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Abstract

The Power-Normal (PN) distribution was first introduced by Goto et al. in the context of modeling
original observations following the application of the inverse Box—Cox (BC) transformation. This family
includes the normal and log-normal distributions as special cases. In this paper, we present results for
the exact Maximum Likelihood Estimation (MLE) of the PN distribution and compare them with those
obtained using the truncated MLE method originally proposed by Box and Cox, implemented here
by jointly maximizing all three parameters. The algorithm we propose focuses on the interval [0, 1]
and employs a partitioning strategy to generate initial values for the Newton—Raphson (N-R). For the
exact MLE, we consider two scenarios: one in which all parameters are estimated simultaneously, and
another in which only A is optimized. We find the first approach to outperform the second overall,
although both yield similar accuracy for the estimation of A. In contrast, the truncated MLE method
performs worse than the exact MLE in estimating A, but better in the average Mean Square Error (MSE)
statistic than the exact maximizing in A alone.

Keywords: power normal; Box-Cox transformation; maximum likelihood estimation

1. Introduction

The Box-Cox (BC) transformation [9] of a positive random variable is defined by

A
X =1 a 20
y=¢ 4 (1)

In(X), ifA=0

where A is the transformation parameter. Note that the data must be strictly positive, which implies
that Y is bounded below by —1/A. When the transformation is successful, Y is approximately normally
distributed with mean u and standard deviation ¢. The probability distribution of the original
variable X is known as the PN distribution, first introduced by Goto and Inoue [8], who also provided
expressions for its moments in the form of power series.

The PN probability density function (PDF) is given by

1 M) —
fX(x):U'A()L,]/l,O')(i)( e )r (2)

A . o . .
where x > 0and x(M) = XT_l The function A(A, p, o) serves as a normalization constant and is defined

as ®(k), 1, or (k) depending on whether A is positive, zero, or negative, respectively. The parameter
k, which acts as a shape parameter of the distribution, is given by % and therefore depends on
all three parameters. Here, ® denotes the standard normal cumulative distribution function (CDEF),
and its derivative ¢ is the standard normal probability density function (PDF). The inverse Box-Cox
transformation for a truncated normal (TN) variable Y, when A # 0, is given by X = (AY + 1)1/%,

The PN distribution in the context of the BC transformation was also studied in [10], where

expressions for the mean, variance, and quantile functions were derived, and a quantile-based measure
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of skewness was introduced to show that the PN family is ordered with respect to the transformation
parameter. Furthermore, the same paper demonstrates, using Chebyshev-Hermite polynomials, that
the correlation coefficient is smaller on the PN scale.

In [1], a formula for the ordinary moments is provided, and the marginal and conditional proba-
bility density functions are derived. Additionally, the correlation curve is computed and fitted to a
power law model.

For further information and analysis on the PN distribution, see [2,11], and for the BC transforma-
tion, see [5].

This paper is organized as follows. In Section 2, we present the log-likelihood function for the PN
distribution and provide formulas for estimating u and o. We also describe the procedures followed in
detail. We recall that the maximum likelihood (ML) estimator of the parameter A is asymptotically
normal, and we specify its asymptotic distribution. Subsequently, we derive the recursive relation
for the N-R method applied to this maximization problem. Furthermore, we present the gradient
vector and the Hessian matrix of the log-likelihood function with respect to the parameters A, y, and o,
as used in the implementation of the estimation algorithm. In Section 3, we describe the simulation
procedure employed to generate the data sets for parameter estimation and then report and interpret
the results. Finally, in Section 4, we summarize the main conclusions and suggest directions for future
research concerning the PN distribution.

2. Maximum Likelihood Estimation in the PN Distribution

In this section, we revisit the MLE in the context of the PN distribution. Following Goto et al. [4],
we consider two estimation methods: the truncated Log-likelihood method (M7) and the exact Log-
likelihood method (M,). For the former, we report only the estimation results; for the latter, we
provide a full methodological description along with a comprehensive simulation study. Within the
M, approach, we compare two scenarios: one in which all three parameters are estimated jointly
(v1), and another in which only A is optimized (v;) while y and ¢ are estimated conditionally, as in
Goto et al. [4].

Our estimation procedure differs from that of Goto et al. [4] in that we explicitly exploit the
fact that the transformed data follow a TN distribution. This enables us to derive explicit formulas
for the estimation of # and o, see [7]. We recall that, unlike in the Normal distribution where these
parameters are independent, they are correlated in both the PN and TN distributions. This correlation
has important implications for their estimation. If n observations y1, y2, - - -y, have PN distribution
with parameters A, y and ¢ then the Log-likelihood function is,

log(L(y; A, j, 7)) = — gln(Zn) - gln(az)

2
1 (vt
24 o 3)

1

=

+(A—=1)) In(y;) —nin(A(k))

i=1

where yM) = yAT_l The approach of M; method is to take A(k) = 1 as proposed by [9].

The M, method takes into account the whole Log- likelihood function. Using method M, the BC
transformed data with the right parameter is expected to be TN distributed. The estimators of y and
o do not have a closed form solutions but are consistent under the ML context. The estimate can be
found solving numerically the non-linear system of equations
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where Z = % The Wald’s theorem guarantees that the maximum likelihood estimator (MLE) of A is
asymptotically normal [13]. Consequently, we have the following result:

R d 1
V(A — Ag) —>./\/'<O,I(A0)> ©)
where 7 is the sample size and Ay is the true value of the parameter. The estimator’s standard error is:
A 1
SE(A) = - (6)
nl(A)
where
d
1) = ~B[ 2stogt ()] )

Unlike in the standard normal case, the estimators correspond to parameters that are no longer
orthogonal and become asymptotically correlated; see [12,13] for theoretical details. Although the
estimators A, f1, and ¢ are known to be asymptotically correlated (see, e.g., [12,13]), this work focuses
on studying the estimation accuracy of A as a function of A¢, while fixing CV and k.

Let 8 = (A, 1,0) " denote the parameter vector. The N-R method iterative update is given by:

6" =" — [v?10g1(8")] v log(6"). (8)

Explicitly, this becomes:

. . ??logL  d*logL dloglL -1 dlog L
AU+D) AD 9 orop OAdC o
A+ — || ??logl  d*logL dloglL dlog L 9)
H H EIE) anl apoT a
o(+1) o) Plogl  ’logl  logl dlogL
09X doou 902 do - o=0)

where (I) denotes the iteration number. In case we are only interested in maximizing in A alone then

recurrence relation is:
5 < PlogL\ ' /dlogL
(I+1) — 5() _ g 8
A A ( 0A2 ) ( oA )A—m’ (10)

The convergence process stops when ||0/*1) — 8())|| < e where € is pre-determined. For the case
of ML of A alone the criteria [A(+1) — A()| < e. The gradient of the log-likelihood with respect to A is
given by

n of 9% (k)
dlogL 0 glog(yl ny] i _p ﬁ =0,
JA =
algEL =0 & nyl—gq$ =0, (11)
dlogL
a0 O ¢17<_”+ny +kn¢((ll?)> =0,
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where,
A1 yA y -1 _
f=1 A e (12)

Ao o

Before getting into the second partial derivatives of the log likelihood we present some derivatives
which are important for simplification.
The first and second partial derivatives of f, with respect to A is

afy _ y*(log(y*) —1) +1

oA Ao 13)
2
0*fy, _ (log(y"))” —2(log(y") — 1)y" —2 19)
dA2 Ao ’
The first and second partial derivatives of the standard normal CDF with respect to A are
od(k) ok (k)
AR YR v 15)
Pok) 3 ([ ¢k)) _ (k—204)¢(k)
0AZ A\ Ao ) A2 '
The second derivatives with respect to the three parameters are:
5 ad (k) \ 2
02 logL _ i fy, ny; o fy, 4" ( oA ) ~ *P(k)
0A2 = Vi 92 k)| @k oAz |’
9?log L __n.n (k) (kD (k) + p(K)) (16)
oz o2 g2 o(k)? o),
o?logL 1 " (zi—u P(k) k
og _02<n—3i§<0 ) ek B (24 i (k- @) +900) ).
The cross second derivatives involving y, o, A are:
0% log L_ (k) k
0% log L_ afy; ne(k)
EIERY Z - W(l«b(k) +¢(k)), (17)

021 "o 9 n ok
aa%%\L 7(7 Efyl fyl T o2 i((])) (1 q)zk) (kD (k) + ‘P(k))>

3. Simulation Study Results and Discussion

In this simulation study of the PN distribution, we considered a set of values for the parameter
A within the interval [0, 1], specifically 0.15,0.25,0.5,0.75, and 0.85. Following Goto et al. [4], we
fixed several values for the coefficient of variation CVg, namely 0.75,1,2,4, and 8. For the shape
parameter kg, three values were selected: 1,2, and 3. While Goto et al. [4] studied the estimation
performance as a function of sample size, here we consider a fixed sample size of 200 observations for
each parameter combination. It should be noted that some parameter combinations are incompatible;
hence, no datasets were generated for those cases. Additionally, certain samples were discarded due to
limitations in applying the Kolmogorov-Smirnov test.

The complete data table containing all the information concerning the estimation including the
three standard estimation accuracy metrics: the mean bias (MB), the mean squared error (MSE), and the
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mean absolute relative error (MARE) mentioned in the text are presented in Table Al in the Appendix.
In what follows, we describe how the ML estimates for the parameters were obtained from the valid
datasets corresponding to each parameter combination.

As is well known, the choice of initial values and a suitable convergence criterion is crucial for
obtaining reliable maximum likelihood (ML) estimates. In our implementation, the search is restricted
to the interval [0, 1], using a grid with a step size of 0.01. Each grid point serves as an initial value for
the ML estimation procedure.

Following this approach, for each dataset we obtain a set of candidate ML estimates. From this set,
we select the estimates corresponding to converged solutions with the smallest absolute skewness after
the BC transformation. Alternative selection criteria—such as choosing the estimates with the highest
ML value or relying on p-values from normality tests (both standard and truncated normal)—did not
yield satisfactory results. These methods proved less effective at identifying estimates that preserved
the structural properties of the underlying distribution, particularly symmetry.

To evaluate how estimation accuracy varies with the parameter values used in the simulations, we
analyze the behavior of the estimated parameters A, fi, and ¢ as A¢ increases from 0.15 to 0.85. For comparison
purposes, the coefficient of variation CV, and the shape parameter k, are held fixed (see Figure 1).

For each pair (CVy, k¢), we observe a general trend of decreasing relative error in A as Ag increases.
This is expected, as the same absolute estimation error in A corresponds to a smaller relative error
when A, is large. A similar decreasing trend is also observed for the MARE of /i and &, particularly
for smaller values of CV;. As A increases, the BC transformation becomes smoother and more stable,
which improves the performance of the maximum likelihood estimation. The reduction in skewness
and better approximation to normality help reduce the variability in estimating y and ¢, leading to
more accurate and reliable parameter estimates.
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Figure 1. MARE of A as a function of A fixing the parameters CV; and kq.
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Figure 2. MARE  and ¢ as a function of A, fixing the parameters CV; and k.

By contrast, the MSE curves for the same estimators and parameter settings (not shown) exhibit
irregular behavior, often increasing with A, when estimator variability outweighs squared bias, which
limits the usefulness of MSE for comparative analysis across the PN parameter space. To provide a
comprehensive comparison of the two approaches for maximizing the log-likelihood—estimating all
three parameters simultaneously or only A—we computed the average MB, MSE, and MARE statistics
for each parameter across the entire dataset, as summarized in Table 1.

Table 1. Summary statistics for MB, MSE and MARE for the parameters under different estimation methods.

Method MBA MB MB o MSEA  MSEu MSE o MARE ~ MARE  MARE

A U o
M vq —0.0529  0.0927 —-0.2044 0.3014 2.9682 6.1970 0.1567 0.2062 0.0949
M, v, —0.0617 —3.6958  1.0462 0.2916  39.4851 21.6123  0.1676 3.7685 0.3574
M; —-0.1108  0.1177  —-1.7132  0.2621 5.8602 0.9166 0.1906 0.1491 0.5688

Note: MB = Mean Bias; MSE = Mean Squared Error; MARE = Mean Absolute Relative Error.

Estimation results depend on the specific values of the underlying parameters. Some methods
perform better than others for certain parameter combinations and worse for others. For this reason,
we chose to compare the methods based on the overall average of each error statistic. Note that these
statistics themselves are computed as averages over multiple simulated datasets for each parameter
combination. The results indicate that maximizing the log-likelihood function with all three parameters
simultaneously (the v; mode) yields the best performance overall. In particular, the average MARE
for A shows an improvement of approximately 18% over the classical estimator and about 6.5% over
the v, mode. The average mean bias for A follows a similar trend as the average MARE, although the
differences between methods are more pronounced. As for the average statistics associated with p

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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and o, we observe that method M;, implemented via ML in all three parameters, outperforms the v,
version of the M, approach. Furthermore, method M; shows a substantial advantage over both v; and
vy modes of M in terms of the average MSE for 0.

4. Conclusions and Future Work

In this work, we present in detail methods for estimating the parameters of the PN, which has yet
to reveal all of its properties. The quality of the results depends not only on the selected parameter
values but also on the specific statistic used to evaluate and compare the maximum likelihood estimates.
The foundation of our computational approach is the N-R method, which had to be carefully tuned to
ensure proper convergence. The estimation process required extensive experimentation to achieve
reliable and satisfactory results.

Classical estimation in the PN distribution, as proposed by Box and Cox [9], was primarily
intended to achieve approximate normality of the transformed data. However, the inconsistency of
those estimators renders them unsuitable when accurate parameter estimation is the objective. Exact
ML estimation was studied by Goto et al. [4], although implemented differently from the approach
adopted in this work. We implemented both methods using simultaneous ML estimation of all three
parameters. The results indicate an improvement in the estimation of A over the M; method, although
this improvement is not substantial when compared to the v, mode. In contrast, for the parameters u
and o, we observe a significant enhancement in estimation accuracy under the M, method relative to
the v, implementation.

Given its close relation to the BC transformation, the correlation structure of variables on the PN
scale remains to be fully understood. Under appropriate parameter settings, independent transfor-
mation of the marginal variables result in a bivariate approximated normal pair. Understanding this
phenomenon may offer practitioners valuable insights into how transformed data under the Box-Cox
framework can be analyzed and interpreted.

Abbreviations

The following abbreviations are used in this manuscript:

ML Maximum Likelihood

MLE Maximum Likelihood Estimation
MB Mean Bias

MSE Mean Square Error

MARE Mean Absolute Relative Error
N-R Newton-Raphson
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Appendix A

Table Al. Parameters and their ML estimates obtained with the method M, v1. The last 9 columns are values of
the statistics MB, MSE and MARE over the generated data sets for each set of parameters.

Ag CVg kg pg o A n ¢ MB(A\) MB(u) MB(¢c) MSE(A) MSE(y) MSE(s) MARE(A) MARE(x) MARE(c)
015 075 3 5.3333 40000 0.1896 55996 4.9035 0.0396 02663 09035 0.0360 31.3559 24.0447  0.2640 0.0499 0.2259
015 1.00 3 3.3333 3.3333 0.1887 3.5818 3.6866 0.0387 0.2484 03533 0.0360 12.8796 13.6751  0.2579 0.0745 0.1060
015 2 2 22222 44444 0.1435 2.1539 43051 -0.0065 -0.0683 -0.1394 0.0219 48608 19.0066  0.0434 0.0307 0.0314
015 2 3 13333 26667 0.1485 12989 2.6719 -0.0015 -0.0345 0.0052 0.0224 17172 71599  0.0099 0.0258 0.0020
015 4 1 22222 88889 0.1098 3.5788 6.8704 -0.0402 1.3566 -2.0185 0.0130 12.9494 481586  0.2678 0.6105 0.2271
015 4 2 09524 3.8095 0.0880 1.3445 3.3695 -0.0620 0.3921 -0.4400 0.0077 1.8076 11.3538  0.4135 0.4117 0.1155
015 4 3 06061 24242 0.1435 0.6111 24736 -0.0065 0.0051 0.0493 0.0209 04083 61337  0.0434 0.0083 0.0203
015 8 1 09524 7.6191 0.0927 23671 54337 -0.0573 14147 -2.1854 0.0087 57301 29.6171  0.3822 1.4855 0.2868
015 8 2 04444 35556 0.1122 03315 33777 -0.0379 -0.1130 -0.1778 0.0126 01230 11.4097  0.2523 0.2542 0.0500
015 8 3 02899 23188 0.1336 0.2200 2.3925 -0.0164 -0.0698 0.0737 0.0182 00772 57352  0.1096 0.2409 0.0318
025 075 3 3.2000 24000 03151 3.6181 29717 00651 04181 05717 0.1001 13.1587 89682  0.2602 0.1306 0.2382
025 1 2 40000 40000 02761 4.0226 45401 0.0261 00226 05401 0.0775 163286 21.0141  0.1045 0.0057 0.1350
025 1 3 20000 2.0000 02149 1.9383 1.8775 -0.0351 -0.0617 -0.1225 0.0492 3.7888 35605  0.1404 0.0309 0.0613
025 2 1 40000 80000 02430 3.4671 7.5425 -0.0070 -0.5329 -0.4575 0.0591 13.5446 57.5633  0.0279 0.1332 0.0572
025 2 2 13333 26667 0.1931 12999 24774 -0.0569 -0.0334 -0.1892 0.0375 17104 61448 02277 0.0251 0.0710
025 2 3 08000 1.6000 02136 0.6654 1.5492 -0.0364 -0.1346 -0.0508 0.0456 04428 24001  0.1456 0.1682 0.0317
025 4 1 13333 53333 0.1564 1.9949 37137 -0.0936 0.6615 -1.6197 0.0253 4.0425 13.8868  0.3745 0.4962 0.3037
025 4 3 03636 14546 02282 0.3693 1.4822 -0.0218 0.0057 0.0276 0.0560 0.1560 22080  0.0871 0.0155 0.0190
025 8 1 05714 45714 0.1488 13459 3.1108 -0.1012 07745 -14606 0.0222 18114 9.6770  0.4047 1.3553 0.3195
025 8 2 02667 21333 0.1918 0.1981 2.0368 -0.0582 -0.0686 -0.0966 0.0368 00392 41485  0.2330 0.2572 0.0453
025 8 3 01739 1.3913 02534 0.0976 1.4223 0.0034 -0.0763 0.0310 0.0677 00178 2.0308  0.0134 0.4388 0.0223
050 075 2 40000 3.0000 04091 35164 2.4831 -0.0909 -0.4836 -05169 0.1683 124139 62321  0.1818 0.1209 0.1723
050 075 3 1.6000 1.2000 0.4926 1.5850 1.2249 -0.0074 -0.0150 0.0249 02515 25284 15350  0.0148 0.0094 0.0207
050 1 2 20000 2.0000 0.4547 1.8994 19925 -0.0453 -0.1006 -0.0075 02318 3.6422 43440  0.0907 0.0503 0.0037
050 1 3 1.0000 1.0000 05029 1.0060 1.0225 0.0029 0.0060 0.0225 02640 1.0213 1.0600  0.0059 0.0060 0.0225
050 2 1 20000 40000 02772 2.0979 23371 -0.2228 0.0979 -1.6629 0.0768 44012 54621  0.4456 0.0490 0.4157
050 2 2 06667 1.3333 0.4455 0.6325 1.2503 -0.0545 -0.0342 -0.0830 0.1997 04124 15650  0.1090 0.0513 0.0623
050 2 3 04000 0.8000 0.4922 0.3976 0.7984 -0.0078 -0.0024 -0.0016 02465 0.1613 0.6395  0.0156 0.0060 0.0020
050 4 1 06667 2.6667 03395 1.1489 1.9508 -0.1606 04823 -0.7159 0.1152 1.3201 3.8054  0.3211 0.7234 0.2685
050 4 2 02857 1.1429 0.3848 0.2396 1.0822 -0.1153 -0.0461 -0.0607 0.1503 00641 11759  0.2305 0.1615 0.0531
050 4 3 0.1818 07273 0.4830 0.1762 0.7265 -0.0170 -0.0056 -0.0008 0.2391 00348 05289  0.0339 0.0308 0.0010
050 8 1 02857 22857 0.3027 05169 1.9333 -0.1973 02311 -0.3525 0.0916 02671 37375  0.3946 0.8090 0.1542
050 8 2 01333 1.0667 03850 0.1022 1.0242 -0.1150 -0.0311 -0.0424 0.1498 00144 1.0528  0.2300 0.2334 0.0398
050 8 3 0.0870 0.6957 0.4969 0.0815 0.6990 -0.0031 -0.0055 0.0034 02531  0.0096 0.4900  0.0061 0.0632 0.0049
075 0.75 2 26667 2.0000 0.7761 2.7286 22088 0.0261 0.0619 02088 06176 7.5403 51149  0.0348 0.0232 0.1044
075 0.75 3 1.0667 0.8000 0.8324 1.1169 0.8496 0.0824 0.0502 0.0496 0.6990 12529 07261  0.1098 0.0471 0.0619
075 1 2 13333 13333 0.6969 1.2810 13147 -0.0532 -0.0523 -0.0186 05102 1.6635 17908  0.0709 0.0392 0.0140
075 1 3 06667 0.6667 0.8108 0.6779 0.7027 0.0608 0.0113 0.0361 0.6686 04647 04966  0.0811 0.0169 0.0541
075 2 1 13333 26667 05901 15127 21045 -0.1599 0.1794 -0.5622 03868 23117 49215 02132 0.1345 0.2108
075 2 2 04444 0.8889 0.6820 04419 0.8564 -0.0680 -0.0026 -0.0325 04839 0.1998 07403  0.0906 0.0057 0.0366
075 2 3 02667 05333 0.8019 0.2615 05534 0.0519 -0.0052 0.0201 06585 0.0703 03073  0.0691 0.0196 0.0377
075 4 1 04444 17778 04901 0.6700 12703 -0.2599 02256 -0.5075 0.2504 04616 1.6468  0.3465 0.5075 0.2854
075 4 2 01905 07619 0.6639 0.1790 0.7356 -0.0861 -0.0115 -0.0263 04590  0.0357 05438  0.1148 0.0603 0.0345
075 4 3 01212 04849 08179 0.1235 0.4942 00679 0.0023 00094 06770 00168 02451  0.0905 0.0190 0.0194
075 8 1 0.1905 15238 0.4044 03496 1.0833 -0.3456 0.1591 -0.4405 0.1663 01338 1.1811  0.4608 0.8352 0.2891
075 8 2 00889 07111 0.6310 0.0813 0.6856 -0.1190 -0.0076 -0.0255 0.4097  0.0095 04720  0.1586 0.0850 0.0359
075 8 3 0.0580 04638 0.8221 0.0655 0.4720 0.0721 0.0075 0.0082 0.6839 00054 02235  0.0961 0.1295 0.0178
085 0.75 2 23529 17647 0.8252 23113 17627 -0.0248 -0.0417 -0.0021 0.6964 54118 32031  0.0292 0.0177 0.0012
085 0.75 3 09412 07059 0.8364 0.9399 0.6971 -0.0136 -0.0013 -0.0088 0.7068 0.8875 04891  0.0160 0.0014 0.0125
085 1 2 11765 1.1765 0.8498 1.1609 1.1978 -0.0003 -0.0156 0.0213 07302 1.3598 14557  0.0003 0.0133 0.0181
085 1 3 0582 05882 0.8611 0.5903 0.6009 0.0111 0.0021 00126 07460 03507 03622  0.0130 0.0036 0.0214
085 2 1 11765 23529 07305 1.3838 19647 -0.1195 02073 -0.3883 05618 19442 40743  0.1406 0.1762 0.1650
085 2 2 03922 07843 0.7744 03813 07633 -0.0757 -0.0108 -0.0211 0.6194 01499 05864  0.0890 0.0277 0.0269
085 2 3 02353 04706 0.8898 0.2380 0.4815 0.0398 0.0027 00109 07950 0.0577 02324  0.0468 0.0114 0.0232
085 4 1 03922 15686 05718 0.5819 1.1426 -0.2782 0.1897 -04260 03521 03539 13327  0.3273 0.4837 02716
085 4 2 0.1681 06723 07624 0.1588 0.6554 -0.0876 -0.0093 -0.0169 05946  0.0277 04312  0.1030 0.0552 0.0252
085 4 3 0.1070 04278 0.8820 0.1077 0.4307 0.0320 0.0008 0.0029 07826 00124 0.1861  0.0377 0.0072 0.0068
085 8 1 0.1681 13445 0.5304 0.3287 0.9851 -0.3196 0.1607 -0.3594 03200 0.1176 09876  0.3760 0.9559 0.2673
085 8 2 00784 0.6275 07356 0.0688 0.6116 -0.1144 -0.0097 -0.0158 05531  0.0069 03752  0.1346 0.1230 0.0252
085 8 3 00512 04092 0.8593 0.0515 0.4112 0.0093 0.0004 0.0020 07436  0.0038 0.1696  0.0109 0.0076 0.0049
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