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Abstract

This review introduces Generative Metascience, a comprehensive framework for understanding how
artificial intelligence (Al) transforms scientific discovery. We synthesize historical milestones and
case studies across genomics, astronomy, materials science, and social sciences to illustrate Al's
evolution from a research instrument into an autonomous co-investigator. Our analysis is structured
around two core themes: Al-enabled data collection and analysis, and Al-driven hypothesis
generation and testing. This dual focus highlights the iterative interplay between data-driven
analytics and hypothesis-driven inquiry, showing how Al tools can simultaneously generate and
evaluate scientific hypotheses. Key insights reveal Al-accelerated breakthroughs, such as automated
protein-folding and materials design, and the rise of self-driving laboratories, which signal a shift
from traditional inquiry toward an algorithmic discovery paradigm. By synthesizing data-driven
pattern recognition with Al-facilitated hypothesis generation across disciplines, this review
addresses a critical research gap, showing that Al has begun to automate hypothesis formation and
serves as a meta-technology that is redefining scientific epistemology. We highlight urgent
implications for future research, including the development of hybrid Al-human workflows and
robust metrics for machine-generated insights. For policy, we articulate the need for greater
transparency, open data standards, and interdisciplinary funding initiatives. For practice, we
advocate for retraining researchers and updating curricula for Al-integrated labs. By articulating
these developments and their contributions, this paper charts a roadmap for responsibly harnessing
AT’s potential and guiding the scientific community as it navigates Al’s evolving role in a new era of
discovery.

Keywords: generative metascience; algorithmic discovery; Al-driven scientific instrumentation;
hypothesis generation and testing; research automation and workflow optimization

1. Introduction: Establishing the Context and Rationale

1.1. The Broader Landscape: Background and Significance

In 2020, DeepMind’s AlphaFold achieved a groundbreaking milestone by solving the protein
folding problem with remarkable accuracy, a challenge that had persisted for over five decades
(Jumper et al., 2021). This success, powered by advanced machine learning, exemplifies Al's
transformative potential in scientific discovery. Beyond protein folding, Al has made significant
contributions across various scientific domains. In astronomy, machine learning models have been
instrumental in detecting exoplanets, with projects like ExoMiner using deep learning to validate 301
exoplanets from Kepler mission data (Valizadegan et al., 2022). In drug discovery, Al has accelerated
the identification of new therapeutic compounds; for instance, Exscientia has utilized Al to design
molecules that have entered clinical trials, significantly reducing the traditional timeline for drug
development (Philippidis, 2023). These examples underscore Al’'s versatility and its capacity to
address complex scientific challenges.
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The volume of scientific literature is growing exponentially, with recent studies indicating a
doubling time of approximately 17.3 years (Bornmann et al., 2021). This rapid expansion underscores
the critical role of metascience in enhancing the efficiency and reliability of research practices,
ensuring that scientific inquiry remains robust and impactful amidst mounting complexity.

Artificial intelligence, with its ability to process vast datasets and discern intricate patterns, is
becoming a pivotal force in metascience. Al can automate mundane tasks like data cleaning, generate
novel hypotheses via pattern recognition and predictive modeling, optimize experimental designs,
and interpret results by highlighting significant trends and anomalies (Jordan & Mitchell, 2015a).
These functionalities not only expedite scientific discovery but also challenge traditional paradigms
by offering innovative methods for hypothesis generation and validation. A notable example is in
drug discovery, where Al has facilitated the creation of new therapeutic compounds; for instance,
Insilico Medicine has used Al to design drugs that have progressed to clinical trials, markedly
reducing development timelines and costs (Zhavoronkov et al., 2019).

This review introduces Generative Metascience, a framework that emphasizes Al’s, particularly
generative models’, capacity to not only analyze existing data but also to autonomously generate new
hypotheses and propel scientific discovery. This approach underscores Al's dual function as both an
analytical instrument and an independent co-investigator in research. By synthesizing Al's
applications across various scientific fields, from genomics to astronomy, we seek to elucidate how
Al is fundamentally altering the terrain of scientific inquiry.

1.2. The Core Problem: Identifying the Critical Gap or Controversy

Despite Al's widespread adoption in scientific research, there is a pressing need for a
comprehensive review that assesses its overarching role as a scientific instrument. Existing literature
tends to concentrate on specific applications, such as Al in drug discovery or Al in astronomy,
offering detailed insights into particular domains but neglecting the broader, interdisciplinary
implications of Al (Ball & Brunner, 2010; Zhavoronkov et al., 2019). A holistic analysis that examines
Al’s influence on the entire scientific process, encompassing methodological shifts, ethical dilemmas,
and the practical challenges of incorporating Al into conventional research practices, is conspicuously
absent. This deficiency impedes our capacity to fully harness Al's potential while addressing critical
risks, including data biases and the interpretability of AI models (Jobin et al., 2019).

1.3. Delineating the Review’s Focus and Approach

Generative Metascience refers to an Al-driven framework in which artificial intelligence not only
analyzes existing scientific data but also autonomously formulates, prioritizes, and tests novel
hypotheses, effectively acting as both a research instrument and co-investigator in the scientific
discovery process. This review aims to fill this critical gap by offering a comprehensive analysis of
Al's multifaceted applications in scientific research, evaluating its efficacy, and delving into the
nascent paradigm of algorithmic discovery. Uniquely, this review integrates Al's functions in both
data collection and analysis and in hypothesis generation and testing, presenting a unified
framework that encompasses Al's complete influence on the scientific endeavor. By focusing on this
duality, we elucidate the dynamic between data-centric analytics and hypothesis-oriented research,
illustrating how Al can concurrently formulate and appraise scientific hypotheses. Drawing from a
synthesis of findings across various disciplines, we identify exemplary practices for incorporating Al
into research methodologies and pinpoint areas necessitating further scholarly attention.
Additionally, this review will address the policy implications of Al’s integration into science,
including recommendations for funding initiatives and educational reforms to support the
development of Al-driven research ecosystems. This balanced synthesis is intended to inform and
guide researchers, policymakers, and funding bodies in navigating the complexities of Al integration
in science.
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1.4. A Roadmap for the Reader: Structure of the Article

This review is structured as follows: Section 2, “Thematic Synthesis and Critical Analysis of the
Literature,” encompasses five subsections that explore Al's role in scientific discovery. Subsection
2.1, “Historical and Conceptual Foundations,” provides a historical overview of Al's development in
science and clarifies key terminology. Subsection 2.2, “The Methodological Canvas: Approaches to
Research in the Field,” examines the diverse methodologies used to study Al in scientific contexts,
including their strengths, weaknesses, and emerging innovations. Subsections 2.3 and 2.4 delve into
the two principal themes: “Thematic Deep Dive 1” focuses on Al’s contributions to data collection
and analysis, while “Thematic Deep Dive 2” addresses Al’s role in hypothesis generation and testing.
Subsection 2.5, “Cross-Thematic Analysis: Interconnections and Contrasting Perspectives,”
synthesizes the interactions between these themes and their implications for the paradigm of
algorithmic discovery, Section 3, “Discussion, Implications, and Future Trajectories,” outlines the
theoretical and practical implications of Al-driven science, proposes ethical strategies for Al
integration, and highlights key areas for future research. Finally, Appendix A is appended to this
paper to demonstrate the methodologies used to compile and analyze the information presented in
this paper.

2. Thematic Synthesis and Critical Analysis of the Literature

2.1. Historical and Conceptual Foundations

This section establishes the historical and theoretical groundwork for understanding the
emergence of Generative Metascience, a framework that positions Al as both an analytical instrument
and an autonomous agent capable of generating novel scientific hypotheses and driving independent
research. By tracing Al's evolution in scientific discovery, we illustrate how each advancement has
contributed to this paradigm, highlighting the transition from data-driven analysis to generative and
autonomous scientific inquiry.

2.1.1. The Genesis of the Field: Seminal Works and Key Milestones

The integration of Al into scientific discovery began in the 1960s with DENDRAL, developed at
Stanford University (Buchanan & Feigenbaum, 1981). As the first expert system, DENDRAL assisted
organic chemists in identifying unknown molecules by analyzing mass spectrometry data, marking
an early step toward automating hypothesis formation. This pioneering work demonstrated Al’s
potential to augment human reasoning, laying the foundation for its role in Generative Metascience
by enabling structured, rule-based hypothesis generation.

In the 1990s and 2000s, the advent of machine learning techniques, such as support vector
machines and random forests, expanded Al’s capabilities. These methods were particularly impactful
in bioinformatics, facilitating tasks like gene expression analysis and protein classification (Baldi &
Brunak, 2001). By extracting meaningful patterns from large datasets, machine learning enabled data-
driven hypothesis generation, a critical precursor to the generative aspects of modern Al systems.

The deep learning revolution of the 2010s marked a significant leap, with neural networks
achieving breakthroughs across diverse scientific domains. In 2017, artificial neural networks
addressed the quantum many-body problem, a longstanding challenge in physics (Iten et al., 2020).
In 2020, DeepMind’s AlphaFold solved the 50-year-old protein folding problem with unprecedented
accuracy, predicting protein structures from amino acid sequences (Jumper et al., 2021). This
achievement not only accelerated biological research but also exemplified Al's ability to integrate
data analysis with hypothesis generation, a core tenet of Generative Metascience.

The rise of generative Al models further advanced this paradigm. Generative adversarial
networks (GANSs) and variational autoencoders (VAEs) have been used to design novel molecules
and materials, enabling Al to propose new scientific entities that drive hypothesis formation (Mi et
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al., 2018). For instance, in materials science, Al has identified promising battery material candidates,
significantly reducing the time required for traditional trial-and-error methods (Lv et al., 2022).

In recent years, large language models (LLMs) and foundation models have emerged as
transformative tools in scientific discovery. Models like GPT-4 have demonstrated capabilities in
generating scientific text, code, and hypotheses, aligning closely with the generative metascience
framework. In 2024, the Al Scientist framework enabled LLMs to conduct research autonomously,
from idea generation to paper writing (Lu et al., 2024). A notable example is Sakana Al’s AI Scientist-
v2, which in 2025 autonomously generated a hypothesis, designed experiments, and produced a
paper accepted at a top machine learning conference, though it was later withdrawn due to ethical
concerns (Yamada et al., 2025). These milestones highlight Al's growing autonomy, positioning it as
a proactive collaborator in scientific inquiry.

These developments reflect key trends: a progression from narrow, task-specific Al to general,
autonomous systems; an expansion in the scale and complexity of problems addressed; and a shift
from supportive to proactive roles in science. Each milestone has advanced Al's generative
capabilities, aligning with the principles of Generative Metascience by enabling Al to propose and
test novel scientific ideas across disciplines.

2.1.2. The Evolution of Core Concepts and Theories

The conceptual evolution of Al in science mirrors its historical milestones, progressing from
rule-based systems to data-driven, deep learning, and generative models, each addressing limitations
of prior approaches and contributing to the framework of Generative Metascience. Early systems like
DENDRAL relied on manually encoded rules, limiting their generalizability and requiring extensive
expert input. This constrained their ability to generate novel hypotheses beyond predefined
knowledge, a significant limitation for scientific discovery.

The shift to machine learning in the 1990s introduced data-driven methods, such as decision
trees and ensemble methods, which learned from examples and adapted to new data (Rifkin, 2002).
These approaches enabled Al to handle complex datasets, facilitating pattern recognition that
informed hypothesis generation in fields like bioinformatics. This marked an early step toward
generative capabilities, as Al began to identify patterns that could inspire new scientific inquiries.

The deep learning revolution of the 2010s overcame the limitations of traditional machine
learning by leveraging multi-layered neural networks to model complex relationships (Sejnowski,
2018). This enabled breakthroughs in image analysis for astronomy, sequence prediction in genomics,
and natural language processing for scientific literature. However, deep learning’s “black box”
nature posed challenges for scientific validation, prompting the development of interpretability
methods like SHAP and LIME to enhance trust in Al-driven findings (Xu et al., 2019).

Generative Al models, such as GANs and VAEs, further expanded Al's role by enabling the
creation of novel scientific entities, such as molecules and experimental designs (Mi et al., 2018). These
models directly support Generative Metascience by generating hypotheses that push scientific
boundaries, moving beyond analysis to innovation.

The emergence of LLMs and foundation models represents the latest advancement, enabling Al
to generate scientific text, code, and hypotheses. For instance, LLMs have been used to draft research
proposals and analyze literature, streamlining the scientific process (Liang et al., 2024). The Al
Scientist framework exemplifies this, integrating data analysis, hypothesis generation, and
experiment design into an autonomous research cycle (Lu et al, 2024). This shift challenges
traditional scientific workflows, raising questions about the role of human researchers and the nature
of scientific creativity.

Each stage of this evolution has addressed prior limitations: from the rigidity of rule-based
systems to the scalability of machine learning, the complexity handling of deep learning, and the
generative and autonomous capabilities of modern AI This progression underscores Al's
transformative potential in redefining the scientific method, with Generative Metascience providing
a framework to understand and guide this transition. Figure 1 illustrates this conceptual evolution as
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a chronological timeline of key AI milestones in scientific discovery, from the rule-based reasoning
of DENDRAL in the 1960s to the fully autonomous Al Scientist of 2025. Together, these developments
underscore how each paradigm shift—rule-based, data-driven, deep learning, and generative
models—builds toward the framework of Generative Metascience (see Figure 1).

DL in Generative Al
DENDRAL Physics Al Publication
Automated Solved Quantum Designed Novel Autonomous
Hypothesis 1990s Problems 2020 Materials 2024 Discovery
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1960s ML in Bio 2017 AlphaFold 2020s Al Scientist 2025
Data-Driven Mastered Automated
Discovery Protein Folding Research

Figure 1. Al in Science Over Time.

2.2. The Methodological Canvas: Approaches to Research in the Field

The exploration of artificial intelligence (Al) as a transformative scientific instrument within the
framework of Generative Metascience relies on a diverse set of research methodologies. These
approaches, spanning qualitative and quantitative paradigms, investigate Al's integration into
scientific workflows, its effectiveness, and its broader implications for the scientific process. This
section critically evaluates these methodologies, providing specific examples from the literature,
addressing their strengths and limitations, and highlighting emerging innovations that enhance the
study of Al in science. Figure 2 presents a methodological canvas that maps how simulations, case
studies, and experimental studies each contribute to broader scientific implications, effectiveness &
validation, and Al integration within scientific workflows. See Figure 2 for a visual summary of these
interrelated approaches.

Simulations
» Model-based
« Scalability

Broader Scientific
Implications

theoretical foresight

model validation

/’/ scenario exploration
,// \ = contextual understanding .

y Case Studies Effectiveness
l/parameter calibration « In-depth exploration — . & Validation
{ Contextrich qualitative insights
\,

\\\ generate hypotheses \

statistical analysis
Al in Scientific
empirical setup Workflow Integration

Figure 2. Interaction of Core AI Methodologies.

« Controlled variables

T Experimental Studies
« Hypothesis testing

2.2.1. Predominant Research Methodologies: A Critical Overview

The methodologies employed to study Al’s role in scientific discovery are varied, each offering
distinct perspectives on how Al reshapes research practices. Below, we outline the primary
methodologies, supported by specific examples and peer-reviewed references, to illustrate their
application in the context of Generative Metascience.

e Case Studies: Case studies provide in-depth analyses of specific Al applications, offering rich,
contextual insights into their integration with scientific workflows. A prominent example is
DeepMind’s AlphaFold, which solved the protein folding problem with unprecedented
accuracy, demonstrating Al’s capacity to address complex scientific challenges (Jumper et al.,
2021). Another significant case is the development of DSP-1181, the first Al-designed drug to
enter clinical trials, created through a collaboration between Exscientia and Sumitomo
Dainippon Pharma for obsessive-compulsive disorder treatment. This project completed its
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exploratory research phase in under 12 months, compared to the traditional 4-6 years,
showcasing Al’s potential to accelerate drug discovery (Burki, 2020). These cases highlight Al's
role in generating and testing hypotheses, aligning with the principles of Generative
Metascience.

e  Experimental Studies: Experimental studies compare Al-driven methods with traditional
approaches, providing rigorous evidence of Al's efficacy. For instance, Granda et al. (2018)
demonstrated that Al-optimized chemical reaction conditions outperformed human-designed
methods, achieving higher efficiency in organic synthesis (Granda et al., 2018). Such studies
validate Al’s practical utility in scientific tasks, supporting its role as a generative tool in
research.

e Surveys and Interviews: These methods capture scientists’ perceptions of Al, revealing
adoption barriers such as lack of training or concerns about model transparency. A survey by
the Center for Science, Technology and Environmental Policy Studies at Arizona State
University found that while scientists recognize Al's potential to enhance research, many
express concerns about its impact on scientific integrity and the need for ethical guidelines (Z.
Chen et al., 2024). Similarly, a Pew Research Center survey reported that 52% of Americans are
more concerned than excited about Al's role in daily life, reflecting broader societal
apprehensions that influence scientific adoption (Zhang & Dafoe, 2019).

¢ Data Mining and Bibliometric Analyses: These approaches identify trends in Al’s application
across disciplines by analyzing large datasets of publications. Rahman et al. (2024) conducted a
bibliometric analysis of Al in medical diagnoses, noting a significant increase in machine
learning and deep learning usage as such, underscoring Al's growing influence (Rahman et al.,
2024). These analyses provide a macro-level perspective on Al's integration into scientific
research.

¢ Simulations: Simulations test Al in virtual environments, offering cost-effective ways to
evaluate its predictive capabilities. Raccuglia et al. (2016) used machine learning to simulate and
accelerate the discovery of new materials, demonstrating Al’s ability to explore complex systems
where physical experiments are impractical (Raccuglia et al., 2016). Such simulations support
hypothesis generation, a key aspect of Generative Metascience.

e  Theoretical Modeling: Theoretical models develop frameworks to understand Al's role in
science. Jordan and Mitchell (2015) proposed a model for how AI can reshape hypothesis
generation and testing, providing a conceptual foundation for studying Al's impact on scientific
discovery (Jordan & Mitchell, 2015). These models guide empirical research but require
validation to ensure practical relevance.

The prevalence of case studies and experimental studies reflects their ability to provide detailed
insights into Al's transformative applications and empirical evidence of its advantages. Surveys and
bibliometric analyses offer broader perspectives on research trends and community perceptions,
while simulations and theoretical modeling enable exploration in controlled or conceptual settings.
This methodological diversity ensures a comprehensive understanding of Al's role in advancing
scientific inquiry.

2.2.2. Strengths, Weaknesses, and the Rise of Innovative Methods

Each methodology offers distinct strengths and faces inherent limitations, shaping their
suitability for studying AI in science. Below, we critically analyze these aspects, supported by
examples, and discuss emerging innovations that address these limitations. Table1 provides a
concise overview of these methodologies, highlighting each approach’s key strengths, notable
weaknesses, and a representative example. See Table 1 for details.
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Table 1. AI Methodologies.
Strengths Weaknesses Example
Case Studies Provide rich, Often context-specific, | AlphaFold’s protein

folding solution

Experimental Studies

Offer rigorous
evidence of causality
and quantitative
comparisons, ideal for
assessing Al’s

effectiveness.

Controlled settings
may not reflect real-
world complexities;
scaling results to
practical applications

can be challenging.

Al-optimized

chemical synthesis

Surveys and

Excel at capturing

Susceptible to biases

Scientists” concerns

frameworks for
understanding Al's
role, guiding

empirical research.

Interviews subjective experiences | like social desirability about Al ethics
and human or sampling issues;
perspectives, essential qualitative data
for understanding Al | interpretation can be
adoption barriers. subjective.
Data Mining and Handle large datasets Depend on data Al publication trends
Bibliometric efficiently, providing quality; risk of in drug discovery
Analyses objective, macro-level misinterpretation if
insights into trends | analytical methods are
and patterns. not robust.
Simulations Offer flexibility and Validity hinges on Material discovery
cost-effectiveness for accurate underlying simulations
testing Al in models; unrealistic
impractical scenarios. assumptions can
undermine results.
Theoretical Modeling | Provide structured | Risk being speculative Al's impact on

without empirical
validation,
disconnecting from

practical applications.

hypothesis generation

Critical Analysis of Methodological Blind Spots

While these methodologies collectively advance our understanding of Alin science, they exhibit
notable blind spots. Case studies, such as those on AlphaFold, often focus on high-profile successes,
potentially overlooking less successful applications that could reveal critical limitations of Al
systems. Experimental studies, like Granda et al. (2018), may prioritize controlled environments,
missing the nuanced challenges of real-world scientific contexts, such as interdisciplinary
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complexities or data variability. Surveys and interviews, as seen in the ASU SciOPS study, may suffer
from response biases, particularly if participants are hesitant to express critical views about Al due
to its perceived transformative potential. Data mining and bibliometric analyses, while
comprehensive, may miss emerging trends not yet reflected in publication databases, limiting their
ability to capture cutting-edge developments. Simulations, such as those by Raccuglia et al. (2016),
rely on model assumptions that may not fully represent real-world phenomena, potentially leading
to overoptimistic predictions. Theoretical models, like those proposed by Jordan and Mitchell (2015),
risk being overly abstract without sufficient empirical grounding, which can hinder their practical
utility.

Emerging Innovative Methods

To address these limitations, innovative methodologies are emerging to enhance the rigor,
transparency, and ethical integration of Al in scientific research. Al-powered literature reviews, such
as those using natural language processing (NLP) to analyze thousands of papers, enable rapid
synthesis of research trends, as demonstrated by tools like Semantic Scholar (Kinney et al., 2025).
Automated meta-analyses leverage Al to conduct systematic reviews with reduced human bias,
improving efficiency in synthesizing evidence across studies (Harrer et al., 2019). Reproducibility
frameworks use Al to verify data integrity and methodological consistency, enhancing trust in Al-
driven findings (Haibe-Kains et al., 2020). Social media sentiment analysis, such as analyses of X
posts, gauges the scientific community’s reactions to Al advancements, providing real-time insights
into adoption trends (Qi et al., 2024). Ethical assessment frameworks, like those proposed by Jobin et
al. (2019), offer guidelines for addressing bias, privacy, and accountability in Al applications. These
innovations align with Generative Metascience by fostering a more robust and responsible approach
to studying Al’s role in science.

2.3. Thematic Deep Dive 1

This section examines artificial intelligence (Al) as a cornerstone of scientific data collection and
analysis, a key pillar of Generative Metascience. By leveraging machine learning and deep learning,
Al enables researchers to process vast, complex datasets with unprecedented efficiency and accuracy,
driving discoveries across disciplines such as astronomy, genomics, and particle physics. Structured
into synthesis, consensus/controversy, and critique, this section highlights Al's transformative
impact, addresses ongoing debates, and identifies methodological gaps requiring further exploration.

2.3.1. Synthesis of Key Findings and Supporting Evidence

Al has reshaped scientific data collection and analysis by automating complex tasks and
uncovering patterns that were previously unattainable. In astronomy, Al manages massive datasets
generated by modern telescopes. The Vera C. Rubin Observatory, for instance, is expected to produce
0.5 exabytes of data over its 10-year survey, equivalent to 50,000 times the Library of Congress’s book
collection (Thomas et al., 2020). Neural networks have achieved high accuracy in classifying galaxy
morphologies; a seminal study by Banerji et al. (2010) used neural networks on Sloan Digital Sky
Survey data, achieving 98% accuracy comparable to human experts (Banerji et al., 2012). Similarly,
Al-driven exoplanet detection has reached 96% accuracy using Kepler mission data, as demonstrated
by Valizadegan et al. (2022) in the ExoMiner project (Valizadegan et al., 2022).

In genomics, Al accelerates the analysis of intricate genetic data, advancing personalized
medicine and disease research. DeepVariant, a deep learning-based variant caller developed by
Google, significantly improves the accuracy of identifying genetic variants, outperforming traditional
tools without requiring specialized domain knowledge (Poplin, Chang, et al, 2018; Poplin,
Varadarajan, et al.,, 2018). SpliceAl, a 32-layer deep neural network, predicts splicing from DNA
sequences with up to 95% accuracy, aiding in identifying cryptic splicing variants linked to
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neurodevelopmental disorders (Jaganathan et al., 2019). These tools exemplify Al’s ability to handle
the scale and complexity of modern sequencing data.

In particle physics, Al is critical for analyzing petabytes of data from high-energy collisions at
the Large Hadron Collider (LHC). The CMS collaboration employs Al to detect anomalous jets,
enhancing sensitivity to new physics phenomena (C. M. S. Collaboration, 2021). Similarly, ATLAS
uses deep learning for precise identification of b-hadrons and other particles (A. Collaboration, 2020).
These applications underscore Al's role in managing data complexity and volume.

Al's impact extends to chemistry, where it predicts molecular properties, and materials science,
where it accelerates novel material discovery. In environmental science, Al models climate data and
predicts natural disasters, enabling proactive responses. By automating routine tasks and revealing
hidden patterns, Al frees researchers to focus on innovative hypotheses, aligning with Generative
Metascience’s emphasis on advancing scientific inquiry. Table 2 summarizes key Al applications
across major scientific fields, detailing specific examples and their impacts. See Table 2 for a concise

overview.
Table 2. Scientific Field-AI Application Mapping.
Field Al Application Example Impact
Astronomy Galaxy classification, Neural networks on High accuracy (98%
exoplanet detection Sloan Digital Sky for galaxies, 96% for
Survey, Kepler data | exoplanets), manages
large datasets
Genomics Variant calling, DeepVariant, SpliceAl | Improved accuracy,
splicing prediction identifies disease-
related variants
Particle Physics Event reconstruction, CMS and ATLAS Enhanced sensitivity
particle identification experiments to new physics,
precise measurements

2.3.2. Areas of Consensus and Controversy

The scientific community broadly recognizes Al’s transformative potential in data collection and
analysis, particularly for enhancing efficiency and accuracy in processing large datasets. Machine
learning and deep learning have become indispensable for tasks like data cleaning and pattern
recognition, driving discoveries across multiple fields.

However, several controversies persist:

¢  Interpretability: Deep learning models often operate as “black boxes,” delivering accurate
predictions without transparent decision-making processes. This opacity is problematic in fields
like medical research, where mechanistic understanding is essential for trust and validation
(Obermeyer et al., 2019). In contrast, some argue that high accuracy, such as in galaxy
classification, may suffice when categorization is the primary goal (Banerji et al., 2012).

e Data Quality and Bias: Al's effectiveness depends on training data quality. In genomics,
datasets skewed toward European ancestry can produce biased models, risking health
disparities (Popejoy & Fullerton, 2016). Debates center on whether technical solutions like
debiasing algorithms or inclusive data collection are more effective.

e  Overreliance on Al: While Al streamlines research, overreliance without human oversight may
lead to “illusions of understanding,” where researchers misinterpret Al outputs (Topol, 2019).
Some view Al as a tool to enhance creativity, while others caution it could undermine scientific
rigor.
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e  Ethical Concerns: Data privacy, especially in genomics, raises significant issues. Balancing Al-
driven insights with privacy protection requires robust ethical guidelines to maintain public
trust (Jobin et al., 2019).

These debates highlight the need for balanced approaches to ensure Al's benefits are realized
without compromising scientific integrity or equity.

2.3.3. Critique of the Literature and Methodological Limitations

The literature on Al in data collection and analysis is robust but reveals methodological gaps. A
key limitation is the reliance on benchmark datasets, which may not reflect real-world diversity. For
instance, DeepVariant’s training on NIST cell lines limits its applicability to diverse genomic data
(Poplin, Chang, et al., 2018). In astronomy, models trained on specific telescope data, such as the
Sloan Digital Sky Survey, may overfit and underperform on other instruments, necessitating broader
datasets (Banerji et al., 2012).

The lack of standardized evaluation metrics hinders performance comparisons across studies.
For example, exoplanet detection studies use varied accuracy metrics, complicating assessments
(Valizadegan et al., 2022). Calls for domain-specific benchmarks, such as those in Kaggle’s exoplanet
hunts, highlight the need for consistency (Jin et al., 2022).

Interpretability remains a barrier, as the “black box” nature of deep learning models limits
validation in hypothesis-driven research. Emerging explainable Al (XAI) methods, like SHAP and
LIME, show promise but require further development (Lundberg et al., 2022).

Ethical oversights, particularly in genomics, are prevalent, with insufficient attention to bias
mitigation and data privacy. Inclusive datasets and transparent reporting are critical to address
disparities (Hanna et al., 2025).

Finally, the scarcity of longitudinal studies limits understanding of Al’'s long-term impact on
scientific practices. Future research should prioritize real-world validations, standardized metrics,
improved interpretability, and ethical compliance to fully harness Al's potential in data collection
and analysis, aligning with Generative Metascience’s goal of advancing scientific discovery.

2.4. Thematic Deep Dive 2
2.4.1. Synthesis

Hypothesis generation and testing are cornerstones of the scientific method, driving the
discovery of new knowledge. Artificial intelligence (Al) has emerged as a transformative tool in these
processes, leveraging its ability to process vast datasets, identify complex patterns, and make accurate
predictions. This section explores how Al enhances hypothesis generation and testing across diverse
disciplines, illustrating its role in accelerating scientific discovery.

In materials science, Al uncovers novel insights that might elude human researchers. For
instance, a collaboration between Microsoft and Pacific Northwest National Laboratory used Al to
screen over 32 million potential battery materials, identifying 23 promising candidates, one of which
was synthesized into a working prototype (C. Chen et al., 2024). This approach significantly reduces
the time required for traditional trial-and-error methods, enabling exploration of vast chemical
spaces for energy storage innovations.

In medical research, Al generates hypotheses that reveal unexpected correlations. A study in
Communications Medicine used deep learning to analyze histopathology images of prostate cancer
patients, identifying gland morphology patterns, such as well-formed glands, as predictors of
biochemical recurrence (Bulten et al., 2022a). This finding demonstrates Al’s ability to detect subtle
patterns in complex datasets, opening new avenues for personalized medicine.

In the social sciences, Al reveals hidden factors influencing human behavior. Ludwig and
Mullainathan (2024) employed machine learning to analyze judicial decisions, finding that facial
features accounted for up to half of the predictable variation in jailing decisions (Ludwig &
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Mullainathan, 2024). This led to hypotheses about unconscious biases, highlighting Al’s potential to
inform social science research.

AT also enhances hypothesis testing by optimizing experimental design. The Copilot for Real-
world Experimental Scientist (CRESt), developed at MIT, assists materials science researchers by
suggesting experiments and controlling equipment via voice commands (Ren et al., 2023). Using
active learning, CRESt streamlines workflows, as shown in studies on fuel cell catalysts, reducing
research time and enhancing efficiency.

In computational biology, Al facilitates hypothesis testing through simulations. Deep learning
models predict how mutations alter protein function, enabling researchers to prioritize high-potential
variants for experimental validation. This approach saves resources and allows exploration of vast
mutational landscapes, accelerating discoveries in fields where physical experiments are costly.

These examples demonstrate Al’s transformative role in hypothesis generation and testing,
enabling researchers to explore new frontiers and optimize scientific workflows.

2.4.2. Controversy

While issues like interpretability and ethics recur throughout discussions of Al in science, their
persistence underscores their centrality as cross-cutting concerns that impact multiple facets of Al
applications. The scientific community recognizes Al's potential to enhance hypothesis generation
and testing, as evidenced by successes like AlphaFold’s protein structure predictions and Al-driven
material discoveries. However, several controversies persist, reflecting diverse perspectives on Al's
role in science.

Interpretability remains a significant challenge. The “black box” nature of many AI models
complicates validation, as the scientific community requires understanding the mechanisms behind
predictions. For instance, in Ludwig and Mullainathan’s judicial study, the inability to pinpoint
which facial features drove predictions limited actionable conclusions, hindering adoption.

A key debate centers on whether Al-generated hypotheses are truly novel or merely
extrapolations of data patterns. Some argue Al lacks human creativity, producing sophisticated
correlations without deeper insight. Nick Bostrom suggests creativity requires intentionality, which
current Al lacks (Miiller & Bostrom, 2016). Conversely, Margaret Boden argues Al can be creative if
it produces novel and valuable outputs, as seen in the prostate cancer study (Boden, 1996).
Researchers have begun exploring metrics to quantify novelty, such as using information theory to
measure the Kullback-Leibler divergence between predicted and observed outcomes, assessing the
surprisal or innovativeness of Al proposals (Foster et al., 2021). These approaches, though promising,
remain underdeveloped for broad scientific application. This philosophical discourse challenges
traditional notions of scientific innovation.

Al's influence on scientific theory change raises epistemological questions. Thomas Kuhn's
concept of paradigm shifts suggests Al could accelerate revolutions by identifying anomalies (Kuhn
& Meyer, 1983). However, critics warn of “algorithmic dogmatism,” where biases in Al models shape
theories, potentially stifling innovation. These debates underscore the need to critically assess Al's
role in reshaping scientific epistemology.

Ethical concerns are prominent, especially in healthcare and criminal justice. Biased data can
lead to flawed hypotheses, as seen in the judicial study, raising fairness and privacy issues. Balancing
Al’s insights with robust ethical guidelines is crucial to maintain public trust.

Overreliance on Al risks “illusions of understanding,” where researchers overestimate
comprehension of phenomena. A hybrid approach combining Al and human expertise is advocated
to ensure scientific rigor. For instance, in developing the Al-designed drug DSP-1181, human experts
were essential in validating Al proposals and guiding clinical trials (Burki, 2020).

2.4.3. Critique

The literature on Al in hypothesis generation and testing is robust but reveals methodological
limitations that must be addressed to fully harness Al's potential.
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e Dataset Limitations: Many studies rely on narrow datasets, limiting generalizability. For
example, in materials science, AI models trained on specific material types may not apply
broadly, necessitating more diverse datasets. For example, one Al-driven screen predicted a
novel antibiotic candidate, but follow-up laboratory assays revealed it had no measurable
antimicrobial activity. This false lead underscores the indispensability of empirical validation in
Al-generated hypotheses.

e Interpretability Challenges: The “black box” nature of Al models hinders validation,
particularly in hypothesis-driven research. Emerging explainable Al methods like SHAP and
LIME show promise, but further development is needed (Lundberg et al., 2022).

e Lack of Standardized Metrics: Evaluating Al-generated hypotheses lacks standardized metrics.
Current benchmarks, like the DREAM Challenges for drug discovery, focus on predictive
accuracy rather than novelty (Prill et al,, 2010). In materials science, the Materials Project
evaluates properties but not innovativeness (Jain et al., 2013). Novel metrics, possibly from
information theory, are needed to assess hypothesis originality. For instance, approaches based
on information theory, such as measuring the Kullback-Leibler divergence between predicted
and observed outcomes, offer potential ways to assess the surprisal or innovativeness of Al
proposals (Foster et al.,, 2021). However, these methods are still in early stages and require
further development to be widely applicable in scientific contexts.

Ethical Oversights: Ethical considerations in Al-driven hypothesis generation and testing are
multifaceted:

e  Data Bias: Studies often rely on datasets with inherent biases, leading to hypotheses that amplify
these flaws. In healthcare, Al trained on specific populations may produce hypotheses less
applicable to underrepresented groups (Parikh et al., 2019).

e  Privacy Concerns: Fields like genomics and social sciences involve sensitive data, raising
privacy issues. Compliance with ethical standards and data protection regulations is essential
(Jobin et al., 2019).

e  Societal Implications: In areas like criminal justice, Al-generated hypotheses can impact society
broadly, as seen in the judicial study, necessitating fairness and accountability (Ludwig &
Mullainathan, 2024). Addressing these requires inclusive data practices, transparency, and
adherence to guidelines like those from the IEEE (Zhao et al., 2020).

¢ Integration with Traditional Practices: Al-generated hypotheses require rigorous experimental
validation. Open science practices, such as sharing models and datasets, are crucial for
transparency and reproducibility. Crucially, human oversight remains indispensable in this
process. While Al can propose hypotheses, human researchers must evaluate their plausibility
and interpret results, as seen in the development of the Al-designed drug DSP-1181, where
human experts guided validation and clinical trials (Burki, 2020).

¢ Longitudinal Studies: Few studies evaluate the long-term impact of Al-generated hypotheses.
Future research should prioritize real-world validations, novel metrics, interpretability
advancements, and ethical compliance to ensure AI’s responsible application in science.

2.5. Cross-Thematic Analysis: Interconnections and Contrasting Perspectives

This section synthesizes the two central themes of this review, Al’s role in data collection and
analysis (Theme A, Section 2.3) and hypothesis generation and testing (Theme B, Section 2.4), to
elucidate their interconnections, shared challenges, and contrasting perspectives. By examining these
relationships, we highlight how Al drives the emerging paradigm of algorithmic discovery, framed
within the concept of Generative Metascience, which positions Al as a meta-technology that both
analyzes data and autonomously generates novel scientific inquiries. This synthesis provides new
insights into Al’s transformative potential while addressing critical limitations, supported by
concrete examples of validated hypotheses.
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Defining Generative Metascience

Generative Metascience is a framework that conceptualizes Al as both an analytical instrument
and an autonomous co-investigator in scientific discovery. It integrates data-driven pattern
recognition (Theme A) with hypothesis-driven exploration (Theme B), enabling Al to automate and
augment the scientific method. By facilitating an iterative cycle of observation, hypothesis
formulation, experimentation, and analysis, Generative Metascience redefines traditional research
workflows, as exemplified by systems like the AI Scientist and automated laboratories.

Interconnections: The Iterative Cycle of Data and Hypotheses

AT’s capabilities in data collection and analysis (Theme A) provide the empirical foundation for
hypothesis generation and testing (Theme B), creating a synergistic cycle that accelerates scientific
discovery. In genomics, DeepVariant, a deep learning-based variant caller, identifies genetic variants
with high accuracy (Junjun et al., 2024). For instance, its detection of rare variants in the 1000 Genomes
Project has led to hypotheses about their roles in neurodevelopmental disorders, which are
subsequently tested through targeted experiments (Yun et al., 2020).

In astronomy, Al-driven classification of galaxy morphologies using Sloan Digital Sky Survey
data achieves 98% accuracy, informing hypotheses about galaxy formation and evolution (Banerji et
al., 2012). These hypotheses guide further observations, such as those with the Hubble Space
Telescope, to validate models of cosmic evolution.

In materials science, the A-Lab project at Lawrence Berkeley National Laboratory used Al to
screen over 32 million candidate materials, identifying 41 new compounds, one of which was
synthesized into a working battery prototype with 70% less lithium (Banerjee et al., 2025). This
validated hypothesis demonstrates how Al-driven data analysis leads to novel material discoveries,
which are then tested experimentally, generating new data for further analysis.

In particle physics, Al analyzes petabytes of Large Hadron Collider (LHC) data to detect
anomalous jets, suggesting the presence of particles beyond the Standard Model (Kheddar et al.,
2025). These anomalies prompt hypotheses about new physics phenomena, tested through
subsequent collisions, illustrating the iterative cycle.

This cycle is further enhanced by large language models (LLMs) like GPT-4, which process
scientific literature to suggest hypotheses and streamline research workflows (Liang et al., 2024). For
example, LLMs have been used to draft research proposals in genomics, identifying potential gene-
disease associations for experimental validation. Figure3 depicts the iterative cycle connecting
Theme A (Data Collection & Analysis) and Theme B (Hypothesis Generation & Testing), showing
how algorithmic discovery feeds pattern finding and insight into hypothesis formulation, which then
drives experiment design, execution, and the generation of new data— closing the loop on scientific
inquiry (see Figure 3).

drives question

Theme B: A
Hypothesis Generation & Testing | _ novelty focus

Experiment
Design & Execution
Observation
(Raw Data)

Algorithmic Discovery
(Metastructure)

Design experiments

Validation
& New Data

Generate new results

Feeds back into data pool

Hypothesis
Formulation

provides data Al-driven analysis

Theme A:
Data Collection & Analysis

LLM/Model suggests hypotheses

Pattemn Finding
& Insight

Figure 3. Cross-Thematic Analysis.

Shared Challenges Across Themes

Both themes face common challenges that must be addressed to realize AI’s full potential:

e Interpretability and Bias: As explored in sections 2.3 and 2.4, the “black box” nature of Al models
and risks from biased datasets persist as key challenges. These issues undermine trust in Theme
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A (e.g., DeepVariant) and adoption in Theme B (e.g., medical imaging), necessitating advances
in explainable Al and inclusive data.

e  Ethical Considerations: Applications in sensitive fields raise privacy and fairness concerns. In
Theme A, genomic data privacy is critical. In Theme B, Al-generated hypotheses in criminal
justice risk amplifying biases, necessitating robust ethical guidelines.

Contrasting Objectives and Evaluation Metrics

Theme A and Theme B differ in their objectives and evaluation methods:

e  Objectives:
o Theme A aims for precision in quantifying known patterns, such as classifying galaxies or
identifying genetic variants (Davis & Goadrich, 2006).
o  Theme B seeks novelty, proposing uncharted research directions, such as predicting cancer
recurrence based on gland morphology (Bulten et al., 2022).

e  Evaluation Metrics:
o Theme A uses quantitative metrics like accuracy and precision, as seen in exoplanet
detection with 96% accuracy (Jin et al., 2022; Valizadegan et al., 2022).
o  Theme B requires experimental validation, which is inherently uncertain and long-term, as
in the A-Lab’s material synthesis (Banerjee et al., 2025).

This contrast highlights Al's dual role: Theme A provides concrete answers, while Theme B
poses innovative questions, necessitating human oversight to filter spurious correlations. For
example, Al analysis of electronic health records has proposed hypotheses linking hospital visits to
rare diseases, later disproven as statistical noise (Topol, 2019).

The Paradigm of Algorithmic Discovery

The integration of Themes A and B forms the paradigm of algorithmic discovery, where Al
autonomously drives the research cycle. The Al Scientist, which generates hypotheses, designs
experiments, and drafts papers, exemplifies this paradigm (Lu et al., 2024). Similarly, the A-Lab’s
discovery of 41 new materials underscores Al’s ability to predict and validate novel compounds,
accelerating materials science research. Table 3 summarizes how Themes A (data analysis) and B
(hypothesis generation) interact across major fields, detailing the Al-driven workflow and its
concrete outcomes. See Table 3 for the integrated paradigm of algorithmic discovery.

Table 3. Examples of Al-Driven Iterative Cycles.

Field Theme A (Data Theme B (Hypothesis Outcome
Analysis) Generation)

Genomics DeepVariant Hypotheses about Targeted experiments
identifies genetic disease associations validate gene-disease
variants links

Astronomy Galaxy classification | Hypotheses on galaxy | Observations refine
with 98% accuracy formation cosmic models

Materials Science A-Lab screens 32M

Hypotheses on new

Synthesis of working

materials battery compounds prototype
Particle Physics LHC data anomaly Hypotheses on new Further collisions test
detection particles new physics theories
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3. Discussion, Implications, and Future Trajectories

This section consolidates the review’s findings, identifies gaps, and charts future directions. It
begins with a summary of Al's contributions (3.1), examines unresolved questions (3.2), explores
theoretical and practical implications (3.3), and concludes with actionable recommendations (3.4).

3.1. Integrated Summary of Key Insights

Artificial intelligence (Al) is transforming scientific discovery through its dual roles in data
collection and analysis (Theme A) and hypothesis generation and testing (Theme B). Theme A
showcases Al's ability to process vast datasets with high efficiency and accuracy in fields such as
astronomy, genomics, and particle physics. For example, Al tools like DeepVariant enhance genomic
analysis by identifying genetic variants with precision. Theme B highlights AI’s capacity to propose
novel hypotheses and optimize experimental designs in areas like materials science and medicine, as
seen in the A-Lab’s discovery of new battery materials. The interplay between these themes forms a
synergistic cycle where data analysis informs hypothesis generation, and hypothesis testing
generates new data, accelerating scientific progress. This cycle underpins the emerging paradigm of
algorithmic discovery, exemplified by systems like the AI Scientist, which autonomously conducts
research. However, as noted in sections 2.3 and 2.4, challenges like model interpretability, data bias,
and ethical concerns, particularly in sensitive fields such as healthcare and social sciences, remain
critical to address. Human oversight remains essential to ensure scientific rigor and ethical integrity,
positioning Al as a transformative yet carefully managed scientific instrument. These findings
underscore Al's potential while highlighting unresolved issues, which we explore further in the
following sections.

3.2. Unanswered Questions and Gaps in the Literature

Several gaps in the literature require attention to optimize Al’s role in science. Theoretically, Al's
role in knowledge generation prompts epistemological questions about its divergence from human
cognition. Bostrom (2014) contends that true creativity hinges on intentionality, absent in Al,
implying that Theme B’s hypothesis generation (e.g., A-Lab’s material discoveries; Merchant et al.,
2023) reflects advanced pattern extrapolation rather than innovation. Conversely, Boden (1990)
argues that Al achieves creativity when producing novel, valuable outputs, as evidenced by Theme
A’s data-driven breakthroughs (e.g., DeepVariant; Poplin et al., 2018). Additionally, Kuhn’s (1962)
paradigm shift framework suggests that Al's rapid anomaly detection, seen in particle physics, could
hasten scientific revolutions, amplifying Theme B’s impact. Methodologically, the “black box” nature
of AI models, reliance on narrow datasets, and lack of standardized evaluation metrics limit their
trustworthiness and generalizability. For instance, biased genomic datasets can exacerbate health
disparities (Popejoy & Fullerton, 2016). Empirically, longitudinal studies are needed to assess Al's
long-term impact on scientific productivity and innovation. Systematic research into ethical
implications, particularly in healthcare and criminal justice, is also lacking, necessitating robust
frameworks to address bias, privacy, and fairness.

3.3. Implications for Theory and Practice

Al's ability to autonomously generate and test hypotheses challenges traditional human-centric
models of scientific discovery, necessitating new theoretical frameworks to integrate machine-driven
insights, as suggested by Kuhn’s paradigm shift concept (Anand et al, 2020). This raises
epistemological questions about knowledge validity and reproducibility in computational research.
Practically, integrating Al requires scientists to gain expertise in Al and data science through training
programs, such as those supported by the National Science Foundation’s Al initiatives (Ju et al., 2024).
Research institutions must invest in computational infrastructure and foster interdisciplinary
collaborations to support Al integration. Ethical guidelines, like those outlined in the European
Union’s Al in Science guidelines (Nannini et al., 2023), are essential to address bias, privacy, and
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accountability, particularly in healthcare and social sciences. Policymakers should establish
regulations for data sharing and model validation to maintain public trust and promote responsible
innovation.

3.4. Recommendations for Future Research

To address these gaps and harness Al’s potential, future research should prioritize the following,
divided into short-term and long-term goals:
Short-Term Priorities:

e  Explainable AI (XAI): Develop domain-specific XAI methods, building on tools like SHAP and
LIME from section 2.4, to enhance transparency (Lundberg et al., 2022).

. Inclusive Datasets: Compile diverse datasets to reduce biases in genomics and social sciences,
as seen in Theme A (Popejoy & Fullerton, 2016).

e  Standardized Metrics: Establish benchmarks to evaluate hypothesis generation, drawing from
Theme B’s novelty needs (Prill et al., 2010).

Long-Term Priorities:

¢ Longitudinal Studies: Assess Al’s sustained impact on productivity, extending Theme B’s real-
world applications.

e  Ethical Frameworks: Develop guidelines for fairness and privacy, addressing concerns from
section 2.3 (Alvarez et al., 2024).

e  Human-AI Collaboration: Optimize workflows by integrating Al with human expertise,
enhancing Theme A and B synergy.

These efforts will enable the scientific community to integrate Al responsibly, maximizing its
benefits while mitigating risks.

Appendix A: Literature Search and Selection Methodology

This appendix provides a detailed overview of the literature search and selection process
employed in the review Generative Metascience: A Review of Al as the Next Scientific Instrument
and the Emerging Paradigm of Algorithmic Discovery. The methodology is designed to ensure
transparency, rigor, and replicability, aligning with the standards expected for publication in a top-
tier academic journal. While the review adopts a narrative synthesis approach, a systematic search
strategy was implemented to identify and select high-impact studies that comprehensively represent
the field of Al in scientific discovery and metascience.

A.1. Search Strategy

A.1.1. Databases Queried

To capture the interdisciplinary nature of Al applications in scientific discovery, a
comprehensive search was conducted across the following academic databases, selected for their
relevance to biomedical sciences, computer science, and interdisciplinary research:

PubMed: For literature in biomedical and life sciences, particularly relevant for Al applications
in genomics and drug discovery.

IEEE Xplore: For technical papers in computer science, engineering, and Al methodologies.

arXiv: For preprints in physics, mathematics, computer science, and related fields, capturing
cutting-edge developments.

Scopus: For broad coverage across scientific, technical, medical, and social sciences literature.

Web of Science: For multidisciplinary research, including citation data critical for metascience
studies.

These databases were chosen to ensure comprehensive coverage of peer-reviewed articles,
conference proceedings, and reputable preprints. Additional sources, such as reference lists of
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seminal papers and expert consultations, were used to identify studies not captured through database
searches.

A.1.2. Search Terms and Strings

The search strategy utilized a combination of keywords and phrases tailored to the review’s
focus on Al as a scientific instrument and the paradigm of algorithmic discovery. The following
primary search terms were employed:

v u v

neural

e General Al terms: “artificial intelligence,” “machine learning,” “deep learning,

s

networks,” “generative Al”

i a7

e  Science and metascience terms: “scientific discovery,” “metascience,” “algorithmic discovery,”

i

“data analysis,” “hypothesis generation,” “experiment design”

e  Specific applications and milestones: “AlphaFold,” “DENDRAL,” “Al in astronomy,” “Al in

genomics,” “Al in materials science,” “Al in particle physics,” “Al in drug discovery”

Search strings were constructed using Boolean operators to combine these terms effectively.
Examples of search strings include:

e  (“artificial intelligence” OR “machine learning” OR “deep learning”) AND (“scientific
discovery” OR “metascience” OR “algorithmic discovery”)

e (“Al” OR “artificial intelligence”) AND (“data analysis” OR “hypothesis generation” OR
“experiment design”) AND (“science” OR “research”)

e (“AlphaFold” OR “DENDRAL"”) AND (“scientific discovery” OR “Al in science”)

Searches were conducted without language restrictions initially, but non-English studies were
later filtered out during the screening process unless they were seminal works with significant
impact. The search period spanned from 1960 to 2025 to encompass the historical evolution of Al in
science (e.g., DENDRAL in the 1960s) and recent advancements (e.g., Al Scientist in 2024).

A.1.3. Supplementary Search Methods

To ensure comprehensive coverage, supplementary methods were employed:

e (Citation Tracking: Reference lists of key papers, such as those on AlphaFold (Nature) and
DENDRAL (Wikipedia), were reviewed to identify additional relevant studies.
e  Expert Consultations: Discussions with researchers in Al and metascience helped identify

emerging works not yet indexed in databases.
e  Conference Proceedings: Key conferences, such as NeurIPS, ICML, and AAAI, were reviewed

for recent advancements in Al-driven scientific research.

A.2. Inclusion and Exclusion Criteria

To maintain focus and rigor, clear inclusion and exclusion criteria were established for study
selection.
A.2.1. Inclusion Criteria

Studies were included if they met the following criteria:

e  Publication Type: Peer-reviewed journal articles, conference proceedings, or reputable preprints

from platforms like arXiv.

e  Time Frame: Published between 1960 and 2025 to capture the historical and contemporary scope
of Al in science.

e Language: Primarily English, with exceptions for seminal non-English works with significant
impact.

e  Relevance: Directly addressed Al applications in scientific discovery, including data collection
and analysis, hypothesis generation, experiment design, or metascience.
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e  Content: Provided empirical evidence, theoretical frameworks, or critical analyses relevant to
the review’s objectives, such as Al's methodological implications or ethical considerations.

A.2.2. Exclusion Criteria

Studies were excluded if they:

e  Were not in English, unless they were landmark publications.

e  Consisted of grey literature, such as blog posts, news articles, or non-academic reports, unless
they provided unique insights into recent developments (e.g., X posts on Al Scientist (Forbes)).

¢  Didnot focus on Al applications in scientific contexts, such as purely technical Al papers without
scientific applications.

e Were duplicates of already included studies.

A.3. Study Selection Process

The study selection process followed a structured approach to ensure systematic identification
and evaluation of relevant literature:

Identification: Records were retrieved from the specified databases using the defined search
strings. Additional records were identified through citation tracking and expert recommendations.

Screening: Titles and abstracts were screened to assess relevance to the review’s themes of data
collection and analysis, and hypothesis generation and testing.

Eligibility: Full texts of potentially relevant studies were retrieved and evaluated against the
inclusion and exclusion criteria.

Inclusion: Studies meeting all criteria were included in the review for qualitative synthesis.

Discrepancies during screening and eligibility assessments were resolved through discussion
among the review team to ensure consistency.

A.4. PRISMA Flow Diagram

The study selection process is summarized in a PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flow diagram, which illustrates the flow of information
through the identification, screening, eligibility, and inclusion stages. Figure Al provides a
transparent overview of the number of records processed and the reasons for exclusions at each stage.

Records identified
(N = ~2,500)

Duplicates removed (~500)

\ 4
Records after duplicates removed
(N =~2,000)

A4
Records screened
(N = ~2,000)

Excluded at screening (~1,500)
Y

Full-text articles assessed
(N = ~500)

Excluded at eligibility (~350)
(Irrelevant/non-English)

Y
Studies included in qualitative synthesis
N =~150)

Figure Al. Summary of Study Selection Process.
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A.5. Data Extraction

From the studies included, the following data were extracted to inform the review’s thematic
synthesis:
e Al Techniques: Specific methods used, such as neural networks, support vector machines, or

generative models.
e  Scientific Domains: Fields of application, including astronomy, genomics, materials science, and

particle physics.

e Outcomes: Key findings, such as improved accuracy, novel discoveries, or accelerated research
processes.

° Challenges: Reported limitations, such as model interpretability, data quality, or ethical
concerns.

e  Methodological Insights: Research methods employed, such as case studies, experimental

studies, or bibliometric analyses.

A.6. Quality Assessment

While this review is primarily narrative, the quality of included studies was informally assessed
to ensure methodological soundness and relevance. Studies were evaluated based on:

Impact: Citation counts and recognition within the scientific community.

Relevance: Alignment with the review’s objectives and themes.

Methodological Rigor: Clarity of methods, robustness of findings, and transparency in
reporting.

For empirical studies, tools like the Newcastle-Ottawa Scale for observational studies or the

Cochrane Risk of Bias tool for experimental studies were considered where applicable. However,
given the narrative synthesis approach, a formal quality assessment was not conducted, but priority
was given to high-impact, peer-reviewed publications.

A.7. Notes on Replicability

To enhance replicability, the search strategy, including databases, keywords, and criteria, is fully
documented in this appendix. Researchers wishing to replicate or extend this review can use the
provided search strings and criteria to retrieve a similar set of studies. The use of widely accessible
databases and transparent criteria ensures that the literature selection process is reproducible.

This appendix underscores the rigorous and systematic approach taken to compile the literature
for this review, ensuring that the synthesis of Al’s role in scientific discovery is grounded in a
comprehensive and representative evidence base.
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