Cp does not change with the liquid fragility, and almost keeps a constant: 

0.85, hence the jump of constant volume heat capacity at glass transition of metallic systems is almost 

constant Cv = 0.85Cp = 11.64 J/molK. We observe from CPT that this jump is slightly smaller, 

namely DHR/2 = (2.550.05)8.3145/2 = (10.60.2) J/molK. The constant volume heat capacity jump at 

glass transition is illustrated in Table 3. 
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Table 3. Comparison of some constant volume heat capacity jumps at calorimetric glass transition with CPT 

value Cv = 10.4 – 10.8 J/molK. 

Alloy, compound Tg, K Cv, J/molK 

La55Al25Ni20 465 12.31 

Zr65Al7.5Ni10Cu17.5 653 11.02 

Mg65Cu25Y10 380 10.06 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 623 11.95 

Pd77.5Cu6Si16.5 625 10.33 

Pd40Cu30Ni10P20 525 10.89 

Pd40Ni40P20 551 11.02 

Zr55Al10Ni5Cu30 653 11.32 

We also note that Table II of reference [85] which demonstrated that for most of substances at 

glass transition hold 2Cp/R  3 in fact confirms the validity of equation (3) because it is known from 

[86] that Cv/Cp  0.85 so that we get Cv/Cp  DH/d in line with (3). Similarly, data from [88] have 

shown that for amorphous silica the constant pressure jump of heat capacity per atom is ranging from 

0.50R to 0.68R, which means that the jump of constant volume heat capacity is Cv  0.85Cp = 10.6 – 

14.4 J/molK in line with CPT estimation (10.4 – 10.8 J/molK). However, the equation (3) cannot be 

universally valid for the overall heat capacity jump at glass transition having well known deviations 

[91,92] and it is only approximately giving the contribution to the overall heat capacity due to 

liberation at the phase transformation of translational degrees of motion and in this sense is somehow 

similar in its nature to Dulong-Petit law. We emphasize however that we consider only structural 

challenges related to the calorimetric glass transition and we have to conclude that no phase 

transformation occurs in the Ehrenfest sense if neither thermodynamic functions nor their derivatives 

exhibit any peculiarities. 

5. Melting Criteria 

Melting is defined as a physical process that results in the phase transition of a substance from 

a solid to a liquid where the melting point of crystalline solids is the temperature at which a solid 

changes its state into a liquid at atmospheric pressure, so at the melting point the solid and liquid 

phases coexist in equilibrium [93]. Encyclopaedia Britanica specifies that amorphous (non-crystalline) 

substances melt by gradually decreasing in viscosity as temperature is raised without a sharp 

transition from solid to liquid [94]. We note, however, that melts are much less polymerised 

compared to glasses, which have a similar structure to that of liquids. Instead of a well-connected 

network like in solids they contain many finite size clusters as well as many broken bonds whereas 

in solids the lasts are almost not present at all or occur as point defects generated by thermal 

fluctuations (Figure 1) and are characterised by a different dimensionality of the set of configurons 

(broken chemical bonds). 

Lindemann’s and Born’s criteria of melting are the two most frequently used as a basis to analyse 

the melting conditions [95–97]. The Lindemann criterion states that melting occurs because of 

vibrational instability when the root of mean square vibration amplitude 〈𝑢2〉1/2 exceeds a threshold 

value taken as a fraction L = (〈𝑢2〉1/2/𝑎) of interatomic distance a [89,98–101]. Lindemann supposed 

that L should be about 0.5, which was later revised, observing that it is within the range between 

0.068 and 0.114 [101]. The analysis of experimental data of elements determined that the Lindemann 

melting coefficient L is in fact an exact value for each element belonging to a given periodic group of 

Mendeleev’s periodic table of elements [93]. Although it is considered that the Lindemann criterion 

is supported by data for glass transition the parameter L is not the same as for melting of crystals 

[29,102–104]. Finally, we note that Khrapak has shown that Lindemann’s criterion of melting can be 

formulated for two-dimensional classical solids using statistical mechanics arguments with an 

expression for the melting temperature derived (𝑐𝑡
2/𝑣𝑇

2)(1 − 𝑐𝑡
2/𝑐𝑡

2) ≅ 𝑐𝑜𝑛𝑠𝑡 which is valid for both 

three and two dimensions [105]. Here vT = (T/m)1/2 is the thermal velocity, cl is the longitudinal and ct 
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is the transverse sound velocity. The expression is reduced to the condition of constant transverse-to 

thermal velocity ratio at melting of materials, accounting that cl >> ct. 

The Born criterion of melting [96,97] is based on a rigidity catastrophe caused by the vanishing 

elastic shear modulus so that the crystal spontaneously changes its crystallographic symmetry or 

becomes fully amorphous, which in many cases can be the melted state, although not necessarily, as 

amorphization does not really envisage transition to a molten state. Born’s stability condition is 

formulated as the condition that 𝑑𝑒𝑡|𝐶𝑖𝑗𝑘𝑙| ≥ 0, where Cijkl is the (second order) elastic constant 

tensor which determines the stress tensor Tij = CijklEkl as a linear function of the infinitesimal strain 

tensor Ekl. Naturally, for glasses which are considered as isotropic solid materials, the elasticity tensor 

has only two independent components, which are the bulk (K) and shear () moduli. We further use 

an orthonormal Cartesian coordinate basis with no distinction between upper and lower indices. The 

elastic constant tensor is then written in terms of Lame’s first and second parameters  and  

correspondingly: Cijkl = ijkl + (ikjl + ilkj), where ij are the Kronecker’s deltas. The bulk modulus 

K = - p/lnV, where p is pressure and V volume, is then K =  + 2/3. The instability of lattices when 

Born’s criterion is breached does not necessarily cause melting, as it can be due to either a change of 

lattice symmetry class or amorphization without melting. It is also worth noting that Born’s criterion 

was specified for homogeneous lattices under a constant uniform load to be 𝑑𝑒𝑡|𝐵| = 0, where B is 

the four-rank elastic stiffness tensor [106]. Here we note that instabilities under pressure may also 

occur for the amorphous state, leading to its phase decomposition, see [107] and the references there. 

There is a substantial reason initially outlined by Angell [108] to analyse the distribution and 

behaviour of broken chemical bonds termed configurons in condensed matter rather than of atoms 

or electrons since the former are weekly interacting with each other whilst the latter are strongly 

interacting and form either clusters or are integral parts of the network of material. A configuron is 

formed by breaking of a chemical bond, followed by the associated strain-releasing local adjustment 

of centres of atomic vibration. The Hamiltonian of configurons in the first approximation is that of 

almost free boson (apart from spin glasses) particles in the periodic (for crystals) or aperiodic (for 

glasses and liquids) potential created by atoms of material 𝑉(𝑟)⃗⃗  ⃗ so that the Schrodinger equation for 

the wave function of a configuron 𝜑𝑖(𝑟 )  is: (−
ℏ2

2𝑚
△ +𝑉(𝑟 ))𝜑𝑖(𝑟 ) = 𝑖ℏ

𝜕𝜑𝑖(𝑟 )

𝜕𝑡
 . In crystalline 

materials, the potential repeats the symmetry of the lattice, therefore the wave function of 

configurons following the Bloch theorem can be represented as 𝜑𝑖(𝑟 ) = 𝑢𝑖(𝑟 ) ∙ exp (𝑖𝑘⃗ ∙ 𝑟 ), where 

𝑢𝑖(𝑟 ) has the period of the crystal lattice and the exponent is the running wave that carries the 

momentum 𝑝 = ℏ𝑘⃗ . The configurons are almost freely moving at least at small wavenumbers k with 

energy 𝐸 =
ℏ2𝑘2

2𝑚∗ , where m* is the effective mass. The situation for wave propagation drastically 

changes for disordered lattices amenable to Anderson localisation of configurons instead of almost 

free motion [68–72]. Indeed, instead of almost free propagation due to identical positions of 

configurons in the crystal lattice, they quickly localise, which in turn affects the melting process [62]. 

Once configurons are weakly interacting in the first approximation, they can be considered as almost 

non-interacting with a random spatial distribution and use for their description the two-level system, 

applying standard apparatus of statistical physics [11,12]. 

The mutual interaction between bonds and configurons at distances exceeding their sizes, which 

are approximately equal, can be practically neglected. In this case, the association and formation of 

clusters of configurons is purely geometrical, depending only on the volume fraction occupied by 

them, which is well described by the percolation theory [44,109–111]. It means that knowing the 

temperature dependence of relative concentration of configurons c (0  c 1) one can estimate the 

probability of cluster formation purely geometrically using c as the occupation probability p = c. It is 

known that p plays the same role as the temperature in thermal phase transitions being the control 

parameter of formation of percolation clusters which are fractal above the percolation threshold p > 

pc with HB dimension DH = d – β/ν [44], where d is the dimension of space and critical exponents β 

and ν describe the critical behaviour associated with the percolation transition and are universal not 

depending at all on the structure of the lattice and on the type of percolation which can be either site, 

bond or even continuum [44,107–109]. For d = 3 these are approximately as follows β = 0.41, ν = 0.88 
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[44]. The order parameter P∞ describes the probability that a configuron belongs to the percolation 

cluster [11,12]. Classical percolation exhibits all the characteristics of a continuous phase transition. 

For p  pc the order parameter P∞ which is identified in the CPT as the power of percolation cluster 

(fraction of configurons as a part of the largest cluster) made up of configurons increases with p by a 

power law P∞  (p – pc)β while the correlation length describing the inhomogeneities of structure 

diverges as   (p – pc)-ν. 

Instead of using the lattice specific parameter p one can refer to Scher and Zallen [43] who have 

found that for each dimension there exists an invariant that is almost independent of the type of 

lattice. This invariant c = fpc is the critical fraction of space occupied by spheres (discs in 2D) of the 

bond length diameter, positioned in the occupied sites of the lattice. The quantity f is called the "filling 

factor" of the lattice and denotes the volume fraction occupied by mutually touching spheres 

positioned at each site. The critical space occupation probability equals c = 0.44+0.02 in two 

dimensions and c = 0.150.01 in three dimensions [43,44]. This permits to calculate the glass 

transition temperature, Tg, for simple systems such as amorphous silica with only one type of bonds 

(and thus configurons) based on thermodynamic parameters of bonds [10–12]: 

𝑇𝑔 =
𝐻𝑑

𝑆𝑑+𝑅𝑙𝑛(1−ϕ𝑐)/ϕ𝑐
, (4) 

where Hd and Sd are the enthalpy and entropy of connecting bonds (configuron formation), R is the 

universal gas constant, and c is the percolation threshold volume invariant approximately equal to 

0.15 [43,44]. Equation (4) can be used utilising this invariant for simple systems such as amorphous 

silica, giving for the glass transition temperature Tg = 1482 K [12] compared with the experimental Tg 

value of 1480 K measured by drop calorimetry [112]. 

Equation (4) can be simplified neglecting the logarithmic term [4] reducing it to a view similar 

to Dienne’s ratio for melting temperatures of substances (presumably crystalline) [110,111] contains 

thermodynamic characteristics of joining bonds rather than the enthalpy and entropy of the activated 

state. 

What happens at the transition of condensed matter from a solid to a liquid state, i.e. on melting, 

e.g. when an amorphous solid (glass) transforms to a liquid? In solids, including glasses, there are 

both longitudinal and transverse (shear) sound waves, the latter one having two polarizations. Sound 

waves are characterized by the acoustic dispersion relations ωl(k) = kcl, whereas shear waves have 

ωt(k) = kct where k is the wavenumber. These are found from equalities: 𝜌𝑐𝑙
2 = 𝐾 +

4𝜇

3
, and 𝜌𝑐𝑡

2 = 𝜇. 

In the liquid state the shear modulus becomes nil (below the Frenkel line [115–117]), thus there are 

only longitudinal modes for sound waves in the molten state. This makes it different from the point 

of view of stress reaction, although the condition that  = 0 applies only below the Frenkel line which 

is at frequencies ω < ωF = 1/M determined by the Maxwell relaxation time M. At high frequencies, 

when ω > ωF, all liquids behave solid-like with both longitudinal and transverse waves propagating 

with sound velocities given by the same expressions as for solids, where parameters used are the 

high-frequency adiabatic bulk modulus K and shear modulus . This well-known property does 

not result by any means in the conclusion that the liquid state is the same as the solid state of matter. 

Meantime, the disappearance of transverse waves means a topological change in the phase space, 

which is supported by many findings [5–12,118]. Loss of transverse momentum signals that one of 

the symmetries of amorphous materials below the Frenkel line is broken at Tg. A symmetry is a 

property which will remain the same even after some kind of transformation is applied. Among 

known symmetries the dimensionality of bonding system which provides the condensed character 

(either solid or liquid) of matter unambiguously changes on passing through the glass transition 

temperature [14]: the broken bonds of materials (termed configurons [108]) are point-like entities 

(defects of glass network) below the Tg whereas above the glass transition temperature they for 

percolating clusters. Denoting the set of broken bonds as SB we see that 𝑑𝑖𝑚𝐻|𝑆𝐵| = 0 at T < Tg and 

𝑑𝑖𝑚𝐻|𝑆𝐵| = 2.5  at T > Tg, where dimH denotes the HB dimension of the set of configurons {SB}, 

coinciding in our case with the well-known Minkovsky box-counting dimension of the set. 
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Configurons, which are bound to their locations in glasses, cannot freely move except changing their 

location by thermal hoping through the glass network (disordered lattice of bonds [108]), become 

mobile above the Tg, freely moving via percolating clusters made up of configurons as any site within 

it is equivalent for their location. Hence, the configurons acquire new degrees of freedom on passing 

the Tg. Finally, on transition of melt to gaseous phase at higher temperatures 𝑑𝑖𝑚𝐻|𝑆𝐵| = 3, that is 

the dimension of space available for configurons motion equalises with the dimension of 3D space 

with all degrees of freedom acquired. The dimensionality of space is connected with conservation of 

momentum through the concept of translational symmetry which implies that the physical laws 

governing the system remain unchanged everywhere in space on moving the system from one 

location to another. Noether's theorem formalizes this idea by stating that every continuous 

symmetry of a physical system's action corresponds to a conservation law [119–121]. For translational 

symmetry, this conservation law is the conservation of momentum. If consider the configuron 

moving through the space of percolation clusters, its momentum remains conserved because the 

percolation cluster space itself does not impose any preferred locations or directions within it which 

is true in any number of spatial dimensions. How to formulate mathematically the condition for a 

transformation of a solid into a liquid and vice versa when crystallisation or vitrification occur 

[122,123]. 

One can hence add the melting criterion based on set theory which for 3-dimensional (3D) 

materials can be formally based on equation: 

𝑑𝑖𝑚𝐻|𝑆𝐵| ≥ 2.5, (5) 

The fractal dimension DH, of a percolation cluster is always smaller than the dimension d of the 

ambient space, due to numerous "holes" in the cluster. In two dimensions DH = 91/48 = 1.90; for d =3, 

DH =2.5 [44]. The condition (5) also follows from the Kantor-Webman theorem, which states that the 

rigidity threshold is identical to the geometrical threshold, and on the equivalence of the elasticity of 

random percolating networks to regular bond percolation systems [124]. To prove that Kantor and 

Webman have used the framework of the Born model for the microscopic elasticity of a lattice with 

elasticity energy given by Hamiltonian: 𝐻𝑒 =
1

2
∑ 𝐾𝑖,𝑗 [𝛼(𝒖𝑖 −𝒖𝑗)∥

2+ 𝛽𝛼(𝒖𝑖 −𝒖𝑗)⊥
2 ]𝑖,𝑗

𝑛𝑛
 with nn denoting 

the nearest neighbours, (𝒖𝑖 −𝒖𝑗)∥  giving the relative displacement of the site j in the direction 

parallel to the bond (ij), (𝒖𝑖 −𝒖𝑗)⊥
 giving the relative displacement in the perpendicular direction, 

and Ki,j being a random variable which assumes values 1 and 0 with probabilities p and (1-p), 

respectively. Kantor and Webman found that the rigidity threshold is identical to the geometrical 

threshold, which allows us to use in practice the well-known properties if percolating clusters, 

namely their well-known the volume invariant independence on the type of lattice, valid for 

disordered lattices of amorphous materials which once exceeded the percolation is achieved [43,44]. 

6. Importance of Bonds Breakage 

The distribution of species (atoms, molecules) in amorphous materials looks similar both for 

glasses, which are solid and for melts, which are liquid. However, not the species distribution 

determines the state of matter but the degree of connectivity between them, i.e. the bonding system 

is crucial so that for more tightly connected atoms more durable substances occur. The structure of 

materials is thus presented not solely by atomic distribution but has an integral part in the bonds 

between them. From this point of view, the structure of glasses is different from the structure of 

liquids because glasses do not substantially contain broken bonds apart from some remnant defects 

of temperature-induced breakages, while liquids have a significant part of bonds disrupted, which 

allow species to exhibit a much higher degree of freedom in motion. Moreover, the structural 

differences between glasses and melts composed out of the same species were noted a long time ago 

and is readily identified using standard X-ray or neutron scattering techniques based on scattering 

patterns utilising structure factor S(q) or pair distribution functions g(r) [2,41,42,45]. Notable is the 

approach developed by Stoch and Krakowiak [125] who proposed to analyse the temperature 
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changes of radial distribution functions within the whole range of sizes in oxide glasses. In this 

approach the changes in the further coordination and due to other glass constituents are also taken 

into consideration, which resulted in a better description of the glass-liquid transition and have again 

confirmed that the transition temperature depends on the glass structure and its thermal changes. 

Nevertheless, despite this, many works including university handbooks, focus on just species, 

affirming that there is no structural difference between a material below and above the glass 

transition temperature. On increase of temperature (or other external action on matter such as 

pressure and intensity of radiation) chemical bonds between species are broken and the connectivity 

gradually decreases until reaching a well-defined threshold level when bonding system cannot 

sustain the solid-like behaviour such as preservation of shape, presence of yield stress for 

deformation etc and the material melts. The transition from solid (vitreous) state to liquid (molten) 

state is continuous in amorphous materials and because of that the transition is a second order 

thermodynamical transition following Ehrenfest classification although it occurs in a metastable 

system of topologically disordered species which by the total energy is less favourable compared to 

a ordered (crystalline) distribution of the same species which would otherwise minimise it. In 

contrast with equilibrium phase transitions which are well understood within statistical mechanics 

[126,127] the nonequilibrium phase transformations (to which the glass transition undoubtedly 

belongs) are in reality quite common across many branches of science and technology ranging from 

biological systems to cosmology and galactic patterns [128–131]. The transition from the metastable 

glass to a stable (or still metastable but with a lower energy) crystalline phase is kinetically impeded, 

and in many if not most natural glasses at room temperature would require times exceeding the 

lifetime of the Universe which makes these considerations out of any practical sense. 

Consideration of bonding systems equally with species (atomic and molecular systems) became 

routine after Angell introduced the concept of configurons as elementary excitations in condensed 

matter formed by breaking a chemical bond, followed by the associated strain-releasing local 

adjustment of centres of atomic vibration. In contrast to strongly interacting species, which constitute 

the matter, the configurons can be, in the first approximation, considered as non-interacting and 

subject to ideal mixing. In such approximation, the well-developed apparatus of two-level systems 

applies, and the glass transition is a percolation effect in the system of configurons – the amorphous 

material is in the vitreous state until the percolation threshold is reached. The behaviour of 

percolating systems is universal thus it becomes possible to calculate the glass transition temperature, 

describe diverging heat capacity and TEC at glass transition, estimate the constant volume jump of 

heat capacity and universally describe the viscosity of material across all temperature interval from 

the glass trough melt till gas [14,67,68] as well as to understand the kinetic aspect of glass transition 

[132] and to model it [11–13,34,35]. Additionally, it is possible to formalise the melting criterion using 

the concepts of set theory as the condition of achieving a certain degree of disruption of the bonding 

system when the HB dimensionality DH exceeds that of a percolating cluster, which is known for 3D 

space to be larger or about 2.5 (Figure 6). 
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Figure 6. Schematic of “fragmentation” of solids by breaking bonds in the cases when they have 1D (linear), 2D 

(surface) or 3D (body) dimensionalities of bonds after [2]. Broken bonds sets are shown here in red colour and 

are schematically characterized by 0D, 1D or 2D dimensionalities. In the case of a 3D amorphous solid material 

(glass) the structure formed out of configurons at the glass transition temperature is a percolation cluster (a 

macroscopic fractal structure) which has a dimensionality exceeding 2.5. 

Notably that in both physical and computer-based experiments, the results are affected by the 

size of the system under consideration [11–15,133,134]. 

7. Conclusions 

Amorphous materials drastically alter their properties at the calorimetric glass transition from 

solid-like brittleness to liquid-like plasticity. Although the distribution of atomic-molecular species 

remains almost unchanged, the bonding system exhibits a continuous percolation-like change of its 

dimensionality from zero in the glassy phase to about 2.5 in the melt, hence this change can be used 

as a melting criterion. 
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