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Abstract

The Power-Normal (PN) distribution was first introduced by Goto et al. in the context of modeling
original observations following the application of the inverse Box–Cox (BC) transformation. This family
includes the normal and log-normal distributions as special cases. In this paper, we present results for
the exact Maximum Likelihood Estimation (MLE) of the PN distribution and compare them with those
obtained using the truncated MLE method originally proposed by Box and Cox, implemented here
by jointly maximizing all three parameters. The algorithm we propose focuses on the interval [0, 1]
and employs a partitioning strategy to generate initial values for the Newton–Raphson (N-R). For the
exact MLE, we consider two scenarios: one in which all parameters are estimated simultaneously, and
another in which only λ is optimized. We find the first approach to outperform the second overall,
although both yield similar accuracy for the estimation of λ. In contrast, the truncated MLE method
performs worse than the exact MLE in estimating λ, but better in the average Mean Square Error (MSE)
statistic than the exact maximizing in λ alone.

Keywords: power normal; Box-Cox transformation; maximum likelihood estimation

1. Introduction
The Box-Cox (BC) transformation [9] of a positive random variable is defined by

Y =


Xλ − 1

λ
, if λ ̸= 0

ln(X), if λ = 0

(1)

where λ is the transformation parameter. Note that the data must be strictly positive, which implies
that Y is bounded below by −1/λ. When the transformation is successful, Y is approximately normally
distributed with mean µ and standard deviation σ. The probability distribution of the original
variable X is known as the PN distribution, first introduced by Goto and Inoue [8], who also provided
expressions for its moments in the form of power series.

The PN probability density function (PDF) is given by

fX(x) =
xλ−1

σA(λ, µ, σ)
ϕ

(
x(λ) − µ

σ

)
, (2)

where x > 0 and x(λ) = xλ−1
λ . The function A(λ, µ, σ) serves as a normalization constant and is defined

as Φ(k), 1, or Φ(k) depending on whether λ is positive, zero, or negative, respectively. The parameter
k, which acts as a shape parameter of the distribution, is given by 1+µλ

σλ and therefore depends on
all three parameters. Here, Φ denotes the standard normal cumulative distribution function (CDF),
and its derivative ϕ is the standard normal probability density function (PDF). The inverse Box–Cox
transformation for a truncated normal (TN) variable Y, when λ ̸= 0, is given by X = (λY + 1)1/λ.

The PN distribution in the context of the BC transformation was also studied in [10], where
expressions for the mean, variance, and quantile functions were derived, and a quantile-based measure
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of skewness was introduced to show that the PN family is ordered with respect to the transformation
parameter. Furthermore, the same paper demonstrates, using Chebyshev–Hermite polynomials, that
the correlation coefficient is smaller on the PN scale.

In [1], a formula for the ordinary moments is provided, and the marginal and conditional proba-
bility density functions are derived. Additionally, the correlation curve is computed and fitted to a
power law model.

For further information and analysis on the PN distribution, see [2,11], and for the BC transforma-
tion, see [5].

This paper is organized as follows. In Section 2, we present the log-likelihood function for the PN
distribution and provide formulas for estimating µ and σ. We also describe the procedures followed in
detail. We recall that the maximum likelihood (ML) estimator of the parameter λ is asymptotically
normal, and we specify its asymptotic distribution. Subsequently, we derive the recursive relation
for the N-R method applied to this maximization problem. Furthermore, we present the gradient
vector and the Hessian matrix of the log-likelihood function with respect to the parameters λ, µ, and σ,
as used in the implementation of the estimation algorithm. In Section 3, we describe the simulation
procedure employed to generate the data sets for parameter estimation and then report and interpret
the results. Finally, in Section 4, we summarize the main conclusions and suggest directions for future
research concerning the PN distribution.

2. Maximum Likelihood Estimation in the PN Distribution
In this section, we revisit the MLE in the context of the PN distribution. Following Goto et al. [4],

we consider two estimation methods: the truncated Log-likelihood method (M1) and the exact Log-
likelihood method (M2). For the former, we report only the estimation results; for the latter, we
provide a full methodological description along with a comprehensive simulation study. Within the
M2 approach, we compare two scenarios: one in which all three parameters are estimated jointly
(v1), and another in which only λ is optimized (v2) while µ and σ are estimated conditionally, as in
Goto et al. [4].

Our estimation procedure differs from that of Goto et al. [4] in that we explicitly exploit the
fact that the transformed data follow a TN distribution. This enables us to derive explicit formulas
for the estimation of µ and σ, see [7]. We recall that, unlike in the Normal distribution where these
parameters are independent, they are correlated in both the PN and TN distributions. This correlation
has important implications for their estimation. If n observations y1, y2, · · ·yn have PN distribution
with parameters λ, µ and σ then the Log-likelihood function is,

log
(

L(y; λ, µ, σ)
)
=− n

2
ln(2π)− n

2
ln(σ2)

− 1
2

n

∑
i=1

(
y(λ)i − µ

σ

)2

+ (λ − 1)
n

∑
i=1

ln(yi)− n ln
(

A(k)
)

(3)

where y(λ) = yλ−1
λ . The approach of M1 method is to take A(k) = 1 as proposed by [9].

The M2 method takes into account the whole Log- likelihood function. Using method M2 the BC
transformed data with the right parameter is expected to be TN distributed. The estimators of µ and
σ do not have a closed form solutions but are consistent under the ML context. The estimate can be
found solving numerically the non-linear system of equations
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
µ = E(Z) + σ · ϕ(k)

Φ(k)
,

σ =

√√√√ Var(Z)

1 − k ϕ(k)
Φ(k) −

(
ϕ(k)
Φ(k)

)2

(4)

where Z = Y−µ
σ . The Wald’s theorem guarantees that the maximum likelihood estimator (MLE) of λ is

asymptotically normal [13]. Consequently, we have the following result:

√
n
(
λ̂ − λ0

) d−→ N
(

0,
1

I(λ0)

)
(5)

where n is the sample size and λ0 is the true value of the parameter. The estimator’s standard error is:

SE(λ̂) =
1√

nI(λ̂)
(6)

where

I(λ) = −E
[

∂2

∂λ2 logL(λ)
]

. (7)

Unlike in the standard normal case, the estimators correspond to parameters that are no longer
orthogonal and become asymptotically correlated; see [12,13] for theoretical details. Although the
estimators λ̂, µ̂, and σ̂ are known to be asymptotically correlated (see, e.g., [12,13]), this work focuses
on studying the estimation accuracy of λ as a function of λg, while fixing CVg and kg.

Let θ = (λ, µ, σ)⊤ denote the parameter vector. The N-R method iterative update is given by:

θ̂
(l+1)

= θ̂
(l) −

[
∇2 log L

(
θ̂
(l)
)]−1

∇ log L
(

θ̂
(l)
)

. (8)

Explicitly, this becomes:

λ̂(l+1)

µ̂(l+1)

σ̂(l+1)

 =

λ̂(l)

µ̂(l)

σ̂(l)

−


∂2 log L

∂λ2
∂2 log L

∂λ∂µ
∂2 log L

∂λ∂σ
∂2 log L

∂µ∂λ
∂2 log L

∂µ2
∂2 log L

∂µ∂σ

∂2 log L
∂σ∂λ

∂2 log L
∂σ∂µ

∂2 log L
∂σ2


−1

∂ log L
∂λ

∂ log L
∂µ

∂ log L
∂σ


θ=θ(l)

(9)

where (l) denotes the iteration number. In case we are only interested in maximizing in λ alone then
recurrence relation is:

λ̂(l+1) = λ̂(l) −
(

∂2 log L
∂λ2

)−1(
∂ log L

∂λ

)
λ̂=λ̂(l)

. (10)

The convergence process stops when ∥θ(l+1) − θ(l)∥ < ϵ where ϵ is pre-determined. For the case
of ML of λ alone the criteria |λ(l+1) − λ(l)| < ϵ. The gradient of the log-likelihood with respect to λ is
given by



∂ log L
∂λ

= 0
∂ log L

∂µ
= 0

∂ log L
∂σ

= 0

⇔



n

∑
i=1

log(yi)−
n

∑
i=1

fyi

∂ fyi

∂λ
− n

∂Φ(k)
∂λ

Φ(k)
= 0,

1
σ

n

∑
i=1

fyi −
n
σ

ϕ(k)
Φ(k)

= 0,

1
σ

(
−n +

n

∑
i=1

f 2
yi
+ kn

ϕ(k)
Φ(k)

)
= 0,

(11)
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where,

fy =
yλ − 1 − µλ

λσ
=

yλ−1
λ − µ

σ
. (12)

Before getting into the second partial derivatives of the log likelihood we present some derivatives
which are important for simplification.
The first and second partial derivatives of fy with respect to λ is

∂ fy

∂λ
=

yλ
(

log(yλ)− 1
)
+ 1

λ2σ
(13)

∂2 fy

∂λ2 =

(
log(yλ)

)2 − 2
(

log(yλ)− 1
)
yλ − 2

λ3σ
. (14)

The first and second partial derivatives of the standard normal CDF with respect to λ are

∂Φ(k)
∂λ

= ϕ(k) · ∂k
∂λ

= −ϕ(k)
λ2σ

∂2Φ(k)
∂λ2 =

∂

∂λ

(
−ϕ(k)

λ2σ

)
= −

(
k − 2σλ

)
ϕ(k)

λ4σ2 .
(15)

The second derivatives with respect to the three parameters are:

∂2 log L
∂λ2 =−

n

∑
i=1

[(
∂ fyi

∂λ

)2

+ fyi

∂2 fyi

∂λ2

]
+

n
Φ(k)


(

∂Φ(k)
∂λ

)2

Φ(k)
− ∂2Φ(k)

∂λ2

,

∂2 log L
∂µ2 =− n

σ2 +
n
σ2

ϕ(k)
Φ(k)2 (kΦ(k) + ϕ(k)),

∂2 log L
∂σ2 =

1
σ2

(
n − 3

n

∑
i=1

(
zi − µ

σ

)2
− n · k · ϕ(k)

Φ(k)

(
2 +

k
Φ(k)

(k · Φ(k) + ϕ(k))
))

.

(16)

The cross second derivatives involving µ, σ, λ are:

∂2 log L
∂µ∂σ

=− 2
σ2

n

∑
i=1

fyi +
n
σ2

ϕ(k)
Φ(k)

(
1 − k

σΦ(k)
(kΦ(k) + ϕ(k))

)
,

∂2 log L
∂µ∂λ

=
1
σ

n

∑
i=1

∂ fyi

∂λ
− nϕ(k)

σ3Φ(k)2λ2 (kΦ(k) + ϕ(k)),

∂2 log L
∂σ∂λ

=
2
σ

n

∑
i=1

fyi

∂ fyi

∂λ
λ − n

σλ2
ϕ(k)
Φ(k)

(
1 − 1

Φ(k)
(kΦ(k) + ϕ(k))

)
.

(17)

3. Simulation Study Results and Discussion
In this simulation study of the PN distribution, we considered a set of values for the parameter

λ within the interval [0, 1], specifically 0.15, 0.25, 0.5, 0.75, and 0.85. Following Goto et al. [4], we
fixed several values for the coefficient of variation CVg, namely 0.75, 1, 2, 4, and 8. For the shape
parameter kg, three values were selected: 1, 2, and 3. While Goto et al. [4] studied the estimation
performance as a function of sample size, here we consider a fixed sample size of 200 observations for
each parameter combination. It should be noted that some parameter combinations are incompatible;
hence, no datasets were generated for those cases. Additionally, certain samples were discarded due to
limitations in applying the Kolmogorov–Smirnov test.

The complete data table containing all the information concerning the estimation including the
three standard estimation accuracy metrics: the mean bias (MB), the mean squared error (MSE), and the
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mean absolute relative error (MARE) mentioned in the text are presented in Table A1 in the Appendix.
In what follows, we describe how the ML estimates for the parameters were obtained from the valid
datasets corresponding to each parameter combination.

As is well known, the choice of initial values and a suitable convergence criterion is crucial for
obtaining reliable maximum likelihood (ML) estimates. In our implementation, the search is restricted
to the interval [0, 1], using a grid with a step size of 0.01. Each grid point serves as an initial value for
the ML estimation procedure.

Following this approach, for each dataset we obtain a set of candidate ML estimates. From this set,
we select the estimates corresponding to converged solutions with the smallest absolute skewness after
the BC transformation. Alternative selection criteria—such as choosing the estimates with the highest
ML value or relying on p-values from normality tests (both standard and truncated normal)—did not
yield satisfactory results. These methods proved less effective at identifying estimates that preserved
the structural properties of the underlying distribution, particularly symmetry.

To evaluate how estimation accuracy varies with the parameter values used in the simulations, we
analyze the behavior of the estimated parameters λ̂, µ̂, and σ̂ as λg increases from 0.15 to 0.85. For comparison
purposes, the coefficient of variation CVg and the shape parameter kg are held fixed (see Figure 1).

For each pair (CVg, kg), we observe a general trend of decreasing relative error in λ̂ as λg increases.
This is expected, as the same absolute estimation error in λ corresponds to a smaller relative error
when λg is large. A similar decreasing trend is also observed for the MARE of µ̂ and σ̂, particularly
for smaller values of CVg. As λg increases, the BC transformation becomes smoother and more stable,
which improves the performance of the maximum likelihood estimation. The reduction in skewness
and better approximation to normality help reduce the variability in estimating µ and σ, leading to
more accurate and reliable parameter estimates.

Version June 30, 2025 submitted to Journal Not Specified 6 of ??
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Figure 1. MARE of λ as a function of λg fixing the parameters CVg and kg.
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Figure 2. MARE µ and σ as a function of λg fixing the parameters CVg and kg.

By contrast, the MSE curves for the same estimators and parameter settings (not shown) exhibit
irregular behavior, often increasing with λg when estimator variability outweighs squared bias, which
limits the usefulness of MSE for comparative analysis across the PN parameter space. To provide a
comprehensive comparison of the two approaches for maximizing the log-likelihood—estimating all
three parameters simultaneously or only λ—we computed the average MB, MSE, and MARE statistics
for each parameter across the entire dataset, as summarized in Table 1.

Table 1. Summary statistics for MB, MSE and MARE for the parameters under different estimation methods.

Method MB λ MB µ MB σ MSE λ MSE µ MSE σ
MARE

λ
MARE

µ
MARE

σ

M2 v1 −0.0529 0.0927 −0.2044 0.3014 2.9682 6.1970 0.1567 0.2062 0.0949
M2 v2 −0.0617 −3.6958 1.0462 0.2916 39.4851 21.6123 0.1676 3.7685 0.3574
M1 −0.1108 0.1177 −1.7132 0.2621 5.8602 0.9166 0.1906 0.1491 0.5688

Note: MB = Mean Bias; MSE = Mean Squared Error; MARE = Mean Absolute Relative Error.

Estimation results depend on the specific values of the underlying parameters. Some methods
perform better than others for certain parameter combinations and worse for others. For this reason,
we chose to compare the methods based on the overall average of each error statistic. Note that these
statistics themselves are computed as averages over multiple simulated datasets for each parameter
combination. The results indicate that maximizing the log-likelihood function with all three parameters
simultaneously (the v1 mode) yields the best performance overall. In particular, the average MARE
for λ shows an improvement of approximately 18% over the classical estimator and about 6.5% over
the v2 mode. The average mean bias for λ follows a similar trend as the average MARE, although the
differences between methods are more pronounced. As for the average statistics associated with µ
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and σ, we observe that method M1, implemented via ML in all three parameters, outperforms the v2

version of the M2 approach. Furthermore, method M1 shows a substantial advantage over both v1 and
v2 modes of M2 in terms of the average MSE for σ.

4. Conclusions and Future Work
In this work, we present in detail methods for estimating the parameters of the PN, which has yet

to reveal all of its properties. The quality of the results depends not only on the selected parameter
values but also on the specific statistic used to evaluate and compare the maximum likelihood estimates.
The foundation of our computational approach is the N-R method, which had to be carefully tuned to
ensure proper convergence. The estimation process required extensive experimentation to achieve
reliable and satisfactory results.

Classical estimation in the PN distribution, as proposed by Box and Cox [9], was primarily
intended to achieve approximate normality of the transformed data. However, the inconsistency of
those estimators renders them unsuitable when accurate parameter estimation is the objective. Exact
ML estimation was studied by Goto et al. [4], although implemented differently from the approach
adopted in this work. We implemented both methods using simultaneous ML estimation of all three
parameters. The results indicate an improvement in the estimation of λ over the M1 method, although
this improvement is not substantial when compared to the v2 mode. In contrast, for the parameters µ

and σ, we observe a significant enhancement in estimation accuracy under the M2 method relative to
the v2 implementation.

Given its close relation to the BC transformation, the correlation structure of variables on the PN
scale remains to be fully understood. Under appropriate parameter settings, independent transfor-
mation of the marginal variables result in a bivariate approximated normal pair. Understanding this
phenomenon may offer practitioners valuable insights into how transformed data under the Box-Cox
framework can be analyzed and interpreted.

Abbreviations
The following abbreviations are used in this manuscript:

ML Maximum Likelihood
MLE Maximum Likelihood Estimation
MB Mean Bias
MSE Mean Square Error
MARE Mean Absolute Relative Error
N-R Newton-Raphson
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Appendix A

Table A1. Parameters and their ML estimates obtained with the method M2 v1. The last 9 columns are values of
the statistics MB, MSE and MARE over the generated data sets for each set of parameters.

λg CVg kg µg σg λ µ σ MB(λ) MB(µ) MB(σ) MSE(λ) MSE(µ) MSE(σ) MARE(λ) MARE(µ) MARE(σ)

0.15 0.75 3 5.3333 4.0000 0.1896 5.5996 4.9035 0.0396 0.2663 0.9035 0.0360 31.3559 24.0447 0.2640 0.0499 0.2259
0.15 1.00 3 3.3333 3.3333 0.1887 3.5818 3.6866 0.0387 0.2484 0.3533 0.0360 12.8796 13.6751 0.2579 0.0745 0.1060
0.15 2 2 2.2222 4.4444 0.1435 2.1539 4.3051 -0.0065 -0.0683 -0.1394 0.0219 4.8608 19.0066 0.0434 0.0307 0.0314
0.15 2 3 1.3333 2.6667 0.1485 1.2989 2.6719 -0.0015 -0.0345 0.0052 0.0224 1.7172 7.1599 0.0099 0.0258 0.0020
0.15 4 1 2.2222 8.8889 0.1098 3.5788 6.8704 -0.0402 1.3566 -2.0185 0.0130 12.9494 48.1586 0.2678 0.6105 0.2271
0.15 4 2 0.9524 3.8095 0.0880 1.3445 3.3695 -0.0620 0.3921 -0.4400 0.0077 1.8076 11.3538 0.4135 0.4117 0.1155
0.15 4 3 0.6061 2.4242 0.1435 0.6111 2.4736 -0.0065 0.0051 0.0493 0.0209 0.4083 6.1337 0.0434 0.0083 0.0203
0.15 8 1 0.9524 7.6191 0.0927 2.3671 5.4337 -0.0573 1.4147 -2.1854 0.0087 5.7301 29.6171 0.3822 1.4855 0.2868
0.15 8 2 0.4444 3.5556 0.1122 0.3315 3.3777 -0.0379 -0.1130 -0.1778 0.0126 0.1230 11.4097 0.2523 0.2542 0.0500
0.15 8 3 0.2899 2.3188 0.1336 0.2200 2.3925 -0.0164 -0.0698 0.0737 0.0182 0.0772 5.7352 0.1096 0.2409 0.0318
0.25 0.75 3 3.2000 2.4000 0.3151 3.6181 2.9717 0.0651 0.4181 0.5717 0.1001 13.1587 8.9682 0.2602 0.1306 0.2382
0.25 1 2 4.0000 4.0000 0.2761 4.0226 4.5401 0.0261 0.0226 0.5401 0.0775 16.3286 21.0141 0.1045 0.0057 0.1350
0.25 1 3 2.0000 2.0000 0.2149 1.9383 1.8775 -0.0351 -0.0617 -0.1225 0.0492 3.7888 3.5605 0.1404 0.0309 0.0613
0.25 2 1 4.0000 8.0000 0.2430 3.4671 7.5425 -0.0070 -0.5329 -0.4575 0.0591 13.5446 57.5633 0.0279 0.1332 0.0572
0.25 2 2 1.3333 2.6667 0.1931 1.2999 2.4774 -0.0569 -0.0334 -0.1892 0.0375 1.7104 6.1448 0.2277 0.0251 0.0710
0.25 2 3 0.8000 1.6000 0.2136 0.6654 1.5492 -0.0364 -0.1346 -0.0508 0.0456 0.4428 2.4001 0.1456 0.1682 0.0317
0.25 4 1 1.3333 5.3333 0.1564 1.9949 3.7137 -0.0936 0.6615 -1.6197 0.0253 4.0425 13.8868 0.3745 0.4962 0.3037
0.25 4 3 0.3636 1.4546 0.2282 0.3693 1.4822 -0.0218 0.0057 0.0276 0.0560 0.1560 2.2080 0.0871 0.0155 0.0190
0.25 8 1 0.5714 4.5714 0.1488 1.3459 3.1108 -0.1012 0.7745 -1.4606 0.0222 1.8114 9.6770 0.4047 1.3553 0.3195
0.25 8 2 0.2667 2.1333 0.1918 0.1981 2.0368 -0.0582 -0.0686 -0.0966 0.0368 0.0392 4.1485 0.2330 0.2572 0.0453
0.25 8 3 0.1739 1.3913 0.2534 0.0976 1.4223 0.0034 -0.0763 0.0310 0.0677 0.0178 2.0308 0.0134 0.4388 0.0223
0.50 0.75 2 4.0000 3.0000 0.4091 3.5164 2.4831 -0.0909 -0.4836 -0.5169 0.1683 12.4139 6.2321 0.1818 0.1209 0.1723
0.50 0.75 3 1.6000 1.2000 0.4926 1.5850 1.2249 -0.0074 -0.0150 0.0249 0.2515 2.5284 1.5350 0.0148 0.0094 0.0207
0.50 1 2 2.0000 2.0000 0.4547 1.8994 1.9925 -0.0453 -0.1006 -0.0075 0.2318 3.6422 4.3440 0.0907 0.0503 0.0037
0.50 1 3 1.0000 1.0000 0.5029 1.0060 1.0225 0.0029 0.0060 0.0225 0.2640 1.0213 1.0600 0.0059 0.0060 0.0225
0.50 2 1 2.0000 4.0000 0.2772 2.0979 2.3371 -0.2228 0.0979 -1.6629 0.0768 4.4012 5.4621 0.4456 0.0490 0.4157
0.50 2 2 0.6667 1.3333 0.4455 0.6325 1.2503 -0.0545 -0.0342 -0.0830 0.1997 0.4124 1.5650 0.1090 0.0513 0.0623
0.50 2 3 0.4000 0.8000 0.4922 0.3976 0.7984 -0.0078 -0.0024 -0.0016 0.2465 0.1613 0.6395 0.0156 0.0060 0.0020
0.50 4 1 0.6667 2.6667 0.3395 1.1489 1.9508 -0.1606 0.4823 -0.7159 0.1152 1.3201 3.8054 0.3211 0.7234 0.2685
0.50 4 2 0.2857 1.1429 0.3848 0.2396 1.0822 -0.1153 -0.0461 -0.0607 0.1503 0.0641 1.1759 0.2305 0.1615 0.0531
0.50 4 3 0.1818 0.7273 0.4830 0.1762 0.7265 -0.0170 -0.0056 -0.0008 0.2391 0.0348 0.5289 0.0339 0.0308 0.0010
0.50 8 1 0.2857 2.2857 0.3027 0.5169 1.9333 -0.1973 0.2311 -0.3525 0.0916 0.2671 3.7375 0.3946 0.8090 0.1542
0.50 8 2 0.1333 1.0667 0.3850 0.1022 1.0242 -0.1150 -0.0311 -0.0424 0.1498 0.0144 1.0528 0.2300 0.2334 0.0398
0.50 8 3 0.0870 0.6957 0.4969 0.0815 0.6990 -0.0031 -0.0055 0.0034 0.2531 0.0096 0.4900 0.0061 0.0632 0.0049
0.75 0.75 2 2.6667 2.0000 0.7761 2.7286 2.2088 0.0261 0.0619 0.2088 0.6176 7.5403 5.1149 0.0348 0.0232 0.1044
0.75 0.75 3 1.0667 0.8000 0.8324 1.1169 0.8496 0.0824 0.0502 0.0496 0.6990 1.2529 0.7261 0.1098 0.0471 0.0619
0.75 1 2 1.3333 1.3333 0.6969 1.2810 1.3147 -0.0532 -0.0523 -0.0186 0.5102 1.6635 1.7908 0.0709 0.0392 0.0140
0.75 1 3 0.6667 0.6667 0.8108 0.6779 0.7027 0.0608 0.0113 0.0361 0.6686 0.4647 0.4966 0.0811 0.0169 0.0541
0.75 2 1 1.3333 2.6667 0.5901 1.5127 2.1045 -0.1599 0.1794 -0.5622 0.3868 2.3117 4.9215 0.2132 0.1345 0.2108
0.75 2 2 0.4444 0.8889 0.6820 0.4419 0.8564 -0.0680 -0.0026 -0.0325 0.4839 0.1998 0.7403 0.0906 0.0057 0.0366
0.75 2 3 0.2667 0.5333 0.8019 0.2615 0.5534 0.0519 -0.0052 0.0201 0.6585 0.0703 0.3073 0.0691 0.0196 0.0377
0.75 4 1 0.4444 1.7778 0.4901 0.6700 1.2703 -0.2599 0.2256 -0.5075 0.2504 0.4616 1.6468 0.3465 0.5075 0.2854
0.75 4 2 0.1905 0.7619 0.6639 0.1790 0.7356 -0.0861 -0.0115 -0.0263 0.4590 0.0357 0.5438 0.1148 0.0603 0.0345
0.75 4 3 0.1212 0.4849 0.8179 0.1235 0.4942 0.0679 0.0023 0.0094 0.6770 0.0168 0.2451 0.0905 0.0190 0.0194
0.75 8 1 0.1905 1.5238 0.4044 0.3496 1.0833 -0.3456 0.1591 -0.4405 0.1663 0.1338 1.1811 0.4608 0.8352 0.2891
0.75 8 2 0.0889 0.7111 0.6310 0.0813 0.6856 -0.1190 -0.0076 -0.0255 0.4097 0.0095 0.4720 0.1586 0.0850 0.0359
0.75 8 3 0.0580 0.4638 0.8221 0.0655 0.4720 0.0721 0.0075 0.0082 0.6839 0.0054 0.2235 0.0961 0.1295 0.0178
0.85 0.75 2 2.3529 1.7647 0.8252 2.3113 1.7627 -0.0248 -0.0417 -0.0021 0.6964 5.4118 3.2031 0.0292 0.0177 0.0012
0.85 0.75 3 0.9412 0.7059 0.8364 0.9399 0.6971 -0.0136 -0.0013 -0.0088 0.7068 0.8875 0.4891 0.0160 0.0014 0.0125
0.85 1 2 1.1765 1.1765 0.8498 1.1609 1.1978 -0.0003 -0.0156 0.0213 0.7302 1.3598 1.4557 0.0003 0.0133 0.0181
0.85 1 3 0.5882 0.5882 0.8611 0.5903 0.6009 0.0111 0.0021 0.0126 0.7460 0.3507 0.3622 0.0130 0.0036 0.0214
0.85 2 1 1.1765 2.3529 0.7305 1.3838 1.9647 -0.1195 0.2073 -0.3883 0.5618 1.9442 4.0743 0.1406 0.1762 0.1650
0.85 2 2 0.3922 0.7843 0.7744 0.3813 0.7633 -0.0757 -0.0108 -0.0211 0.6194 0.1499 0.5864 0.0890 0.0277 0.0269
0.85 2 3 0.2353 0.4706 0.8898 0.2380 0.4815 0.0398 0.0027 0.0109 0.7950 0.0577 0.2324 0.0468 0.0114 0.0232
0.85 4 1 0.3922 1.5686 0.5718 0.5819 1.1426 -0.2782 0.1897 -0.4260 0.3521 0.3539 1.3327 0.3273 0.4837 0.2716
0.85 4 2 0.1681 0.6723 0.7624 0.1588 0.6554 -0.0876 -0.0093 -0.0169 0.5946 0.0277 0.4312 0.1030 0.0552 0.0252
0.85 4 3 0.1070 0.4278 0.8820 0.1077 0.4307 0.0320 0.0008 0.0029 0.7826 0.0124 0.1861 0.0377 0.0072 0.0068
0.85 8 1 0.1681 1.3445 0.5304 0.3287 0.9851 -0.3196 0.1607 -0.3594 0.3200 0.1176 0.9876 0.3760 0.9559 0.2673
0.85 8 2 0.0784 0.6275 0.7356 0.0688 0.6116 -0.1144 -0.0097 -0.0158 0.5531 0.0069 0.3752 0.1346 0.1230 0.0252
0.85 8 3 0.0512 0.4092 0.8593 0.0515 0.4112 0.0093 0.0004 0.0020 0.7436 0.0038 0.1696 0.0109 0.0076 0.0049
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