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Abstract 
This review introduces Generative Metascience, a comprehensive framework for understanding how 
artificial intelligence (AI) transforms scientific discovery. We synthesize historical milestones and 
case studies across genomics, astronomy, materials science, and social sciences to illustrate AI’s 
evolution from a research instrument into an autonomous co-investigator. Our analysis is structured 
around two core themes: AI-enabled data collection and analysis, and AI-driven hypothesis 
generation and testing. This dual focus highlights the iterative interplay between data-driven 
analytics and hypothesis-driven inquiry, showing how AI tools can simultaneously generate and 
evaluate scientific hypotheses. Key insights reveal AI-accelerated breakthroughs, such as automated 
protein-folding and materials design, and the rise of self-driving laboratories, which signal a shift 
from traditional inquiry toward an algorithmic discovery paradigm. By synthesizing data-driven 
pattern recognition with AI-facilitated hypothesis generation across disciplines, this review 
addresses a critical research gap, showing that AI has begun to automate hypothesis formation and 
serves as a meta-technology that is redefining scientific epistemology. We highlight urgent 
implications for future research, including the development of hybrid AI-human workflows and 
robust metrics for machine-generated insights. For policy, we articulate the need for greater 
transparency, open data standards, and interdisciplinary funding initiatives. For practice, we 
advocate for retraining researchers and updating curricula for AI-integrated labs. By articulating 
these developments and their contributions, this paper charts a roadmap for responsibly harnessing 
AI’s potential and guiding the scientific community as it navigates AI’s evolving role in a new era of 
discovery. 

Keywords: generative metascience; algorithmic discovery; AI-driven scientific instrumentation; 
hypothesis generation and testing; research automation and workflow optimization 
 

1. Introduction: Establishing the Context and Rationale 

1.1. The Broader Landscape: Background and Significance 

In 2020, DeepMind’s AlphaFold achieved a groundbreaking milestone by solving the protein 
folding problem with remarkable accuracy, a challenge that had persisted for over five decades 
(Jumper et al., 2021). This success, powered by advanced machine learning, exemplifies AI’s 
transformative potential in scientific discovery. Beyond protein folding, AI has made significant 
contributions across various scientific domains. In astronomy, machine learning models have been 
instrumental in detecting exoplanets, with projects like ExoMiner using deep learning to validate 301 
exoplanets from Kepler mission data (Valizadegan et al., 2022). In drug discovery, AI has accelerated 
the identification of new therapeutic compounds; for instance, Exscientia has utilized AI to design 
molecules that have entered clinical trials, significantly reducing the traditional timeline for drug 
development (Philippidis, 2023). These examples underscore AI’s versatility and its capacity to 
address complex scientific challenges. 
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The volume of scientific literature is growing exponentially, with recent studies indicating a 
doubling time of approximately 17.3 years (Bornmann et al., 2021). This rapid expansion underscores 
the critical role of metascience in enhancing the efficiency and reliability of research practices, 
ensuring that scientific inquiry remains robust and impactful amidst mounting complexity. 

Artificial intelligence, with its ability to process vast datasets and discern intricate patterns, is 
becoming a pivotal force in metascience. AI can automate mundane tasks like data cleaning, generate 
novel hypotheses via pattern recognition and predictive modeling, optimize experimental designs, 
and interpret results by highlighting significant trends and anomalies (Jordan & Mitchell, 2015a). 
These functionalities not only expedite scientific discovery but also challenge traditional paradigms 
by offering innovative methods for hypothesis generation and validation. A notable example is in 
drug discovery, where AI has facilitated the creation of new therapeutic compounds; for instance, 
Insilico Medicine has used AI to design drugs that have progressed to clinical trials, markedly 
reducing development timelines and costs (Zhavoronkov et al., 2019). 

This review introduces Generative Metascience, a framework that emphasizes AI’s, particularly 
generative models’, capacity to not only analyze existing data but also to autonomously generate new 
hypotheses and propel scientific discovery. This approach underscores AI’s dual function as both an 
analytical instrument and an independent co-investigator in research. By synthesizing AI’s 
applications across various scientific fields, from genomics to astronomy, we seek to elucidate how 
AI is fundamentally altering the terrain of scientific inquiry. 

1.2. The Core Problem: Identifying the Critical Gap or Controversy 

Despite AI’s widespread adoption in scientific research, there is a pressing need for a 
comprehensive review that assesses its overarching role as a scientific instrument. Existing literature 
tends to concentrate on specific applications, such as AI in drug discovery or AI in astronomy, 
offering detailed insights into particular domains but neglecting the broader, interdisciplinary 
implications of AI (Ball & Brunner, 2010; Zhavoronkov et al., 2019). A holistic analysis that examines 
AI’s influence on the entire scientific process, encompassing methodological shifts, ethical dilemmas, 
and the practical challenges of incorporating AI into conventional research practices, is conspicuously 
absent. This deficiency impedes our capacity to fully harness AI’s potential while addressing critical 
risks, including data biases and the interpretability of AI models (Jobin et al., 2019). 

1.3. Delineating the Review’s Focus and Approach 

Generative Metascience refers to an AI-driven framework in which artificial intelligence not only 
analyzes existing scientific data but also autonomously formulates, prioritizes, and tests novel 
hypotheses, effectively acting as both a research instrument and co-investigator in the scientific 
discovery process. This review aims to fill this critical gap by offering a comprehensive analysis of 
AI’s multifaceted applications in scientific research, evaluating its efficacy, and delving into the 
nascent paradigm of algorithmic discovery. Uniquely, this review integrates AI’s functions in both 
data collection and analysis and in hypothesis generation and testing, presenting a unified 
framework that encompasses AI’s complete influence on the scientific endeavor. By focusing on this 
duality, we elucidate the dynamic between data-centric analytics and hypothesis-oriented research, 
illustrating how AI can concurrently formulate and appraise scientific hypotheses. Drawing from a 
synthesis of findings across various disciplines, we identify exemplary practices for incorporating AI 
into research methodologies and pinpoint areas necessitating further scholarly attention. 
Additionally, this review will address the policy implications of AI’s integration into science, 
including recommendations for funding initiatives and educational reforms to support the 
development of AI-driven research ecosystems. This balanced synthesis is intended to inform and 
guide researchers, policymakers, and funding bodies in navigating the complexities of AI integration 
in science. 
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1.4. A Roadmap for the Reader: Structure of the Article 

This review is structured as follows: Section 2, “Thematic Synthesis and Critical Analysis of the 
Literature,” encompasses five subsections that explore AI’s role in scientific discovery. Subsection 
2.1, “Historical and Conceptual Foundations,” provides a historical overview of AI’s development in 
science and clarifies key terminology. Subsection 2.2, “The Methodological Canvas: Approaches to 
Research in the Field,” examines the diverse methodologies used to study AI in scientific contexts, 
including their strengths, weaknesses, and emerging innovations. Subsections 2.3 and 2.4 delve into 
the two principal themes: “Thematic Deep Dive 1” focuses on AI’s contributions to data collection 
and analysis, while “Thematic Deep Dive 2” addresses AI’s role in hypothesis generation and testing. 
Subsection 2.5, “Cross-Thematic Analysis: Interconnections and Contrasting Perspectives,” 
synthesizes the interactions between these themes and their implications for the paradigm of 
algorithmic discovery, Section 3, “Discussion, Implications, and Future Trajectories,” outlines the 
theoretical and practical implications of AI-driven science, proposes ethical strategies for AI 
integration, and highlights key areas for future research. Finally, Appendix A is appended to this 
paper to demonstrate the methodologies used to compile and analyze the information presented in 
this paper. 

2. Thematic Synthesis and Critical Analysis of the Literature 

2.1. Historical and Conceptual Foundations 

This section establishes the historical and theoretical groundwork for understanding the 
emergence of Generative Metascience, a framework that positions AI as both an analytical instrument 
and an autonomous agent capable of generating novel scientific hypotheses and driving independent 
research. By tracing AI’s evolution in scientific discovery, we illustrate how each advancement has 
contributed to this paradigm, highlighting the transition from data-driven analysis to generative and 
autonomous scientific inquiry. 

2.1.1. The Genesis of the Field: Seminal Works and Key Milestones 

The integration of AI into scientific discovery began in the 1960s with DENDRAL, developed at 
Stanford University (Buchanan & Feigenbaum, 1981). As the first expert system, DENDRAL assisted 
organic chemists in identifying unknown molecules by analyzing mass spectrometry data, marking 
an early step toward automating hypothesis formation. This pioneering work demonstrated AI’s 
potential to augment human reasoning, laying the foundation for its role in Generative Metascience 
by enabling structured, rule-based hypothesis generation. 

In the 1990s and 2000s, the advent of machine learning techniques, such as support vector 
machines and random forests, expanded AI’s capabilities. These methods were particularly impactful 
in bioinformatics, facilitating tasks like gene expression analysis and protein classification (Baldi & 
Brunak, 2001). By extracting meaningful patterns from large datasets, machine learning enabled data-
driven hypothesis generation, a critical precursor to the generative aspects of modern AI systems. 

The deep learning revolution of the 2010s marked a significant leap, with neural networks 
achieving breakthroughs across diverse scientific domains. In 2017, artificial neural networks 
addressed the quantum many-body problem, a longstanding challenge in physics (Iten et al., 2020). 
In 2020, DeepMind’s AlphaFold solved the 50-year-old protein folding problem with unprecedented 
accuracy, predicting protein structures from amino acid sequences (Jumper et al., 2021). This 
achievement not only accelerated biological research but also exemplified AI’s ability to integrate 
data analysis with hypothesis generation, a core tenet of Generative Metascience. 

The rise of generative AI models further advanced this paradigm. Generative adversarial 
networks (GANs) and variational autoencoders (VAEs) have been used to design novel molecules 
and materials, enabling AI to propose new scientific entities that drive hypothesis formation (Mi et 
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al., 2018). For instance, in materials science, AI has identified promising battery material candidates, 
significantly reducing the time required for traditional trial-and-error methods (Lv et al., 2022). 

In recent years, large language models (LLMs) and foundation models have emerged as 
transformative tools in scientific discovery. Models like GPT-4 have demonstrated capabilities in 
generating scientific text, code, and hypotheses, aligning closely with the generative metascience 
framework. In 2024, the AI Scientist framework enabled LLMs to conduct research autonomously, 
from idea generation to paper writing (Lu et al., 2024). A notable example is Sakana AI’s AI Scientist-
v2, which in 2025 autonomously generated a hypothesis, designed experiments, and produced a 
paper accepted at a top machine learning conference, though it was later withdrawn due to ethical 
concerns (Yamada et al., 2025). These milestones highlight AI’s growing autonomy, positioning it as 
a proactive collaborator in scientific inquiry. 

These developments reflect key trends: a progression from narrow, task-specific AI to general, 
autonomous systems; an expansion in the scale and complexity of problems addressed; and a shift 
from supportive to proactive roles in science. Each milestone has advanced AI’s generative 
capabilities, aligning with the principles of Generative Metascience by enabling AI to propose and 
test novel scientific ideas across disciplines. 

2.1.2. The Evolution of Core Concepts and Theories 

The conceptual evolution of AI in science mirrors its historical milestones, progressing from 
rule-based systems to data-driven, deep learning, and generative models, each addressing limitations 
of prior approaches and contributing to the framework of Generative Metascience. Early systems like 
DENDRAL relied on manually encoded rules, limiting their generalizability and requiring extensive 
expert input. This constrained their ability to generate novel hypotheses beyond predefined 
knowledge, a significant limitation for scientific discovery. 

The shift to machine learning in the 1990s introduced data-driven methods, such as decision 
trees and ensemble methods, which learned from examples and adapted to new data (Rifkin, 2002). 
These approaches enabled AI to handle complex datasets, facilitating pattern recognition that 
informed hypothesis generation in fields like bioinformatics. This marked an early step toward 
generative capabilities, as AI began to identify patterns that could inspire new scientific inquiries. 

The deep learning revolution of the 2010s overcame the limitations of traditional machine 
learning by leveraging multi-layered neural networks to model complex relationships (Sejnowski, 
2018). This enabled breakthroughs in image analysis for astronomy, sequence prediction in genomics, 
and natural language processing for scientific literature. However, deep learning’s “black box” 
nature posed challenges for scientific validation, prompting the development of interpretability 
methods like SHAP and LIME to enhance trust in AI-driven findings (Xu et al., 2019). 

Generative AI models, such as GANs and VAEs, further expanded AI’s role by enabling the 
creation of novel scientific entities, such as molecules and experimental designs (Mi et al., 2018). These 
models directly support Generative Metascience by generating hypotheses that push scientific 
boundaries, moving beyond analysis to innovation. 

The emergence of LLMs and foundation models represents the latest advancement, enabling AI 
to generate scientific text, code, and hypotheses. For instance, LLMs have been used to draft research 
proposals and analyze literature, streamlining the scientific process (Liang et al., 2024). The AI 
Scientist framework exemplifies this, integrating data analysis, hypothesis generation, and 
experiment design into an autonomous research cycle (Lu et al., 2024). This shift challenges 
traditional scientific workflows, raising questions about the role of human researchers and the nature 
of scientific creativity. 

Each stage of this evolution has addressed prior limitations: from the rigidity of rule-based 
systems to the scalability of machine learning, the complexity handling of deep learning, and the 
generative and autonomous capabilities of modern AI. This progression underscores AI’s 
transformative potential in redefining the scientific method, with Generative Metascience providing 
a framework to understand and guide this transition. Figure 1 illustrates this conceptual evolution as 
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a chronological timeline of key AI milestones in scientific discovery, from the rule-based reasoning 
of DENDRAL in the 1960s to the fully autonomous AI Scientist of 2025. Together, these developments 
underscore how each paradigm shift—rule-based, data-driven, deep learning, and generative 
models—builds toward the framework of Generative Metascience (see Figure 1). 

 
Figure 1. AI in Science Over Time. 

2.2. The Methodological Canvas: Approaches to Research in the Field 

The exploration of artificial intelligence (AI) as a transformative scientific instrument within the 
framework of Generative Metascience relies on a diverse set of research methodologies. These 
approaches, spanning qualitative and quantitative paradigms, investigate AI’s integration into 
scientific workflows, its effectiveness, and its broader implications for the scientific process. This 
section critically evaluates these methodologies, providing specific examples from the literature, 
addressing their strengths and limitations, and highlighting emerging innovations that enhance the 
study of AI in science. Figure 2 presents a methodological canvas that maps how simulations, case 
studies, and experimental studies each contribute to broader scientific implications, effectiveness & 
validation, and AI integration within scientific workflows. See Figure 2 for a visual summary of these 
interrelated approaches.  

 
Figure 2. Interaction of Core AI Methodologies. 

2.2.1. Predominant Research Methodologies: A Critical Overview 

The methodologies employed to study AI’s role in scientific discovery are varied, each offering 
distinct perspectives on how AI reshapes research practices. Below, we outline the primary 
methodologies, supported by specific examples and peer-reviewed references, to illustrate their 
application in the context of Generative Metascience. 

• Case Studies: Case studies provide in-depth analyses of specific AI applications, offering rich, 
contextual insights into their integration with scientific workflows. A prominent example is 
DeepMind’s AlphaFold, which solved the protein folding problem with unprecedented 
accuracy, demonstrating AI’s capacity to address complex scientific challenges (Jumper et al., 
2021). Another significant case is the development of DSP-1181, the first AI-designed drug to 
enter clinical trials, created through a collaboration between Exscientia and Sumitomo 
Dainippon Pharma for obsessive-compulsive disorder treatment. This project completed its 
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exploratory research phase in under 12 months, compared to the traditional 4-6 years, 
showcasing AI’s potential to accelerate drug discovery (Burki, 2020). These cases highlight AI’s 
role in generating and testing hypotheses, aligning with the principles of Generative 
Metascience. 

• Experimental Studies: Experimental studies compare AI-driven methods with traditional 
approaches, providing rigorous evidence of AI’s efficacy. For instance, Granda et al. (2018) 
demonstrated that AI-optimized chemical reaction conditions outperformed human-designed 
methods, achieving higher efficiency in organic synthesis (Granda et al., 2018). Such studies 
validate AI’s practical utility in scientific tasks, supporting its role as a generative tool in 
research. 

• Surveys and Interviews: These methods capture scientists’ perceptions of AI, revealing 
adoption barriers such as lack of training or concerns about model transparency. A survey by 
the Center for Science, Technology and Environmental Policy Studies at Arizona State 
University found that while scientists recognize AI’s potential to enhance research, many 
express concerns about its impact on scientific integrity and the need for ethical guidelines (Z. 
Chen et al., 2024). Similarly, a Pew Research Center survey reported that 52% of Americans are 
more concerned than excited about AI’s role in daily life, reflecting broader societal 
apprehensions that influence scientific adoption (Zhang & Dafoe, 2019). 

• Data Mining and Bibliometric Analyses: These approaches identify trends in AI’s application 
across disciplines by analyzing large datasets of publications. Rahman et al. (2024) conducted a 
bibliometric analysis of AI in medical diagnoses, noting a significant increase in machine 
learning and deep learning usage as such, underscoring AI’s growing influence (Rahman et al., 
2024). These analyses provide a macro-level perspective on AI’s integration into scientific 
research. 

• Simulations: Simulations test AI in virtual environments, offering cost-effective ways to 
evaluate its predictive capabilities. Raccuglia et al. (2016) used machine learning to simulate and 
accelerate the discovery of new materials, demonstrating AI’s ability to explore complex systems 
where physical experiments are impractical (Raccuglia et al., 2016). Such simulations support 
hypothesis generation, a key aspect of Generative Metascience. 

• Theoretical Modeling: Theoretical models develop frameworks to understand AI’s role in 
science. Jordan and Mitchell (2015) proposed a model for how AI can reshape hypothesis 
generation and testing, providing a conceptual foundation for studying AI’s impact on scientific 
discovery (Jordan & Mitchell, 2015). These models guide empirical research but require 
validation to ensure practical relevance. 

The prevalence of case studies and experimental studies reflects their ability to provide detailed 
insights into AI’s transformative applications and empirical evidence of its advantages. Surveys and 
bibliometric analyses offer broader perspectives on research trends and community perceptions, 
while simulations and theoretical modeling enable exploration in controlled or conceptual settings. 
This methodological diversity ensures a comprehensive understanding of AI’s role in advancing 
scientific inquiry. 

2.2.2. Strengths, Weaknesses, and the Rise of Innovative Methods 

Each methodology offers distinct strengths and faces inherent limitations, shaping their 
suitability for studying AI in science. Below, we critically analyze these aspects, supported by 
examples, and discuss emerging innovations that address these limitations. Table 1 provides a 
concise overview of these methodologies, highlighting each approach’s key strengths, notable 
weaknesses, and a representative example. See Table 1 for details. 
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Table 1. AI Methodologies. 

 Strengths Weaknesses Example 

Case Studies Provide rich, 

contextual insights 

into AI applications, 

capturing complex 

interactions between 

technology and 

science. 

Often context-specific, 

limiting 

generalizability; prone 

to selection bias, 

overrepresenting 

successful cases. 

AlphaFold’s protein 

folding solution  

Experimental Studies Offer rigorous 

evidence of causality 

and quantitative 

comparisons, ideal for 

assessing AI’s 

effectiveness. 

Controlled settings 

may not reflect real-

world complexities; 

scaling results to 

practical applications 

can be challenging. 

AI-optimized 

chemical synthesis  

Surveys and 

Interviews 

Excel at capturing 

subjective experiences 

and human 

perspectives, essential 

for understanding AI 

adoption barriers. 

Susceptible to biases 

like social desirability 

or sampling issues; 

qualitative data 

interpretation can be 

subjective. 

Scientists’ concerns 

about AI ethics 

Data Mining and 

Bibliometric 

Analyses 

Handle large datasets 

efficiently, providing 

objective, macro-level 

insights into trends 

and patterns. 

Depend on data 

quality; risk of 

misinterpretation if 

analytical methods are 

not robust. 

AI publication trends 

in drug discovery 

Simulations Offer flexibility and 

cost-effectiveness for 

testing AI in 

impractical scenarios. 

Validity hinges on 

accurate underlying 

models; unrealistic 

assumptions can 

undermine results. 

Material discovery 

simulations 

Theoretical Modeling Provide structured 

frameworks for 

understanding AI’s 

role, guiding 

empirical research. 

Risk being speculative 

without empirical 

validation, 

disconnecting from 

practical applications. 

AI’s impact on 

hypothesis generation 

Critical Analysis of Methodological Blind Spots 

While these methodologies collectively advance our understanding of AI in science, they exhibit 
notable blind spots. Case studies, such as those on AlphaFold, often focus on high-profile successes, 
potentially overlooking less successful applications that could reveal critical limitations of AI 
systems. Experimental studies, like Granda et al. (2018), may prioritize controlled environments, 
missing the nuanced challenges of real-world scientific contexts, such as interdisciplinary 
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complexities or data variability. Surveys and interviews, as seen in the ASU SciOPS study, may suffer 
from response biases, particularly if participants are hesitant to express critical views about AI due 
to its perceived transformative potential. Data mining and bibliometric analyses, while 
comprehensive, may miss emerging trends not yet reflected in publication databases, limiting their 
ability to capture cutting-edge developments. Simulations, such as those by Raccuglia et al. (2016), 
rely on model assumptions that may not fully represent real-world phenomena, potentially leading 
to overoptimistic predictions. Theoretical models, like those proposed by Jordan and Mitchell (2015), 
risk being overly abstract without sufficient empirical grounding, which can hinder their practical 
utility. 

Emerging Innovative Methods 

To address these limitations, innovative methodologies are emerging to enhance the rigor, 
transparency, and ethical integration of AI in scientific research. AI-powered literature reviews, such 
as those using natural language processing (NLP) to analyze thousands of papers, enable rapid 
synthesis of research trends, as demonstrated by tools like Semantic Scholar (Kinney et al., 2025). 
Automated meta-analyses leverage AI to conduct systematic reviews with reduced human bias, 
improving efficiency in synthesizing evidence across studies (Harrer et al., 2019). Reproducibility 
frameworks use AI to verify data integrity and methodological consistency, enhancing trust in AI-
driven findings (Haibe-Kains et al., 2020). Social media sentiment analysis, such as analyses of X 
posts, gauges the scientific community’s reactions to AI advancements, providing real-time insights 
into adoption trends (Qi et al., 2024). Ethical assessment frameworks, like those proposed by Jobin et 
al. (2019), offer guidelines for addressing bias, privacy, and accountability in AI applications. These 
innovations align with Generative Metascience by fostering a more robust and responsible approach 
to studying AI’s role in science. 

2.3. Thematic Deep Dive 1 

This section examines artificial intelligence (AI) as a cornerstone of scientific data collection and 
analysis, a key pillar of Generative Metascience. By leveraging machine learning and deep learning, 
AI enables researchers to process vast, complex datasets with unprecedented efficiency and accuracy, 
driving discoveries across disciplines such as astronomy, genomics, and particle physics. Structured 
into synthesis, consensus/controversy, and critique, this section highlights AI’s transformative 
impact, addresses ongoing debates, and identifies methodological gaps requiring further exploration. 

2.3.1. Synthesis of Key Findings and Supporting Evidence 

AI has reshaped scientific data collection and analysis by automating complex tasks and 
uncovering patterns that were previously unattainable. In astronomy, AI manages massive datasets 
generated by modern telescopes. The Vera C. Rubin Observatory, for instance, is expected to produce 
0.5 exabytes of data over its 10-year survey, equivalent to 50,000 times the Library of Congress’s book 
collection (Thomas et al., 2020). Neural networks have achieved high accuracy in classifying galaxy 
morphologies; a seminal study by Banerji et al. (2010) used neural networks on Sloan Digital Sky 
Survey data, achieving 98% accuracy comparable to human experts (Banerji et al., 2012). Similarly, 
AI-driven exoplanet detection has reached 96% accuracy using Kepler mission data, as demonstrated 
by Valizadegan et al. (2022) in the ExoMiner project (Valizadegan et al., 2022). 

In genomics, AI accelerates the analysis of intricate genetic data, advancing personalized 
medicine and disease research. DeepVariant, a deep learning-based variant caller developed by 
Google, significantly improves the accuracy of identifying genetic variants, outperforming traditional 
tools without requiring specialized domain knowledge (Poplin, Chang, et al., 2018; Poplin, 
Varadarajan, et al., 2018). SpliceAI, a 32-layer deep neural network, predicts splicing from DNA 
sequences with up to 95% accuracy, aiding in identifying cryptic splicing variants linked to 
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neurodevelopmental disorders (Jaganathan et al., 2019). These tools exemplify AI’s ability to handle 
the scale and complexity of modern sequencing data. 

In particle physics, AI is critical for analyzing petabytes of data from high-energy collisions at 
the Large Hadron Collider (LHC). The CMS collaboration employs AI to detect anomalous jets, 
enhancing sensitivity to new physics phenomena (C. M. S. Collaboration, 2021). Similarly, ATLAS 
uses deep learning for precise identification of b-hadrons and other particles (A. Collaboration, 2020). 
These applications underscore AI’s role in managing data complexity and volume. 

AI’s impact extends to chemistry, where it predicts molecular properties, and materials science, 
where it accelerates novel material discovery. In environmental science, AI models climate data and 
predicts natural disasters, enabling proactive responses. By automating routine tasks and revealing 
hidden patterns, AI frees researchers to focus on innovative hypotheses, aligning with Generative 
Metascience’s emphasis on advancing scientific inquiry. Table 2 summarizes key AI applications 
across major scientific fields, detailing specific examples and their impacts. See Table 2 for a concise 
overview. 

Table 2. Scientific Field-AI Application Mapping. 

Field AI Application Example Impact 

Astronomy Galaxy classification, 

exoplanet detection 

Neural networks on 

Sloan Digital Sky 

Survey, Kepler data 

High accuracy (98% 

for galaxies, 96% for 

exoplanets), manages 

large datasets 

Genomics Variant calling, 

splicing prediction 

DeepVariant, SpliceAI Improved accuracy, 

identifies disease-

related variants 

Particle Physics Event reconstruction, 

particle identification 

CMS and ATLAS 

experiments 

Enhanced sensitivity 

to new physics, 

precise measurements 

2.3.2. Areas of Consensus and Controversy 

The scientific community broadly recognizes AI’s transformative potential in data collection and 
analysis, particularly for enhancing efficiency and accuracy in processing large datasets. Machine 
learning and deep learning have become indispensable for tasks like data cleaning and pattern 
recognition, driving discoveries across multiple fields. 

However, several controversies persist: 

• Interpretability: Deep learning models often operate as “black boxes,” delivering accurate 
predictions without transparent decision-making processes. This opacity is problematic in fields 
like medical research, where mechanistic understanding is essential for trust and validation 
(Obermeyer et al., 2019). In contrast, some argue that high accuracy, such as in galaxy 
classification, may suffice when categorization is the primary goal (Banerji et al., 2012). 

• Data Quality and Bias: AI’s effectiveness depends on training data quality. In genomics, 
datasets skewed toward European ancestry can produce biased models, risking health 
disparities (Popejoy & Fullerton, 2016). Debates center on whether technical solutions like 
debiasing algorithms or inclusive data collection are more effective. 

• Overreliance on AI: While AI streamlines research, overreliance without human oversight may 
lead to “illusions of understanding,” where researchers misinterpret AI outputs (Topol, 2019). 
Some view AI as a tool to enhance creativity, while others caution it could undermine scientific 
rigor. 
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• Ethical Concerns: Data privacy, especially in genomics, raises significant issues. Balancing AI-
driven insights with privacy protection requires robust ethical guidelines to maintain public 
trust (Jobin et al., 2019). 

These debates highlight the need for balanced approaches to ensure AI’s benefits are realized 
without compromising scientific integrity or equity. 

2.3.3. Critique of the Literature and Methodological Limitations 

The literature on AI in data collection and analysis is robust but reveals methodological gaps. A 
key limitation is the reliance on benchmark datasets, which may not reflect real-world diversity. For 
instance, DeepVariant’s training on NIST cell lines limits its applicability to diverse genomic data 
(Poplin, Chang, et al., 2018). In astronomy, models trained on specific telescope data, such as the 
Sloan Digital Sky Survey, may overfit and underperform on other instruments, necessitating broader 
datasets (Banerji et al., 2012). 

The lack of standardized evaluation metrics hinders performance comparisons across studies. 
For example, exoplanet detection studies use varied accuracy metrics, complicating assessments 
(Valizadegan et al., 2022). Calls for domain-specific benchmarks, such as those in Kaggle’s exoplanet 
hunts, highlight the need for consistency (Jin et al., 2022). 

Interpretability remains a barrier, as the “black box” nature of deep learning models limits 
validation in hypothesis-driven research. Emerging explainable AI (XAI) methods, like SHAP and 
LIME, show promise but require further development (Lundberg et al., 2022). 

Ethical oversights, particularly in genomics, are prevalent, with insufficient attention to bias 
mitigation and data privacy. Inclusive datasets and transparent reporting are critical to address 
disparities (Hanna et al., 2025). 

Finally, the scarcity of longitudinal studies limits understanding of AI’s long-term impact on 
scientific practices. Future research should prioritize real-world validations, standardized metrics, 
improved interpretability, and ethical compliance to fully harness AI’s potential in data collection 
and analysis, aligning with Generative Metascience’s goal of advancing scientific discovery. 

2.4. Thematic Deep Dive 2 

2.4.1. Synthesis 

Hypothesis generation and testing are cornerstones of the scientific method, driving the 
discovery of new knowledge. Artificial intelligence (AI) has emerged as a transformative tool in these 
processes, leveraging its ability to process vast datasets, identify complex patterns, and make accurate 
predictions. This section explores how AI enhances hypothesis generation and testing across diverse 
disciplines, illustrating its role in accelerating scientific discovery. 

In materials science, AI uncovers novel insights that might elude human researchers. For 
instance, a collaboration between Microsoft and Pacific Northwest National Laboratory used AI to 
screen over 32 million potential battery materials, identifying 23 promising candidates, one of which 
was synthesized into a working prototype (C. Chen et al., 2024). This approach significantly reduces 
the time required for traditional trial-and-error methods, enabling exploration of vast chemical 
spaces for energy storage innovations. 

In medical research, AI generates hypotheses that reveal unexpected correlations. A study in 
Communications Medicine used deep learning to analyze histopathology images of prostate cancer 
patients, identifying gland morphology patterns, such as well-formed glands, as predictors of 
biochemical recurrence (Bulten et al., 2022a). This finding demonstrates AI’s ability to detect subtle 
patterns in complex datasets, opening new avenues for personalized medicine. 

In the social sciences, AI reveals hidden factors influencing human behavior. Ludwig and 
Mullainathan (2024) employed machine learning to analyze judicial decisions, finding that facial 
features accounted for up to half of the predictable variation in jailing decisions (Ludwig & 
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Mullainathan, 2024). This led to hypotheses about unconscious biases, highlighting AI’s potential to 
inform social science research. 

AI also enhances hypothesis testing by optimizing experimental design. The Copilot for Real-
world Experimental Scientist (CRESt), developed at MIT, assists materials science researchers by 
suggesting experiments and controlling equipment via voice commands (Ren et al., 2023). Using 
active learning, CRESt streamlines workflows, as shown in studies on fuel cell catalysts, reducing 
research time and enhancing efficiency. 

In computational biology, AI facilitates hypothesis testing through simulations. Deep learning 
models predict how mutations alter protein function, enabling researchers to prioritize high-potential 
variants for experimental validation. This approach saves resources and allows exploration of vast 
mutational landscapes, accelerating discoveries in fields where physical experiments are costly. 

These examples demonstrate AI’s transformative role in hypothesis generation and testing, 
enabling researchers to explore new frontiers and optimize scientific workflows. 

2.4.2. Controversy 

While issues like interpretability and ethics recur throughout discussions of AI in science, their 
persistence underscores their centrality as cross-cutting concerns that impact multiple facets of AI 
applications. The scientific community recognizes AI’s potential to enhance hypothesis generation 
and testing, as evidenced by successes like AlphaFold’s protein structure predictions and AI-driven 
material discoveries. However, several controversies persist, reflecting diverse perspectives on AI’s 
role in science. 

Interpretability remains a significant challenge. The “black box” nature of many AI models 
complicates validation, as the scientific community requires understanding the mechanisms behind 
predictions. For instance, in Ludwig and Mullainathan’s judicial study, the inability to pinpoint 
which facial features drove predictions limited actionable conclusions, hindering adoption. 

A key debate centers on whether AI-generated hypotheses are truly novel or merely 
extrapolations of data patterns. Some argue AI lacks human creativity, producing sophisticated 
correlations without deeper insight. Nick Bostrom suggests creativity requires intentionality, which 
current AI lacks (Müller & Bostrom, 2016). Conversely, Margaret Boden argues AI can be creative if 
it produces novel and valuable outputs, as seen in the prostate cancer study (Boden, 1996). 
Researchers have begun exploring metrics to quantify novelty, such as using information theory to 
measure the Kullback-Leibler divergence between predicted and observed outcomes, assessing the 
surprisal or innovativeness of AI proposals (Foster et al., 2021). These approaches, though promising, 
remain underdeveloped for broad scientific application. This philosophical discourse challenges 
traditional notions of scientific innovation. 

AI’s influence on scientific theory change raises epistemological questions. Thomas Kuhn’s 
concept of paradigm shifts suggests AI could accelerate revolutions by identifying anomalies (Kuhn 
& Meyer, 1983). However, critics warn of “algorithmic dogmatism,” where biases in AI models shape 
theories, potentially stifling innovation. These debates underscore the need to critically assess AI’s 
role in reshaping scientific epistemology. 

Ethical concerns are prominent, especially in healthcare and criminal justice. Biased data can 
lead to flawed hypotheses, as seen in the judicial study, raising fairness and privacy issues. Balancing 
AI’s insights with robust ethical guidelines is crucial to maintain public trust. 

Overreliance on AI risks “illusions of understanding,” where researchers overestimate 
comprehension of phenomena. A hybrid approach combining AI and human expertise is advocated 
to ensure scientific rigor. For instance, in developing the AI-designed drug DSP-1181, human experts 
were essential in validating AI proposals and guiding clinical trials (Burki, 2020). 

2.4.3. Critique 

The literature on AI in hypothesis generation and testing is robust but reveals methodological 
limitations that must be addressed to fully harness AI’s potential. 
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• Dataset Limitations: Many studies rely on narrow datasets, limiting generalizability. For 
example, in materials science, AI models trained on specific material types may not apply 
broadly, necessitating more diverse datasets. For example, one AI-driven screen predicted a 
novel antibiotic candidate, but follow-up laboratory assays revealed it had no measurable 
antimicrobial activity. This false lead underscores the indispensability of empirical validation in 
AI-generated hypotheses. 

• Interpretability Challenges: The “black box” nature of AI models hinders validation, 
particularly in hypothesis-driven research. Emerging explainable AI methods like SHAP and 
LIME show promise, but further development is needed (Lundberg et al., 2022). 

• Lack of Standardized Metrics: Evaluating AI-generated hypotheses lacks standardized metrics. 
Current benchmarks, like the DREAM Challenges for drug discovery, focus on predictive 
accuracy rather than novelty (Prill et al., 2010). In materials science, the Materials Project 
evaluates properties but not innovativeness (Jain et al., 2013). Novel metrics, possibly from 
information theory, are needed to assess hypothesis originality. For instance, approaches based 
on information theory, such as measuring the Kullback-Leibler divergence between predicted 
and observed outcomes, offer potential ways to assess the surprisal or innovativeness of AI 
proposals (Foster et al., 2021). However, these methods are still in early stages and require 
further development to be widely applicable in scientific contexts. 

Ethical Oversights: Ethical considerations in AI-driven hypothesis generation and testing are 
multifaceted: 

• Data Bias: Studies often rely on datasets with inherent biases, leading to hypotheses that amplify 
these flaws. In healthcare, AI trained on specific populations may produce hypotheses less 
applicable to underrepresented groups (Parikh et al., 2019). 

• Privacy Concerns: Fields like genomics and social sciences involve sensitive data, raising 
privacy issues. Compliance with ethical standards and data protection regulations is essential 
(Jobin et al., 2019). 

• Societal Implications: In areas like criminal justice, AI-generated hypotheses can impact society 
broadly, as seen in the judicial study, necessitating fairness and accountability (Ludwig & 
Mullainathan, 2024). Addressing these requires inclusive data practices, transparency, and 
adherence to guidelines like those from the IEEE (Zhao et al., 2020). 

• Integration with Traditional Practices: AI-generated hypotheses require rigorous experimental 
validation. Open science practices, such as sharing models and datasets, are crucial for 
transparency and reproducibility. Crucially, human oversight remains indispensable in this 
process. While AI can propose hypotheses, human researchers must evaluate their plausibility 
and interpret results, as seen in the development of the AI-designed drug DSP-1181, where 
human experts guided validation and clinical trials (Burki, 2020). 

• Longitudinal Studies: Few studies evaluate the long-term impact of AI-generated hypotheses. 
Future research should prioritize real-world validations, novel metrics, interpretability 
advancements, and ethical compliance to ensure AI’s responsible application in science. 

2.5. Cross-Thematic Analysis: Interconnections and Contrasting Perspectives 

This section synthesizes the two central themes of this review, AI’s role in data collection and 
analysis (Theme A, Section 2.3) and hypothesis generation and testing (Theme B, Section 2.4), to 
elucidate their interconnections, shared challenges, and contrasting perspectives. By examining these 
relationships, we highlight how AI drives the emerging paradigm of algorithmic discovery, framed 
within the concept of Generative Metascience, which positions AI as a meta-technology that both 
analyzes data and autonomously generates novel scientific inquiries. This synthesis provides new 
insights into AI’s transformative potential while addressing critical limitations, supported by 
concrete examples of validated hypotheses. 
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Defining Generative Metascience 

Generative Metascience is a framework that conceptualizes AI as both an analytical instrument 
and an autonomous co-investigator in scientific discovery. It integrates data-driven pattern 
recognition (Theme A) with hypothesis-driven exploration (Theme B), enabling AI to automate and 
augment the scientific method. By facilitating an iterative cycle of observation, hypothesis 
formulation, experimentation, and analysis, Generative Metascience redefines traditional research 
workflows, as exemplified by systems like the AI Scientist and automated laboratories. 

Interconnections: The Iterative Cycle of Data and Hypotheses 

AI’s capabilities in data collection and analysis (Theme A) provide the empirical foundation for 
hypothesis generation and testing (Theme B), creating a synergistic cycle that accelerates scientific 
discovery. In genomics, DeepVariant, a deep learning-based variant caller, identifies genetic variants 
with high accuracy (Junjun et al., 2024). For instance, its detection of rare variants in the 1000 Genomes 
Project has led to hypotheses about their roles in neurodevelopmental disorders, which are 
subsequently tested through targeted experiments (Yun et al., 2020). 

In astronomy, AI-driven classification of galaxy morphologies using Sloan Digital Sky Survey 
data achieves 98% accuracy, informing hypotheses about galaxy formation and evolution (Banerji et 
al., 2012). These hypotheses guide further observations, such as those with the Hubble Space 
Telescope, to validate models of cosmic evolution. 

In materials science, the A-Lab project at Lawrence Berkeley National Laboratory used AI to 
screen over 32 million candidate materials, identifying 41 new compounds, one of which was 
synthesized into a working battery prototype with 70% less lithium (Banerjee et al., 2025). This 
validated hypothesis demonstrates how AI-driven data analysis leads to novel material discoveries, 
which are then tested experimentally, generating new data for further analysis. 

In particle physics, AI analyzes petabytes of Large Hadron Collider (LHC) data to detect 
anomalous jets, suggesting the presence of particles beyond the Standard Model (Kheddar et al., 
2025). These anomalies prompt hypotheses about new physics phenomena, tested through 
subsequent collisions, illustrating the iterative cycle. 

This cycle is further enhanced by large language models (LLMs) like GPT-4, which process 
scientific literature to suggest hypotheses and streamline research workflows (Liang et al., 2024). For 
example, LLMs have been used to draft research proposals in genomics, identifying potential gene-
disease associations for experimental validation. Figure 3 depicts the iterative cycle connecting 
Theme A (Data Collection & Analysis) and Theme B (Hypothesis Generation & Testing), showing 
how algorithmic discovery feeds pattern finding and insight into hypothesis formulation, which then 
drives experiment design, execution, and the generation of new data—closing the loop on scientific 
inquiry (see Figure 3). 

 
Figure 3. Cross-Thematic Analysis. 

Shared Challenges Across Themes 

Both themes face common challenges that must be addressed to realize AI’s full potential: 

• Interpretability and Bias: As explored in sections 2.3 and 2.4, the “black box” nature of AI models 
and risks from biased datasets persist as key challenges. These issues undermine trust in Theme 
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A (e.g., DeepVariant) and adoption in Theme B (e.g., medical imaging), necessitating advances 
in explainable AI and inclusive data. 

• Ethical Considerations: Applications in sensitive fields raise privacy and fairness concerns. In 
Theme A, genomic data privacy is critical. In Theme B, AI-generated hypotheses in criminal 
justice risk amplifying biases, necessitating robust ethical guidelines. 

Contrasting Objectives and Evaluation Metrics 

Theme A and Theme B differ in their objectives and evaluation methods: 

• Objectives: 
o Theme A aims for precision in quantifying known patterns, such as classifying galaxies or 

identifying genetic variants (Davis & Goadrich, 2006). 
o Theme B seeks novelty, proposing uncharted research directions, such as predicting cancer 

recurrence based on gland morphology (Bulten et al., 2022). 

• Evaluation Metrics: 
o Theme A uses quantitative metrics like accuracy and precision, as seen in exoplanet 

detection with 96% accuracy (Jin et al., 2022; Valizadegan et al., 2022). 
o Theme B requires experimental validation, which is inherently uncertain and long-term, as 

in the A-Lab’s material synthesis (Banerjee et al., 2025). 

This contrast highlights AI’s dual role: Theme A provides concrete answers, while Theme B 
poses innovative questions, necessitating human oversight to filter spurious correlations. For 
example, AI analysis of electronic health records has proposed hypotheses linking hospital visits to 
rare diseases, later disproven as statistical noise (Topol, 2019). 

The Paradigm of Algorithmic Discovery 

The integration of Themes A and B forms the paradigm of algorithmic discovery, where AI 
autonomously drives the research cycle. The AI Scientist, which generates hypotheses, designs 
experiments, and drafts papers, exemplifies this paradigm (Lu et al., 2024). Similarly, the A-Lab’s 
discovery of 41 new materials underscores AI’s ability to predict and validate novel compounds, 
accelerating materials science research. Table 3 summarizes how Themes A (data analysis) and B 
(hypothesis generation) interact across major fields, detailing the AI-driven workflow and its 
concrete outcomes. See Table 3 for the integrated paradigm of algorithmic discovery. 

Table 3. Examples of AI-Driven Iterative Cycles. 

Field Theme A (Data 

Analysis) 

Theme B (Hypothesis 

Generation) 

Outcome 

Genomics DeepVariant 

identifies genetic 

variants 

Hypotheses about 

disease associations 

Targeted experiments 
validate gene-disease 
links 

Astronomy Galaxy classification 
with 98% accuracy 

Hypotheses on galaxy 
formation 

Observations refine 
cosmic models 

Materials Science A-Lab screens 32M 

materials  

Hypotheses on new 
battery compounds 

Synthesis of working 
prototype 

Particle Physics LHC data anomaly 

detection  

Hypotheses on new 

particles 

Further collisions test 
new physics theories 
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3. Discussion, Implications, and Future Trajectories 

This section consolidates the review’s findings, identifies gaps, and charts future directions. It 
begins with a summary of AI’s contributions (3.1), examines unresolved questions (3.2), explores 
theoretical and practical implications (3.3), and concludes with actionable recommendations (3.4). 

3.1. Integrated Summary of Key Insights 

Artificial intelligence (AI) is transforming scientific discovery through its dual roles in data 
collection and analysis (Theme A) and hypothesis generation and testing (Theme B). Theme A 
showcases AI’s ability to process vast datasets with high efficiency and accuracy in fields such as 
astronomy, genomics, and particle physics. For example, AI tools like DeepVariant enhance genomic 
analysis by identifying genetic variants with precision. Theme B highlights AI’s capacity to propose 
novel hypotheses and optimize experimental designs in areas like materials science and medicine, as 
seen in the A-Lab’s discovery of new battery materials. The interplay between these themes forms a 
synergistic cycle where data analysis informs hypothesis generation, and hypothesis testing 
generates new data, accelerating scientific progress. This cycle underpins the emerging paradigm of 
algorithmic discovery, exemplified by systems like the AI Scientist, which autonomously conducts 
research. However, as noted in sections 2.3 and 2.4, challenges like model interpretability, data bias, 
and ethical concerns, particularly in sensitive fields such as healthcare and social sciences, remain 
critical to address. Human oversight remains essential to ensure scientific rigor and ethical integrity, 
positioning AI as a transformative yet carefully managed scientific instrument. These findings 
underscore AI’s potential while highlighting unresolved issues, which we explore further in the 
following sections. 

3.2. Unanswered Questions and Gaps in the Literature 

Several gaps in the literature require attention to optimize AI’s role in science. Theoretically, AI’s 
role in knowledge generation prompts epistemological questions about its divergence from human 
cognition. Bostrom (2014) contends that true creativity hinges on intentionality, absent in AI, 
implying that Theme B’s hypothesis generation (e.g., A-Lab’s material discoveries; Merchant et al., 
2023) reflects advanced pattern extrapolation rather than innovation. Conversely, Boden (1990) 
argues that AI achieves creativity when producing novel, valuable outputs, as evidenced by Theme 
A’s data-driven breakthroughs (e.g., DeepVariant; Poplin et al., 2018). Additionally, Kuhn’s (1962) 
paradigm shift framework suggests that AI’s rapid anomaly detection, seen in particle physics, could 
hasten scientific revolutions, amplifying Theme B’s impact. Methodologically, the “black box” nature 
of AI models, reliance on narrow datasets, and lack of standardized evaluation metrics limit their 
trustworthiness and generalizability. For instance, biased genomic datasets can exacerbate health 
disparities (Popejoy & Fullerton, 2016). Empirically, longitudinal studies are needed to assess AI’s 
long-term impact on scientific productivity and innovation. Systematic research into ethical 
implications, particularly in healthcare and criminal justice, is also lacking, necessitating robust 
frameworks to address bias, privacy, and fairness. 

3.3. Implications for Theory and Practice 

AI’s ability to autonomously generate and test hypotheses challenges traditional human-centric 
models of scientific discovery, necessitating new theoretical frameworks to integrate machine-driven 
insights, as suggested by Kuhn’s paradigm shift concept (Anand et al., 2020). This raises 
epistemological questions about knowledge validity and reproducibility in computational research. 
Practically, integrating AI requires scientists to gain expertise in AI and data science through training 
programs, such as those supported by the National Science Foundation’s AI initiatives (Ju et al., 2024). 
Research institutions must invest in computational infrastructure and foster interdisciplinary 
collaborations to support AI integration. Ethical guidelines, like those outlined in the European 
Union’s AI in Science guidelines (Nannini et al., 2023), are essential to address bias, privacy, and 
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accountability, particularly in healthcare and social sciences. Policymakers should establish 
regulations for data sharing and model validation to maintain public trust and promote responsible 
innovation. 

3.4. Recommendations for Future Research 

To address these gaps and harness AI’s potential, future research should prioritize the following, 
divided into short-term and long-term goals: 

Short-Term Priorities: 

• Explainable AI (XAI): Develop domain-specific XAI methods, building on tools like SHAP and 
LIME from section 2.4, to enhance transparency (Lundberg et al., 2022). 

• Inclusive Datasets: Compile diverse datasets to reduce biases in genomics and social sciences, 
as seen in Theme A (Popejoy & Fullerton, 2016). 

• Standardized Metrics: Establish benchmarks to evaluate hypothesis generation, drawing from 
Theme B’s novelty needs (Prill et al., 2010). 

Long-Term Priorities: 

• Longitudinal Studies: Assess AI’s sustained impact on productivity, extending Theme B’s real-
world applications. 

• Ethical Frameworks: Develop guidelines for fairness and privacy, addressing concerns from 
section 2.3 (Alvarez et al., 2024). 

• Human-AI Collaboration: Optimize workflows by integrating AI with human expertise, 
enhancing Theme A and B synergy. 

These efforts will enable the scientific community to integrate AI responsibly, maximizing its 
benefits while mitigating risks. 

Appendix A: Literature Search and Selection Methodology 

This appendix provides a detailed overview of the literature search and selection process 
employed in the review Generative Metascience: A Review of AI as the Next Scientific Instrument 
and the Emerging Paradigm of Algorithmic Discovery. The methodology is designed to ensure 
transparency, rigor, and replicability, aligning with the standards expected for publication in a top-
tier academic journal. While the review adopts a narrative synthesis approach, a systematic search 
strategy was implemented to identify and select high-impact studies that comprehensively represent 
the field of AI in scientific discovery and metascience. 

A.1. Search Strategy 

A.1.1. Databases Queried 

To capture the interdisciplinary nature of AI applications in scientific discovery, a 
comprehensive search was conducted across the following academic databases, selected for their 
relevance to biomedical sciences, computer science, and interdisciplinary research: 

PubMed: For literature in biomedical and life sciences, particularly relevant for AI applications 
in genomics and drug discovery. 

IEEE Xplore: For technical papers in computer science, engineering, and AI methodologies. 
arXiv: For preprints in physics, mathematics, computer science, and related fields, capturing 

cutting-edge developments. 
Scopus: For broad coverage across scientific, technical, medical, and social sciences literature. 
Web of Science: For multidisciplinary research, including citation data critical for metascience 

studies. 
These databases were chosen to ensure comprehensive coverage of peer-reviewed articles, 

conference proceedings, and reputable preprints. Additional sources, such as reference lists of 
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seminal papers and expert consultations, were used to identify studies not captured through database 
searches. 

A.1.2. Search Terms and Strings 

The search strategy utilized a combination of keywords and phrases tailored to the review’s 
focus on AI as a scientific instrument and the paradigm of algorithmic discovery. The following 
primary search terms were employed: 

• General AI terms: “artificial intelligence,” “machine learning,” “deep learning,” “neural 
networks,” “generative AI” 

• Science and metascience terms: “scientific discovery,” “metascience,” “algorithmic discovery,” 
“data analysis,” “hypothesis generation,” “experiment design” 

• Specific applications and milestones: “AlphaFold,” “DENDRAL,” “AI in astronomy,” “AI in 
genomics,” “AI in materials science,” “AI in particle physics,” “AI in drug discovery” 

Search strings were constructed using Boolean operators to combine these terms effectively. 
Examples of search strings include: 

• (“artificial intelligence” OR “machine learning” OR “deep learning”) AND (“scientific 
discovery” OR “metascience” OR “algorithmic discovery”) 

• (“AI” OR “artificial intelligence”) AND (“data analysis” OR “hypothesis generation” OR 
“experiment design”) AND (“science” OR “research”) 

• (“AlphaFold” OR “DENDRAL”) AND (“scientific discovery” OR “AI in science”) 

Searches were conducted without language restrictions initially, but non-English studies were 
later filtered out during the screening process unless they were seminal works with significant 
impact. The search period spanned from 1960 to 2025 to encompass the historical evolution of AI in 
science (e.g., DENDRAL in the 1960s) and recent advancements (e.g., AI Scientist in 2024). 

A.1.3. Supplementary Search Methods 

To ensure comprehensive coverage, supplementary methods were employed: 

• Citation Tracking: Reference lists of key papers, such as those on AlphaFold (Nature) and 
DENDRAL (Wikipedia), were reviewed to identify additional relevant studies. 

• Expert Consultations: Discussions with researchers in AI and metascience helped identify 
emerging works not yet indexed in databases. 

• Conference Proceedings: Key conferences, such as NeurIPS, ICML, and AAAI, were reviewed 
for recent advancements in AI-driven scientific research. 

A.2. Inclusion and Exclusion Criteria 

To maintain focus and rigor, clear inclusion and exclusion criteria were established for study 
selection. 

A.2.1. Inclusion Criteria 

Studies were included if they met the following criteria: 

• Publication Type: Peer-reviewed journal articles, conference proceedings, or reputable preprints 
from platforms like arXiv. 

• Time Frame: Published between 1960 and 2025 to capture the historical and contemporary scope 
of AI in science. 

• Language: Primarily English, with exceptions for seminal non-English works with significant 
impact. 

• Relevance: Directly addressed AI applications in scientific discovery, including data collection 
and analysis, hypothesis generation, experiment design, or metascience. 
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• Content: Provided empirical evidence, theoretical frameworks, or critical analyses relevant to 
the review’s objectives, such as AI’s methodological implications or ethical considerations. 

A.2.2. Exclusion Criteria 

Studies were excluded if they: 

• Were not in English, unless they were landmark publications. 
• Consisted of grey literature, such as blog posts, news articles, or non-academic reports, unless 

they provided unique insights into recent developments (e.g., X posts on AI Scientist (Forbes)). 
• Did not focus on AI applications in scientific contexts, such as purely technical AI papers without 

scientific applications. 
• Were duplicates of already included studies. 

A.3. Study Selection Process 

The study selection process followed a structured approach to ensure systematic identification 
and evaluation of relevant literature: 

Identification: Records were retrieved from the specified databases using the defined search 
strings. Additional records were identified through citation tracking and expert recommendations. 

Screening: Titles and abstracts were screened to assess relevance to the review’s themes of data 
collection and analysis, and hypothesis generation and testing. 

Eligibility: Full texts of potentially relevant studies were retrieved and evaluated against the 
inclusion and exclusion criteria. 

Inclusion: Studies meeting all criteria were included in the review for qualitative synthesis. 
Discrepancies during screening and eligibility assessments were resolved through discussion 

among the review team to ensure consistency. 

A.4. PRISMA Flow Diagram 

The study selection process is summarized in a PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses) flow diagram, which illustrates the flow of information 
through the identification, screening, eligibility, and inclusion stages. Figure A1 provides a 
transparent overview of the number of records processed and the reasons for exclusions at each stage. 

 
Figure A1. Summary of Study Selection Process. 
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A.5. Data Extraction 

From the studies included, the following data were extracted to inform the review’s thematic 
synthesis: 

• AI Techniques: Specific methods used, such as neural networks, support vector machines, or 
generative models. 

• Scientific Domains: Fields of application, including astronomy, genomics, materials science, and 
particle physics. 

• Outcomes: Key findings, such as improved accuracy, novel discoveries, or accelerated research 
processes. 

• Challenges: Reported limitations, such as model interpretability, data quality, or ethical 
concerns. 

• Methodological Insights: Research methods employed, such as case studies, experimental 
studies, or bibliometric analyses. 

A.6. Quality Assessment 

While this review is primarily narrative, the quality of included studies was informally assessed 
to ensure methodological soundness and relevance. Studies were evaluated based on: 

Impact: Citation counts and recognition within the scientific community. 
Relevance: Alignment with the review’s objectives and themes. 
Methodological Rigor: Clarity of methods, robustness of findings, and transparency in 

reporting. 
For empirical studies, tools like the Newcastle-Ottawa Scale for observational studies or the 

Cochrane Risk of Bias tool for experimental studies were considered where applicable. However, 
given the narrative synthesis approach, a formal quality assessment was not conducted, but priority 
was given to high-impact, peer-reviewed publications. 

A.7. Notes on Replicability 

To enhance replicability, the search strategy, including databases, keywords, and criteria, is fully 
documented in this appendix. Researchers wishing to replicate or extend this review can use the 
provided search strings and criteria to retrieve a similar set of studies. The use of widely accessible 
databases and transparent criteria ensures that the literature selection process is reproducible. 

This appendix underscores the rigorous and systematic approach taken to compile the literature 
for this review, ensuring that the synthesis of AI’s role in scientific discovery is grounded in a 
comprehensive and representative evidence base. 
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