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Abstract 

This study presents an analysis of the impact of climate change on several factors that affect 
agricultural output such as soil moisture, temperature anomalies, and precipitation anomalies. The 
project utilizes data-powered positive deviance (DPPD) to identify farmers who are achieving better 
values of the aforementioned factors despite similar geographical conditions. The findings are then 
used to devise policies to assist other farmers in adopting similar practices. The methodology used 
in the study applies seasonal-trend decomposition using the loess (STL) method to analyze temporal 
trends of weather variables across a specific region, using data collected from various sources, such 
as satellite imagery and weather station readings in the state of Telangana. Similar studies done 
across the world demonstrate an improvement in crop yields and an increase in the resilience of farms 
from rapid climate change. 

Keywords: data science; climate change; agriculture; data powered positive deviance; geospatial 
science 
 

1. Introduction 

Climate change poses a significant challenge to global agriculture and food security. Rising 
temperatures, shifting precipitation patterns, and an increased frequency of extreme weather events 
are profoundly impacting agricultural productivity and sustainability (Vogel et al., 2019). In response 
to these challenges, there is an urgent need for innovative solutions that can enhance the resilience of 
agricultural systems to climate variability and change. 

The application of data science and machine learning techniques presents a promising approach 
to addressing these complex issues. By leveraging large-scale datasets on weather patterns, soil 
moisture, and crop growth, researchers can uncover intricate relationships and patterns that inform 
adaptive agricultural practices and policies. This study utilizes data science methodologies to identify 
and promote climate-resilient agricultural practices, with a particular focus on the data-powered 
positive deviance (DPPD) approach. 

DPPD is an emerging methodology that employs data science techniques to identify instances 
of positive deviance—cases where individuals or communities achieve better outcomes than their 
peers despite facing similar environmental constraints (Albanna & Heeks, 2018). In the context of 
agriculture, positive deviants are farmers who maintain higher crop yields or utilize resources more 
efficiently in the face of adverse climatic conditions. 

The present study contributes to the growing body of research on climate-resilient agriculture 
by applying DPPD to analyze key factors affecting agricultural output, including soil moisture, 
temperature anomalies, and precipitation anomalies. By identifying positive deviances in these 
critical variables, we aim to uncover successful adaptation strategies that can be scaled up and 
replicated in other regions facing similar climatic challenges. 

Our work builds upon previous studies that have demonstrated the potential of DPPD in various 
developmental contexts (Driesen et al., 2021; Adelhart Toorop et al., 2020). However, this research 
represents one of the first applications of DPPD specifically to climate resilience in agriculture at a 
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regional scale. By focusing on the state of Telangana in India, we provide a case study of how data-
driven approaches can inform localized climate adaptation strategies. 

The primary objectives of this study are to: 
Develop comprehensive datasets of soil moisture, temperature anomalies, and precipitation 

anomalies for the state of Telangana using satellite imagery and weather station data. 
Apply trend analysis and DPPD methodologies to identify positive deviances in agricultural 

practices across the region. 
Analyze the spatial and temporal patterns of these positive deviances to inform policy 

recommendations for promoting climate-resilient agriculture. 
By achieving these objectives, this research aims to contribute to the development of evidence-

based policies and programs that can enhance the adaptive capacity of agricultural systems in the 
face of climate change. The findings of this study have potential implications not only for Telangana 
but also for other regions facing similar climate-related challenges to their agricultural sectors. 

2. Data 

2.1. Soil Moisture 

Soil moisture is a critical factor in agricultural productivity, influencing water availability for 
plant growth and mediating crop susceptibility to pests and diseases. Monitoring soil moisture is 
essential for optimizing irrigation practices and identifying areas at risk of drought or waterlogging. 
It serves as a direct indicator for quantifying agricultural drought. 

Historically, regional-scale soil moisture measurements were sparse. However, recent 
advancements in land surface modeling and satellite technology have facilitated the development of 
comprehensive national and global soil moisture datasets. These datasets provide valuable insights 
into the dynamics of agricultural drought and have significantly enhanced our understanding of soil-
water interactions in agricultural systems. 

A key challenge in utilizing these datasets for drought quantification is establishing an accurate 
baseline of normal conditions. This is particularly problematic with earth observation datasets, which 
often have short baselines for individual instruments. Champagne et al. (2019) addressed this issue 
by assessing three distinct soil moisture datasets: Surface satellite soil moisture data from the Soil 
Moisture and Ocean Salinity (SMOS) mission (operational since 2010), A blended surface satellite soil 
moisture dataset from the European Space Agency Climate Change Initiative (ESA-CCI), Surface and 
root zone soil moisture data from the Canadian Meteorology Centre (CMC)’s Regional Deterministic 
Prediction System (RDPS) 

Their study revealed that while short-baseline soil moisture datasets can yield consistent results 
compared to longer datasets, the characteristics of the baseline years are crucial. To reliably estimate 
the relationship between high soil moisture and high-yielding years, soil moisture baselines of 18–20 
years or more are necessary. 

Further research by Rossato et al. (2019) and Saha et al. (2020) underscored the significance of 
soil moisture in agricultural drought and emphasized the need for reliable datasets to comprehend 
its dynamics. These studies established a strong connection between temperature anomalies and 
agricultural productivity, informing our selection of datasets for this study. 

Based on these findings and considering the available options (Table 1), we selected the NASA-
USDA Enhanced Surface soil moisture dataset for our analysis. This dataset offers a high spatial 
resolution of 10 km, which is crucial for understanding localized variations in soil moisture across 
Telangana’s diverse landscape. 
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Table 1. Soil Moisture Datasets. 

Name of dataset    Spatial Resolution  

 

Temporal Resolution  Frequency  

Copernicus Climate Change Service Soil moisture 

(Copernicus)  

0.25°x0.25°  1978  to  

present  

10 days  

NASA - USDA Global Surface soil moisture (Bolten 

et. al,  

2010)  

0.25°x0.25°  2015-2020  3 days  

NASA - USDA Enhanced Surface soil moisture 

(Bolten et. al, 2010)  

10-km  2015-2020  3 days  

2.2. Temperature Anomalies 

Temperature anomalies, defined as deviations from long-term average temperatures, play a 
crucial role in agricultural productivity. These variations significantly impact crop growth, 
development, and yield. Understanding and monitoring temperature anomalies is essential for 
farmers to implement effective strategies to protect crops from heat stress and optimize yields. 

Extensive research has been conducted on the effects of temperature anomalies on agricultural 
practices and yields. Key findings include: 

1. Staple Crop Vulnerability: The four primary staple crops (wheat, rice, maize, and soybean) are 
particularly susceptible to temperature changes. 

2. Yield Reductions: A 1°C increase in global temperatures can dramatically affect crop production: 
Wheat: Approximately 6% yield decrease, Rice: 3.2% yield decrease, Maize: 7.4% yield decrease, 
Soybean: 3.1% yield decrease. These effects are observed in regions where temperatures are 
typically favorable for crop growth (Vogel et al., 2019). 

3. Farmer Adaptations: In response to increasing temperature anomalies, farmers have 
implemented various strategies: 

 On-farm techniques: Expanding cultivated land area, Adopting staggered farming approaches, 
such as delayed sowing of some seeds to mitigate potential crop failures. 

 Off-farm practices: Diversification into livestock farming, Establishing businesses in non-
agricultural sectors 

However, extreme events like droughts can limit diversification opportunities, potentially 
forcing farmers to seek alternatives outside agriculture (Vogel et al., 2019). 

Agricultural production is highly vulnerable to climate change, with temperature anomalies 
being the most detrimental factor affecting crop growth. The critical impact of temperature on crop 
yields, agricultural practices, and regional livelihoods necessitates accurate measurement and 
analysis of temperature anomalies to develop effective adaptive strategies (Zhao et al., 2017). 

Multiple peer-reviewed surface temperature anomaly products are available (Figure 1) 
maintained by: 

1. NASA Goddard Institute for Space Studies (GISTEMP) 
2. National Oceanic and Atmospheric Administration (NOAA) 
3. National Centers for Environmental Information (NCEI) - Merged Land-Ocean Surface 

Temperature Analysis 
4. Hadley Centre/Climatic Research Unit Temperature (HadCRUT) 
5. Japanese Meteorological Agency (JMA) 
6. Berkeley Earth 

While they employ different methodologies for calculating historical global and regional mean 
time series, they generally concur with trends and interannual variations in global annual mean 
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values and the discrepancies can be explained with variations in data coverage and interpolation 
methods as well as some noise. 

Most cited surface temperature analyses separate the calculation of global anomaly fields into 
Land Surface Air Temperature (LSAT) and Sea Surface Temperature (SST) anomaly analyses. These 
are then combined to create a total global surface temperature index, from which spatially averaged 
global and regional time series are computed. It’s important to note that this combined index is not 
strictly equivalent to the true surface air temperature anomaly (Cowtan et al., 2015). Uncertainty 
analyses for LSAT and SST are conducted separately and then combined to assess total global 
uncertainty. 

For this research, we evaluated several datasets, considering crucial metrics such as spatial and 
temporal resolution. Table 2 presents the specifications of the datasets considered for our study 
(Lenssen et al., 2019). Based on our analysis, we selected the Copernicus ERA5-Land monthly 
averaged data from 1950 to present to create in-situ datasets for temperature anomalies. This choice 
was driven by the need for long-term data with sufficient spatial resolution for our analysis of 
Telangana’s agricultural regions. 

 

Figure 1. Temperature anomalies from diff. sources: NASA, NOAA, Hadley, JMA, Berkeley Earth, Cowtan. 

Table 2. Temperature Anomaly Datasets. 

Name of dataset  Spatial Resolution  Temporal Resolution  Frequency  

CPC   0.5°x0.5°  1979 - present  daily  

WorldClim 2.1 (Fick et. al,  

2017)  

2.5 arc minute  1970 - 2018  monthly  

CRU TS v4.06 (Harris 

et.al.,2022)  

0.5°x0.5°  1901 - 2021  monthly  

CHELSA v2.1 (Karger et.al, 

2017)  

30 arc second  1980 - 2019  monthly  

 HADEx3 (Dunn  et.al, 

2020)  

1.25° x 1.875°  1901 - 2018  daily  

Berkeley Earth (Rohde et. 

al, 2021)  

1°x1°  1833 - Present  monthly  
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2.3. Precipitation Anomalies 

Precipitation anomalies, defined as deviations from long-term average rainfall patterns, pose 
significant challenges to agricultural systems worldwide, with disproportionate effects on 
developing nations. Countries with high dependence on agricultural employment, rapid population 
growth, and elevated levels of water stress are particularly vulnerable to rainfall variability (Zaveri 
et al., 2018; Palagi et al., 2020; Felton et al., 2019). Since the mid-20th century, anthropogenic climate 
forcing has doubled the probability of concurrent warm and dry years in the same location, with 
tropics and subtropics facing an increased frequency of record-breaking dry events (Zaveri et al., 
2018). 

While the effects of rainfall variability on crop yields and productivity have been widely studied, 
the consequences of changes in cropland areas and associated deforestation are less understood and 
yet to be quantified on a global, disaggregated scale. Research has shown that repeated dry anomalies 
lead to cropland expansion, particularly in developing countries dominated by smallholder farming, 
likely as a compensation for lower yields during dry periods. This finding is corroborated by 
observations of forest cover reductions in areas of cropland expansion due to dry anomalies, and the 
halting of cropland expansion in regions where infrastructure buffers yield from rainfall anomalies 
(Zaveri et al., 2018). 

The socioeconomic implications of precipitation anomalies are significant. Rainfall anomalies 
exacerbate income inequality in agriculture-dependent economies, with climate projections 
suggesting worsening disparities over time. While climate change is likely to increase income 
inequality between countries, its differential impacts across income classes within countries remain 
less understood. These findings underscore the urgent need for inclusive and sustainable 
development policies, especially in highly exposed countries, to mitigate negative impacts on lower-
income populations and the environment (Palagi et al., 2020). 

For our analysis of precipitation anomalies in Telangana, we evaluated several gridded 
precipitation anomaly datasets. However, due to limitations in spatial accuracy and temporal 
availability, we opted to create in-situ datasets using Copernicus ERA5 data. This decision was driven 
by the need for high-resolution, locally relevant data to accurately assess the impact of precipitation 
anomalies on agricultural resilience in the region. By focusing on these locally derived precipitation 
anomaly datasets, our study aims to provide a nuanced understanding of rainfall variability in 
Telangana and its implications for agricultural practices and policies. This approach allows for a more 
targeted analysis of climate resilience strategies in the context of local agricultural systems and 
socioeconomic conditions, addressing the research gaps in quantifying global impacts, assessing 
comprehensive effects, and exploring adaptive strategies for smallholder farmers 

in vulnerable regions. 

Table 3. Precipitation Anomaly Datasets . 

Dataset  Spatial Resolution  Temporal resolution  Frequency  

NOAA NCEP CPC CAMS_OPI 

v0208  

2.5°x2.5°  1979 - Present  Monthly  

Climate Hazards Group InfraRed  

Precipitation with Station data  

0.05°x0.0 

5°  

1981 - 2022  Daily, monthly  

More datasets available at: https://psl.noaa.gov/data/gridded/tables/precipitation.html 
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3. Methodology 

3.1. Methodology for Anomaly Calculation 

The methodology employed in this study for calculating both temperature and precipitation 
anomalies aims to elucidate temporal variations in climate patterns. Anomalies are determined by 
subtracting a long-term mean from the available data for a given period, thus isolating and 
identifying deviations from the mean. This approach facilitates the identification of trends, patterns, 
and changes, providing valuable insights into the characteristics and behavior of both temperature 
and precipitation. 

Our method draws inspiration from established practices in climate science. For instance, NASA 
Climate utilizes a 30-year reference period (1951-1980) to calculate temperature anomalies at given 
weather stations. Similarly, the Japan Meteorological Association employs a 1991-2020 baseline for 
estimating global mean temperature anomalies, using a 5° x 5° grid box system worldwide and 
weighting anomalies by the land-to-ocean ratio and area of each grid box. This methodology is 
equally applicable to precipitation data. 

The anomaly calculation process for both temperature and precipitation comprises three 
primary steps: 

1. Data acquisition and baseline establishment: Global temperature and precipitation data are 
obtained, and climatological averages are calculated over a 30–50-year period using statistical 
methods such as the arithmetic mean or the climatological mean. The choice of the baseline 
period is critical, as it can significantly influence the results and the interpretation of the 
anomalies for both variables. 

2. Anomaly computation: Deviations of specific months or years from the average values are 
determined for both temperature and precipitation. The anomaly is calculated using the 
formula: 𝑎𝑛𝑜𝑚𝑎𝑙𝑦௖௟௜௠௔௧௘ ௙௔௖௧௢௥ = ሺ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒ሻ𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒  

This formula is applied consistently to both temperature and precipitation data. 

3. Spatial analysis and visualization: The calculated anomalies for both temperature and 
precipitation are used to create maps displaying variations at different geographical levels. GIS 
software is utilized to overlay the anomaly data on geographical boundaries such as districts or 
mandals, providing a visual representation of regions experiencing abnormal conditions in 
terms of both temperature and precipitation. 

This methodology, illustrated in Figure 2, allows for comprehensive monitoring of climate 
change impacts across different regions and facilitates the identification of areas experiencing 
significant deviations from long-term averages in both temperature and precipitation patterns. By 
applying this consistent approach to both variables, we can analyze potential correlations and 
combined effects of temperature and precipitation anomalies on agricultural systems. 
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Figure 2. Workflow of methodology to calculate temperature anomalies. 

3.2. Methodology for DPPD Calculation 

The Data-Powered Positive Deviance (DPPD) methodology is a powerful approach to 
identifying and understanding exceptional performance in the context of environmental and 
agricultural data. By leveraging time series data and advanced statistical techniques, DPPD helps 
uncover locations that demonstrate positive trends despite adverse conditions. These positive 
deviants can offer valuable insights into effective practices and strategies that can be adopted more 
broadly to enhance resilience and productivity. This methodology involves a comprehensive process 
that includes data preparation, time series decomposition using Seasonal and Trend decomposition 
using Loess (STL), trend extraction, linear regression, spatial iteration, and the identification and 
mapping of positive deviants. 

The STL method decomposes the time series 𝑌௧ into three distinct components: 𝑌௧ = 𝜃௧ + 𝑠௧ + 𝑟௧ 
Where: 𝜃௧  is the trend component, representing the underlying direction or pattern in the data over time. 𝑠௧  is the seasonal component, capturing regular fluctuations due to seasonal effects. 𝑟௧ is the residual component, encompassing random noise not explained by the trend or seasonal 
components. 

To estimate these components, the STL algorithm uses iterative Loess smoothing. Loess (locally 
estimated scatterplot smoothing) is a non-parametric method that fits multiple regressions in 
localized subsets of the data to produce a smooth curve. The regression function for Loess smoothing 
is defined as: 𝑔ሺ𝑥ሻ =  ∑ 𝑤௜௜ ሺ𝑥ሻ ∗ 𝑦௜∑ 𝑤௜௜ ሺ𝑥ሻ  

Where 𝑤௜ሺ𝑥ሻ are weights calculated based on the distance of 𝑥 from, giving more influence to points 
closer to 𝑥 

After decomposing the time series, we isolate the trend component 𝜃௧ for further analysis. The 
trend component is essential as it reveals the long-term progression in the data, which is critical for 
identifying positive deviants. A linear regression is performed on 𝜃௧ against time t to quantify the 
trend: 𝜃௧ =  𝛽଴ + 𝛽ଵ + 𝜖 
Where: 
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𝛽଴ is the y-intercept, representing the value of the trend component at the start of the time. 𝛽ଵ is the slope, indicating the rate of change in the trend component over time. 𝜖 is the error term, capturing deviations of the observed trend from the fitted line. 
The slope 𝛽ଵ  is calculated using the least squares method, which minimizes the sum of the 

squares of the residuals. 
The decomposition and regression steps are repeated for each location in the area of interest. 

This iterative process ensures that we obtain a slope 𝛽ଵ for each location, capturing the localized 
trend dynamics. 

The trend scores from all locations are compiled into an array 𝑆 = [𝛽ଵ଴,𝛽ଵଵ,𝛽ଵଶ,𝛽ଵଷ, … ,𝛽ଵ௡] 
Where n is the number of locations. This array represents the spatial distribution of trend 

strengths across the study area. Positive deviants are identified by comparing each 𝛽ଵ with each 
other or by filtering for a percentile value. 

Finally, the trend scores and positive deviance indicators are mapped to their geographic 
coordinates for spatial analysis. This spatial visualization helps identify geographical patterns and 
clusters of positive deviants, providing insights into regions exhibiting exceptional performance. This 
methodology offers a framework for identifying and analyzing positive deviance in environmental 
and agricultural contexts. By systematically decomposing time series data and performing detailed 
statistical analyses, this approach highlights areas of exceptional performance that can provide 
valuable insights into sustainable practices and adaptive strategies. The identification and study of 
these positive deviants enables researchers and practitioners to uncover underlying factors 
contributing to success, fostering knowledge transfer and innovation. 

4. Results & Discussion 

In this study, we created a dataset of soil moisture, temperature anomalies, and precipitation 
anomalies for the state of Telangana, collected from various sources including satellite imagery and 
weather station readings. Our trend analysis aimed to identify positive deviances in these 
environmental parameters, where positive deviances were defined as instances where farmers 
achieved better crop yields or used less water despite facing similar environmental conditions as their 
peers. 

All the values in the analysis have been scaled -1 to 1 to make comparisons easier to conduct 
between each district. For soil moisture deviances, the analysis revealed significant regional 
variations. The regions with the highest positive soil moisture deviance included Chinnambavi, 
Pentlavelli, Kuravi, Adavidevulapally, and Dornakal, with normalized deviance values of 1, 0.969, 
0.553, 0.533, and 0.529 respectively. Conversely, the regions with the lowest soil moisture deviance 
were Balapur, Shamshabad, Rajendranagar, Hayathnagar, and Bandlaguda, with normalized 
deviance values of -1, -0.965, -0.923, -0.890, and -0.886 respectively (see Figure 3 and Tables 4 and 5). 

Temperature anomalies also showed distinct patterns of positive deviance. The regions with the 
highest positive temperature anomalies deviance were Aswaraopeta, Dammapeta, Sathupally, 
Mulakalapally, and Annapureddipalle, with normalized deviance values of -1, -0.976, -0.958, -0.883, 
and -0.877 respectively. On the other hand, regions with the lowest temperature anomalies deviance 
included Naspur, Bheemaram, and Mandamarri, each with normalized deviance values around 1 
(see Figure 4 and Tables 6 and 7). 

Precipitation anomalies also exhibited notable regional variations. The top regions with positive 
precipitation anomalies deviance were Dhoolumitta, Masaipet, Chowtakur, Chandur, and Mosra, 
with normalized deviance values of -1, -0.997, -0.993, -0.990, and -0.986 respectively. In contrast, the 
regions with the lowest precipitation anomalies deviance were Abdullapurmet, Achampet, 
Adavidevulapally, Addagudur, and Addakal, with normalized deviance values of 1, 0.997, 0.993, 
0.990, and 0.986 respectively (see Figure 5 and Tables 8 and 9). 

The findings indicate that regions like Chinnambavi and Pentlavelli exhibit remarkable positive 
deviances in soil moisture, suggesting effective water use and soil management practices that could 
be modeled in other areas. Similarly, regions such as Aswaraopeta and Dammapeta show significant 
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positive deviances in temperature anomalies, indicating possible resilience strategies to temperature 
variations. Furthermore, regions like Dhoolumitta and Masaipet, with high positive deviances in 
precipitation anomalies, highlight successful adaptation to rainfall variability. 

These results are made accessible through the DiCRA platform, which can be explored at DiCRA 
GitHub and DiCRA UNDP. This platform allows users to delve into the data and identify positive 
deviances in their own regions. By collaborating with government officials, we have also provided 
training and support to farmers, helping them implement these best practices on their farms. This 
study offers crucial insights for aiding farmers in adapting to climate change and provides a valuable 
resource for policymakers, researchers, and other stakeholders. The data and platform also help 
understand the overall patterns of soil moisture and precipitation in the region, identifying areas 
more susceptible to drought, thus aiding in the development of targeted interventions to promote 
resilience and sustainability. 

 
Figure 3. Telangana Mandal deviances in soil moisture. 

 
Figure 4. Telangana Mandal deviances in Temperature anomalies. 
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Figure 5. Telangana Mandal deviances in precipitation anomalies. 

Table 4. Region With Positive Soil Moisture deviance (TOP 5):. 

Mandal Name  Normalized deviance value  

Adavidevulapally 0.533208 

Chinnambavi  1  

Dornakal  0.529491  

Kuravi  0.552656  

Pentlavelli  0.968607  

Table 5. Region With Positive Soil Moisture deviance (BOTTOM 5):. 

Mandal Name  Normalized deviance value  

Balapur  -1  

Shamshabad  -0.96492  

Rajendranagar  -0.92257  

Hayathnagar  -0.88956  

Bandlaguda  -0.88618  

Table 6. Region With Positive Temperature Anomaly deviance (TOP 5):. 

Mandal Name  Normalized deviance value  

Aswaraopeta  -1  

Dammapeta  -0.97605  

Sathupally  -0.95808  

Mulakalapally  -0.88323  

Annapureddipalle  -0.87725  

Table 7. Region With Positive Temperature Anomaly deviance (BOTTOM 5): . 

Mandal Name  Normalized deviance value  
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Naspur  0.997006  

Bheemaram  1  

Mandamarri  1  

Table 8. Region With Positive Precipitation Anomaly deviance (TOP 5): . 

Mandal Name  Normalized deviance value  

Dhoolumitta  -1  

Masaipet  -0.99657  

Chowtakur  -0.99313  

Chandur  -0.9897  

Mosra  -0.98626  

Table 9. Region With Positive Precipitation Anomaly deviance (BOTTOM 5): . 

Mandal Name  Normalized deviance value  

Abdullapurmet  1  

Achampet  0.996643  

Adavidevulapally  0.993208  

Addagudur  0.989825  

Addakal  0.986468  

5. Conclusions 

In this work, we applied a Data-Powered Positive Deviance framework to analyze high-
resolution geospatial time series data of soil moisture, temperature anomalies, and precipitation 
anomalies in Telangana, India. This allowed us to identify farming sites consistently outperforming 
their peers under similar climatic conditions. By integrating satellite data (NASA-USDA Enhanced 
Surface soil moisture) and reanalysis products (Copernicus ERA5-Land), performing seasonal-trend 
decomposition (STL), and estimating linear trends, we identified “positive deviants” whose resilience 
indicates potential yield advantages. Although constrained by the relatively short temporal coverage 
(2015–2020) of soil moisture data, inherent uncertainties in reanalysis products, and computational 
limitations, our analysis demonstrates the practicality and utility of deploying the DiCRA platform 
to deliver targeted, data-driven insights to policymakers and farming communities. 

Looking ahead, integrating these anomaly-based deviance signals with ground-truth crop-yield 
records would enable quantitative validation of resilience gains. Expanding the framework to 
additional drought-prone regions will test broader applicability, while publicly releasing our 
preprocessing and GIS workflows will enhance reproducibility, transparency, and community 
adoption. To conclude, the approach provides a scalable foundation for informing climate-resilient 
agricultural practices through open, data-driven decision support. 
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