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Abstract

This paper proposes a closed adaptive sequential procedure for selecting a random-sized subset of
size t(> 0)among k(≥ t) experimental treatments so that the selected subset contains all treatments
superior to the control treatment. All the experimental treatments and the control are assumed to
produce two binary endpoints, and the procedure is based on those two binary endpoints. A treatment
is considered superior if its both endpoints are larger than those of the control. While responses across
treatments are assumed to be independent, dependence between endpoints within each treatment is
allowed and modeled via an odds ratio. The proposed procedure comprises explicit sampling, stopping,
and decision rules. We show that for any sample size n and any parameter configuration, the sequential
procedure maintains the same probability of correct selection as the corresponding fixed-sample-size
procedure. We use the bivariate binomial and multinomial distributions in the computation and
derive design parameters under three scenarios: (i) independent endpoints, (ii) dependent endpoints
with known association, and (iii) dependent endpoints with unknown association. We provide tables
with the sample size savings achieved by the proposed procedure compared to its fixed-sample-size
counterpart. Examples are given to illustrate the procedure.

Keywords: curtailment; sample size; subset selection; two binary endpoints

1. Background, Introduction, and Motivation
In Phase II clinical trials, new treatments are evaluated with respect to both efficacy and safety.

We propose a closed adaptive sequential procedure for comparing k (> 1) experimental treatments against
a control treatment. Each treatment, including the control, is assessed using two binary endpoints:
one for efficacy and one for safety. An experimental treatment is considered superior to the control if
it demonstrates higher success probabilities in both endpoints. Let the control treatment be denoted
by π0, and the k experimental treatments by π1, π2, . . . , πk. The outcomes for each treatment consist
of two binary endpoints that are modeled marginally as Bernoulli random variables with unknown
success probabilities. Specifically, for the control, the success probabilities are denoted by (p0,1, p0,2),
and for each experimental treatment πi (i = 1, . . . , k), the corresponding success probabilities are
(pi,1, pi,2). Comparisons are made between each experimental treatment and the control by evaluating
whether pi,1 > p0,1 and pi,2 > p0,2. The proposed procedure incorporates curtailment, allowing for
early termination of sampling when sufficient evidence has been gathered to make a decision, thus
potentially stopping before reaching the maximum sample size N. The term closed refers to the presence
of this upper limit N, while the procedure is adaptive in the sense that the decision to continue sampling
depends dynamically on the outcomes observed thus far.

The problem of selecting the best among k (k > 1) treatments with Bernoulli outcomes, or compar-
ing k Bernoulli experiments with each other and with a control or standard, has a long-standing history
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in selection theory, particularly with applications in medical trials and the pharmaceutical industry.
Sobel and Huyett (1957) proposed a fixed-sample-size procedure for identifying the best Bernoulli
population based on the Indifference Zone approach. Later, Gupta and Sobel (1958) introduced a
Subset Selection method to select a group that includes the best Bernoulli population. Dunnett (1984)
and Thall, Simon, and Ellenberg (1988, 1989) also employed the Indifference Zone framework to select
the best among k Bernoulli experiments and compare the selected treatment with a control or standard.
Notably, all of these works considered only a single Bernoulli endpoint and were formulated under
fixed-sample-size, non-curtailed sampling schemes.

In contrast, this paper investigates a curtailed selection procedure involving treatments with
two Bernoulli endpoints. In a curtailed procedure, the experimenter (1) sets an upper limit N on the
number of observations per treatment, and (2) continues sampling sequentially from each treatment
until either there is sufficient evidence that a treatment is no longer a contender, or the maximum
sample size N is reached. The notion of a “contending treatment” is formally defined in Procedure
R (Section 3). This early stopping mechanism allows for a potential reduction in the total number of
observations required.

Curtailment has previously been applied in clinical trials with Bernoulli outcomes, primarily
in the context of hypothesis testing (e.g., Carsten and Chen, 2016) and selection procedures (e.g.,
Bechhofer and Kulkarni, 1982; Jennison, 1983; Buzaianu and Chen, 2008). However, these works
are limited to the case of a single Bernoulli endpoint. The procedure proposed in this paper extends
the concept of curtailment to treatment comparisons involving two Bernoulli endpoints. For related
work, see Jennison and Turnbull (1993) for normally distributed outcomes, and Bryant and Day (1995),
Conway and Petroni (1995), and Chen and Chi (2012) for designs with binary outcomes.

More recently, Buzaianu et al (2022) discussed a curtailed procedure for subset selection involving
two binary Bernoulli endpoints. However, their approach compares each experimental treatment to a
well-established standard treatment. This design is most appropriate when a widely accepted reference
treatment exists. In contrast, our procedure compares new treatments against a control treatment, which
may or may not be a recognized standard.

There are many situations in which our approach is more applicable. For example, in the absence
of a universally accepted standard treatment—such as when placebo is the only baseline option—it
becomes necessary to evaluate new treatments in relation to a control. Similarly, even when a standard
treatment exists, it may have been validated only in limited populations (e.g., specific age groups,
races, or genders). In such cases, it is important to assess whether the standard treatment continues to
perform well in broader or different patient populations. Our design, which explicitly includes the
control treatment in the experiment, enables such comparisons and provides a flexible and inclusive
framework for decision-making.

This paper addresses the two-endpoint problem using a subset selection approach. We introduce
a curtailed, closed sequential procedure in which the total number of observations drawn from each of
the k + 1 contending populations (including the control) is a bounded random variable. We assume
that the time between treatment administration and observation of the response is short relative to
the overall duration of the experiment. The proposed curtailed procedure uses the fixed-sample-size
method as a reference, which will be described in the following sections. We demonstrate that this
closed sequential procedure maintains the same probability of correct selection as the fixed-sample-size
procedure, while reducing the number of observations drawn from inferior treatments. Section 2
outlines the assumptions, objectives, and probability requirements for two-endpoint clinical trials.
Section 3 presents the fixed-sample-size procedure that serves as the benchmark for evaluating the
performance of the proposed curtailed procedure.

In Section 4, we propose a sequential selection procedure with curtailment to achieve our objective.
We show that the probability of correct selection under the proposed procedure is equal to that of
the corresponding fixed-sample-size procedure, uniformly over the parameter space. In Section 5,
we evaluate the performance of the proposed curtailed procedure in comparison to its non-curtailed
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counterpart, with respect to expected sample size. Section 6 provides two numerical examples to
illustrate the application of the proposed method. Finally, concluding remarks are presented in Section
7.

2. Assumptions, Goal, and Probability Requirements
Suppose that n independent subjects are assigned to a treatment, and that two binary endpoints—

typically representing therapeutic efficacy (“response”) and safety (“nontoxicity”)—are observed for
each subject. Following the notation of Conway and Petroni (1995), let Xij denote the number of
subjects classified as outcome i on the first endpoint and outcome j on the second endpoint, where
i = 1, 2 and j = 1, 2, with 1 representing “success” and 2 representing “failure.” The resulting data can
be summarized in a 2 × 2 contingency table (see Table 1).

We assume that the random vector X = (X11, X12, X21, X22) follows a multinomial distribution with
probabilities P = (p11, p12, p21, p22), where:

• p11 is the probability of success on both endpoints,
• p12 is the probability of success on endpoint 1 and failure on endpoint 2,
• p21 is the probability of failure on endpoint 1 and success on endpoint 2,
• p22 is the probability of failure on both endpoints.

Let X1 = X11 + X12 and X2 = X11 + X21 represent the number of successes on endpoints 1 and 2,
respectively. The marginal probabilities of success are given by p1 = p11 + p12 and p2 = p11 + p21,
respectively. Consequently, X1 ∼ Binomial(n, p1) and X2 ∼ Binomial(n, p2). We denote the binomial
probability mass function with parameters n and p by b(n, p, ·).

The joint distribution of (X1, X2) depends not only on p1 and p2, but also on the association between
the two endpoints. To quantify this association, we use the odds ratio ϕ = p11 p22

p21 p12
, which is a natural

and widely used measure in 2 × 2 tables. Notably, ϕ is independent of the marginal probabilities p1

and p2. When ϕ = 1, the two endpoints are independent; ϕ > 1 indicates a positive association, and
ϕ < 1 indicates a negative association.

Table 1. Classification Table.

Second Endpoint
First Endpoint 1 2

1 X11 X12 X1

2 X21 X22 X1̄

X2 X2̄ n

In this paper, we compare the two binary endpoints of each experimental treatment to those of a control
treatment, whose success probabilities on the efficacy and safety endpoints are denoted by p0,1 and p0,2,
respectively. Let πi, for i = 1, . . . , k, represent the k experimental treatments under investigation, and let
π0 denote the control treatment. Each treatment is associated with two binary outcomes. To distinguish
between the two endpoints within each treatment, we use a second subscript j in the notation, where
j = 1 corresponds to the efficacy endpoint and j = 2 to the safety endpoint. Thus, the success probabil-
ities for treatment πi are denoted by pi,1 and pi,2 for the efficacy and safety endpoints, respectively, for
i = 0, 1, . . . , k. We assume that the k + 1 treatments are mutually independent, meaning that responses
across different treatments are independent. However, responses within a single treatment may exhibit
association between the two endpoints. To classify treatments based on their performance, we partition
the parameter space {(p1,1, p1,2), . . . , (pk,1, pk,2) | 0 < pi,j < 1 for i = 1, . . . , k, j = 1, 2} using four
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prespecified constants: δ∗0,1, δ∗0,2, δ∗1,1, and δ∗1,2. These constants satisfy the conditions −∞ < δ∗0,1 < δ∗1,1
with δ∗1,1 > 0, and −∞ < δ∗0,2 < δ∗1,2 with δ∗1,2 > 0. In this framework, a treatment πi is considered
ineffective if pi,1 ≤ p0,1 + δ∗0,1 or pi,2 ≤ p0,2 + δ∗0,2, and considered effective if pi,1 ≥ p0,1 + δ∗1,1 and
pi,2 ≥ p0,2 + δ∗1,2, where p0,1 and p0,2 are success probabilities of the control treatment, and we assume
that these two probabilities are known prior to conducting the selection procedure. Our objective is
to classify the k experimental treatments into two groups: those that are effective and those that are
ineffective. We now describe the formal selection goal.

Our Goal: Select a subset consisting of those treatments πi for which pi,1 > p0,1 and pi,2 > p0,2; that
is, include all experimental treatments that demonstrate superiority over the control treatment with
respect to both efficacy and safety. If no such treatment exists—i.e., if no πi satisfies both pi,1 > p0,1

and pi,2 > p0,2—then none of the k experimental treatments should be selected.

Our probability requirements: Let P∗
0 and P∗

1 be pre-specified probability constants satisfying 2−k <

P∗
0 < 1 and (1 − 2−k)/k < P∗

1 < 1. The probability requirements for the selection procedure are
defined as follows:

P
(
All πi with pi,1 ≥ p0,1 + δ∗1,1 and pi,2 ≥ p0,2 + δ∗1,2

are included in the selected subset, for i = 1, . . . , k
)
≥ P∗

1 , (1)

and

P
(
No πi is selected whenever pi,1 ≤ p0,1 + δ∗0,1 or pi,2 ≤ p0,2 + δ∗0,2

for all i = 1, . . . , k
)
≥ P∗

0 . (2)

Let CS1 denote the event that the selected subset correctly includes all effective treatments, provided
such treatments exist. Specifically, CS1 occurs when every treatment πi satisfying pi,1 ≥ p0,1 + δ∗1,1 and
pi,2 ≥ p0,2 + δ∗1,2 is included in the selected subset. Similarly, let CS0 denote the event that no treatment
is selected when none are truly effective. That is, CS0 occurs if pi,1 ≤ p0,1 + δ∗0,1 or pi,2 ≤ p0,2 + δ∗0,2
holds for all i = 1, . . . , k. Under this framework, the selection procedure is required to satisfy the
following probability criteria:

P(CS1) ≥ P∗
1 ,

P(CS0) ≥ P∗
0 ,

where P∗
1 and P∗

0 are prespecified thresholds that represent the minimum acceptable probabilities for
correctly identifying effective treatments and correctly excluding ineffective treatments, respectively.

Remark 2.1: When effective experimental treatments exist, a correct selection is made if the selected
subset includes all such effective treatments. The rationale for selecting a subset—rather than iden-
tifying a single best treatment—is that no natural ordering can be established among the pairs of
success probabilities (p1,1, p1,2), . . . , (pk,1, pk,2) unless one endpoint is explicitly prioritized over the
other. Since this paper does not assume any preference between the two endpoints, we adopt a subset
selection approach.

3. Fixed Sample Size Procedure
In this section, we first present the fixed-sample-size selection procedure, which serves as a reference
for the curtailed procedure introduced in Section 4. This fixed-sample-size procedure was derived by
Buzaianu et al. (2025). We also include results related to the derivation of the design parameters that
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ensure the fixed-sample-size procedure satisfies the probability requirements stated in Conditions 2.1
and 2.2.
For prespecified design parameters n, c1, c2 , the selection procedure is defined as follows:

Procedure H:
Take n observations from each of the k Bernoulli experimental treatments and the control treatment.
Let Xi,1 and Xi,2 be the numbers of successes from the first and second endpoints of treatment
i, i = 0, 1, 2, . . . , k. For positive integers c1 and c2, Procedure H is defined as follows:
(1) Include in the subset all the treatments πi with Xi,1 − X0,1 ≥ c1 and Xi,2 − X0,2 ≥ c2;
(2) If there is no treatment πi so that Xi,1 − X0,1 ≥ c1 and Xi,2 − X0,2 ≥ c2 do not select any experimental
treatment.

Typically, ranking and selection problems are solved by obtaining an analytical expression for the
probability of a correct selection P(CS) and then finding the least favorable configuration(LFC), that
parameter configuration where the P(CS) is minimized. Then design parameters are obtained by
setting P(CS|LFC) to be at least some pre-specified value P∗. In this subset selection problem, it was
not possible to derive an expression for the P(CS). Instead, a lower bound for P(CS) was derived,
along with the parameter configuration that minimizes this bound. Then if the minimum value of this
lower bound is higher than P∗, the P(CS) will be at least P∗ for any parameter configuration.

We denote by CFG1 the configuration where pi,1 = p0,1 + δ∗1,1, pi,2 = p0,2 + δ∗1,2, i = 1, .., k and by CFG0

the parameter configuration where pi,1 = p0,1 + δ∗0,1, pi,2 = p0,2 + δ∗0,2, i = 1, .., k. Then CFG1 and CFG0

are the configurations under which the lower bounds PL(CS1) and PL(CS0) of the probabilities of
correct selections P(CS1) and P(CS0), respectively, were computed. PL(CS1) also depends on the odds
ratios between the two endpoints of each of the k treatments, while PL(CS0) does not. We assume that
there is the same association between the two endpoints of each of the k treatments. Three cases were
considered: independent endpoints, dependent endpoints with known association and endpoints with
unknown association. When the association is not known, it was shown that the minimum of PL(CS1)

is attained when the odds ratio is zero. However, numerical computations showed that the sample
size varies very little with the odds ratio. Below we state the theorems on the lower bounds PL(CS0)

and PL(CS1) of the probabilities of correct selections P(CS1) and P(CS0), respectively, whose profs
were given in Buzaianu et al (2025).

Case 1: ϕi = 1, i = 0,1,.., k.. We first consider the case of two independent endpoints. That is, we
assume ϕi = 1, i = 0,1, 2, ..., k. In this case, Xi,1 and Xi,2 are independent random variables following
binomial distributions, with parameters (n, pi,1) and (n, pi,2), respectively, i = 0,1, 2, ..., k.

Theorem 1. For fixed k, p0,1, p0,2, δ∗0,1, δ∗0,2, δ∗1,1, δ∗1,2, the probability requirements are satisfied by choosing
values of n, c1, c2 that simultaneously satisfy

(∑n
x0,1=0[∑

n
xi,1=c1+x0,1

b(n, p0,1 + δ∗1,1, xi,1)]
kb(n, p0,1, x0,1))×

(∑n
x0,2=0[∑

n
xi,2=c2+x0,2

b(n, p0,2 + δ∗1,2, xi,2)]
kb(n, p0,2, x0,2)) ≥ P∗

1

and

∑n
x0,1=0 ∑n

x0,2
(1 − max[P(Xi,1 ≥ c1 + x0,1|pi,1 = p0,1 + δ∗0,1), P(Xi,2 ≥ c2 + x0,2|pi,2 = p0,2 + δ∗0,2)])

k ×
b(n, p0,1, x0,1)b(n, p0,2, x0,2) ≥ P∗

0 .
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Case 2: ϕi ̸= 1 specified i =0, 1,.., k. We now consider the case when the endpoints of each of treatment
are dependent with known association.

Theorem 2. For fixed values of k, p0,1, p0,2, δ∗0,1, δ∗0,2, δ∗1,1, δ∗1,2, ϕi, i = 0, 1, .., k, the probability requirements are
satisfied by choosing values of n, c1, c2 that simultaneously satisfy

∑n
x0,1=0 ∑n

x0,2=0[Π
k
i=1(∑

n
xi,1=c1+x0,1 ∑n

xi,2=c2+x0,2
P(Xi,1 = xi,1, Xi,2 = xi,2|pi,1 = p0,1 + δ∗1,1, pi,2 = p0,2 +

δ∗1,2, ϕi))]× P(X0,1 = x0,1, X0,2 = X0,2|p0,1, p0,2, ϕ0) ≥ P∗
1

and

∑n
x0,1=0 ∑n

x0,2
(1 − max[P(Xi,1 ≥ c1 + x0,1|pi,1 = p0,1 + δ∗0,1), P(Xi,2 ≥ c2 + x0,2|pi,2 = p0,2 + δ∗0,2)])

k ×
P(X0,1 = x0,1, X0,2 = X0,2|p0,1, p0,2, ϕ0) ≥ P∗

0 .

where pi,11 =
ai−

√
a2

i +bi
2(ϕi−1) , ai = 1+ (ϕi − 1)(p0,1 + δ∗1,1 + p0,2 + δ∗1,2), bi = −4ϕi(ϕi − 1)(p0,1 + δ∗1,1)(p0,2 +

δ∗1,2), pi,12 = p0,1 + δ∗1,1 − pi,11.

Case 3: ϕi unspecified i = 1, 2, ..., k, ϕ0 specified. We now consider the case when the endpoints of
each of tested treatment have unknown association.

Theorem 3. For fixed k, p0,1, p0,2, δ∗0,1, δ∗0,2, δ∗1,1, δ∗1,2, the probability requirements are satisfied by choosing
values of n, c1, c2 that simultaneously satisfy

∑n
x0,1=0 ∑n

x0,2=0[∑
n
xi,1=c1+x0,1 ∑n

xi,2=c2+x0,2
b(n, p0,2 + δ∗1,2, xi,2) f (xi,1, xi,2)]

k × P(X0,1 = x0,1, X0,2 = x0,2|p0,1, p0,2, ϕ0) ≥
P∗

1

and

(∑n
x0,1=0 ∑n

x0,2
(1 − max[P(Xi,1 ≥ c1 + x0,1|pi,1 = p0,1 + δ∗0,1), P(Xi,2 ≥ c2 + x0,2|pi,2 = p0,2 + δ∗0,2)])

k ×
P(X0,1 = x0,1, X0,2 = X0,2|p0,1, p0,2, ϕ0) ≥ P∗

0

where

f (xi,1, xi,2) =



b

(
n − xi,2,

p0,1 + δ∗1,1

1 − (p0,2 + δ∗1,2)
, xi,1

)
if p0,1 + δ∗1,1 < 1 − (p0,2 + δ∗1,2)

b

(
xi,2,

p0,1 + δ∗1,1 + p0,2 + δ∗1,2 − 1
p0,2 + δ∗1,2

, xi,1 + xi,2 − n

)
if p0,1 + δ∗1,1 > 1 − (p0,2 + δ∗1,2)

b
(

n, p0,2 + δ∗1,2, xi,2

)
1xi,1+xi,2=n if p0,1 + δ∗1,1 = 1 − (p0,2 + δ∗1,2)

(3)
,

1xi,1+xi,2=n =

{
1 xi,1 + xi,2 = n
0 xi,1 + xi,2 ̸= n
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and

ϕi = 0, i = 1, 2, . . . , k

Remark 1: The lower bound on P(CS0) depends only on the odds ratio for the control treatment.

Remark 2: Buzaianu et al. (2025) demonstrated that P(CS1) increases with the odds ratios of the
experimental treatments πi, for i = 1, 2, . . . , k. Therefore, the minimum value of P(CS1) is achieved
when the odds ratios of all experimental treatments are zero. To obtain a lower bound for P(CS1), we
evaluated it under the assumption that all treatments tested have odds ratios equal to zero. As a result,
the scenario with unspecified odds ratios is effectively handled by considering the scenario where the
odds ratios of the tested treatments are zeros.

Remark 3: Our results are derived under the assumption that the association between the two
endpoints is of the same type for each of the k treatments. For example, either the two endpoints are
independent for all k treatments, or they are dependent with a known form of association for all k
treatments. However, based on the structure of our derivations, scenarios in which treatments exhibit
different types of associations between the two endpoints—such as independence for some treatments
and unknown dependence for others—can be readily accommodated.

4. Proposed Curtailment Procedure
We propose a curtailed procedure to achieve the objective outlined in Section 2. The proposed proce-
dure, denoted by R, is a sequential method that employs curtailment to reduce the sample size for
treatments that are either clearly inferior or sufficiently effective. Let n denote the maximum number
of observations per treatment that the experimenter is permitted to collect.

Curtailment Procedure R:
A contending treatment is a treatment that has not been eliminated from the experiment. Proce-

dure R begins with all k+1 populations being the contending populations. We will use the vector-at-
a-time sampling rule. By "Step M", where 1 ≤ M ≤ n, we mean that a total of M vectors have been
sampled thus far. Let Y(i,1),M and Y(i,2),M respectively denote the numbers of successes from the two
endpoints of πi through Step M.

Sampling Rule. We use a vector-at-a-time sampling rule with the following restrictions:

(a) At most n observations can be taken from each of the (k + 1) populations. Observations are taken
from each contending treatment one at a time until either the total number of observations from that
treatment reaches n, or the treatment is eliminated according to conditions (b) or (c) below.

(b) At any step M, if the number of successes for the two endpoints, Y(i,1),M and Y(i,2),M, of treatment
πi satisfy

Y(i,1),M + n − M < c1 + Y(0,1),M or Y(i,2),M + n − M < c2 + Y(0,2),M,

then eliminate treatment πi and stop sampling from it.

(c) At any step M, if the number of successes for the two endpoints, Y(i,1),M and Y(i,2),M, of treatment
πi satisfy

Y(i,1),M ≥ c1 + Y(0,1),M + n − M and Y(i,2),M ≥ c2 + Y(0,2),M + n − M,
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then stop sampling from treatment πi.

Stopping Rule:

Stop the experiment at the first step M when any of the following three conditions is satisfied:

(i) There exists a partition A, B of the set {1, 2, . . . , k} such that:

Y(i,1),M ≥ c1 + Y(0,1),M + n − M and Y(i,2),M ≥ c2 + Y(0,2),M + n − M, for all i ∈ A,

Y(j,1),M + n − M < c1 + Y(0,1),M or Y(j,2),M + n − M < c2 + Y(0,2),M, for all j ∈ B.

(ii) For all i ∈ {1, 2, . . . , k},

Y(i,1),M + n − M < c1 + Y(0,1),M or Y(i,2),M + n − M < c2 + Y(0,2),M.

(iii) M = n.

Decision Rule:

(a) If the sampling stops according to (i) of the above Stopping Rule, we include in the selected subset
all πi in A.

(b) If the sampling stops according to (ii) of the above Stopping Rule, we declare that no experimental
treatment is significantly better than the control treatment π0.

(c) If the sampling stops according to (iii) of the above Stopping Rule, we include in the selected subset
all the treatments πi with Y(i,1),n ≥ c1 + Y(0,1),n and Y(i,2),n ≥ c2 + Y(0,2),n. If the selected subset is an
empty set, we declare that no experimental treatment is significantly better than the control treatment
π0.

Theorem 4. For given k and n, both H and R select the same subset of k experimental treatments if both use the
same c1 and c2. The result is uniform in {(p0,1, p0,2), (p1,1, p1,2), . . . , (pk,1, pk,2)}.

Proof. Decision Rule (c) of Procedure R, which is applied if and only if sampling stops according to
Stopping Rule (iii), is identical to the decision rule of Procedure H when m = n. Thus, the same subset
will be selected by R and H for any sampling outcome in which a total of n observations is taken from
each of the k treatments. Therefore, we only need to consider the case in which the decision under R is
made according to Decision Rule (a) or (b).

Decision Rules (a) and (b) are invoked if and only if sampling stops according to Stopping Rule
(i) or (ii), respectively. Note that M < n whenever the sampling stops due to Stopping Rule (i) or (ii).
When this occurs, we have n − M > 0.

If sampling stops according to Stopping Rule (i), then under Procedure R, Decision Rule (a) selects
the subset consisting of treatments πi such that

Y(i,1),M ≥ c1 + Y(0,1),M + n − M and Y(i,2),M ≥ c2 + Y(0,2),M + n − M.

Now suppose the experiment were to continue as it would under Procedure H. Let Y(i,1),n and
Y(i,2),n denote the total number of successes for treatment πi at endpoints 1 and 2, respectively, after n
observations. Then, by Rule (2) of Procedure H, treatment πi would be selected if

Y(i,1),n − c1 ≥ Y(0,1),n and Y(i,2),n − c2 ≥ Y(0,2),n.
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Observe that:

Y(i,1),n − c1 ≥ Y(i,1),M − c1 ≥ Y(0,1),M + n − M ≥ Y(0,1),n,

Y(i,2),n − c2 ≥ Y(i,2),M − c2 ≥ Y(0,2),M + n − M ≥ Y(0,2),n.

Hence, the same subset of treatments would be selected by Procedure H.
Similarly, if sampling stops according to Stopping Rule (ii), then Decision Rule (b) of Procedure R

selects no experimental treatment. This is exactly the same decision that would be made by Rule (2) of
Procedure H.

This completes the proof of the theorem.

5. Tables
In this section, we evaluate the performance of the curtailment procedure in terms of sample size
savings relative to the corresponding non-curtailment procedure H. We assume the same association
structure between the two endpoints for each of the (k + 1) treatments. However, based on our results,
parameter derivations for the curtailment procedure can also be extended to scenarios where different
treatments exhibit different associations between the two endpoints.

We consider the following cases: k = 2, 3, p0,1 = 0.40, 0.50, 0.60, p0,2 = 0.60, δ∗0,1 = 0.01, δ∗0,2 = 0.01,
δ∗1,1 = 0.30, δ∗1,2 = 0.25, P∗

0 = 0.90, P∗
1 = 0.80, 0.85, 0.90, and ϕ = 0, 0.01, 0.1, 1, 2, 4, 8, 100, which follow

the settings used by Buzaianu et al. (2025) to create Tables 2–7 for the fixed sample size procedure H.
For each case, they first determined the minimum number of observations per treatment, n, and the
associated (c1, c2) values that satisfy the required probability constraints. If multiple (c1, c2) combina-
tions met these constraints, the design yielding the highest probability of selecting a single effective
treatment was chosen. This n is then used as the maximum number of observations per treatment
under the curtailment procedure R. According to Theorem 4.1, with this choice of n and (c1, c2), the
curtailment procedure satisfies the same probability requirements as procedure H.

We denote by N the total number of observations required by the fixed sample size procedure to satisfy
the probability requirements, where N = (k + 1)× n. This N also serves as the upper bound on the
total number of observations under the curtailment procedure. Let E1(N|R) and E0(N|R) denote the
expected sample sizes for the curtailment procedure R under configurations CFG1 and CFG0 defined
in Section 3. These configurations were used to compute the lower bounds PL(CS1) and PL(CS0) for
selecting a correct subset under the alternative and null hypotheses, respectively, and were used to
derive the design parameters for the fixed sample size procedure H.

We define the average expected sample size under the curtailment procedure as E(N | R) =
1
2 (E1(N | R) + E0(N | R)), following the approach of Rhall, Simon, and Ellenberg, to account for
performance under both configurations. The quantities E1(N | R) and E0(N | R) are estimated via
simulation (10,000 repetitions), implemented in R. To generate bivariate binary data with marginal
probabilities p1, p2 and odds ratio ϕ ̸= 1, we compute:

p11 =
a −

√
a2 + b

2(ϕ − 1)
, a = 1 + (ϕ − 1)(p1 + p2), b = −4ϕ(ϕ − 1)p1 p2,

p12 = p1 − p11, p21 = p2 − p11, p22 = 1 − (p11 + p12 + p21),

and then simulate binary outcomes from a 2 × 2 table with cell probabilities pij.

Tables 2–7 report, for each specification, the total sample size N required by the fixed sample size
procedure, the expected sample sizes E1(N|R) and E0(N|R) for the curtailment procedure, and the
percentage of observations saved using curtailment: RS(%) = N−E(N|R)

N × 100. It is evident that the
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curtailment procedure R requires substantially fewer observations than procedure H to satisfy the
same performance criteria.

Tables 2–7 also demonstrate that the odds ratio ϕ has little impact on the expected sample size when
ϕ values are relatively close, under both CFG1 and CFG0, for the curtailment procedure. Greater
variability is observed under CFG0. This pattern is consistent with the findings of Chen and Chi
(2012), who considered only moderate odds ratios (ϕ = 2, 4, 8) in the context of hypothesis testing,
and observed minimal sample size variation under curtailment, with larger variability under the null
hypothesis. In our procedure, however, when ϕ varies substantially—for example, from 1 to 100—we
observe a marked decrease in expected sample size under both CFG1 and CFG0. Chen and Chi (2012)
did not report average expected sample sizes, but instead presented results under both the null and
alternative hypotheses and calculated percentage savings. Their findings indicated modest savings
under the alternative and substantial savings under the null, which align with our observations.

Table 2. Design parameters when k = 2, P∗
1 = .80.

p0,1 ϕ n c1 c2 N E0(N|R) E1(N|R) E(N|R) RS%
0.4 0 81 14 13 243 195.96 232.41 214.18 11.86

0.01 81 14 13 243 196.61 232.10 214.36 11.79
0.1 78 14 12 234 190.27 222.84 206.55 11.73
1 77 14 12 231 189.83 219.01 204.42 11.51
2 75 13 12 225 186.30 212.83 199.56 11.3
4 75 13 12 225 187.11 212.41 199.76 11.22
8 71 13 11 213 177.07 200.73 188.90 11.32
100 69 12 11 207 174.27 194.16 184.22 11.01

0.5 0 80 14 13 240 193.65 229.38 211.52 11.87
0.01 80 14 13 240 193.97 229.26 211.61 11.83
0.1 77 14 12 231 187.35 220.16 203.76 11.79
1 76 14 12 228 186.77 216.31 201.54 11.61
2 74 13 12 222 183.31 210.23 196.77 11.37
4 74 13 12 222 184.22 209.72 196.97 11.27
8 70 13 11 210 174.25 198 186.12 11.37
100 67 12 11 201 169.16 188.56 178.86 11.01

0.6 0 75 14 12 225 180.99 215.14 198.06 11.97
0.01 75 14 12 225 181.04 215.12 198.08 11.97
0.1 73 13 12 219 177.48 208.88 193.18 11.79
1 73 13 12 219 179.61 207.89 193.75 11.53
2 71 14 11 213 173.74 202.21 187.97 11.75
4 69 13 11 207 170.59 195.87 183.23 11.48
8 67 12 11 201 167.16 189.63 178.40 11.25
100 62 12 10 186 155.61 174.58 165.10 11.24

Note: k = 2, p0,2 = .60, δ∗0,1 = .01, δ∗0,2 = .01, δ∗1,1 = .30, δ∗1,2 = .25 P∗
0 = .90, P∗

1 = .80

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2025 doi:10.20944/preprints202507.0255.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0255.v1
http://creativecommons.org/licenses/by/4.0/


11 of 18

Table 3. Design parameters when k = 2, P∗
1 = .85.

p0,1 ϕ n c1 c2 N E0(N|R) E1(N|R) E(N|R) RS(%)
0.4 0 87 15 13 261 212.04 248.41 230.23 11.79

0.01 87 15 13 261 212.71 248.08 230.40 11.73
0.10 85 14 13 255 209.71 241.68 225.70 11.49
1 85 14 13 255 212.24 240.44 226.34 11.24
2 81 14 12 243 202.46 228.73 215.60 11.28
4 81 14 12 243 203.30 228.21 215.75 11.21
8 81 14 12 243 204.02 227.76 215.89 11.16
100 78 13 12 234 198.24 218.67 208.46 10.92

0.5 0 86 15 13 258 209.73 245.41 227.57 11.79
0.01 86 15 13 258 209.97 245.28 227.63 11.77
0.10 84 14 13 252 206.76 238.98 222.87 11.56
1 84 14 13 252 209.18 237.80 223.49 11.31
2 80 14 12 240 199.46 226.11 212.79 11.34
4 80 14 12 240 200.36 225.57 212.97 11.26
8 78 13 12 234 196.99 219.37 208.18 11.03
100 73 13 11 219 185.24 204.25 194.75 11.07

0.6 0 81 15 12 243 196.90 231.23 214.06 11.91
0.01 81 15 12 243 197.00 231.18 214.09 11.90
0.10 81 15 12 243 197.70 230.81 214.25 11.83
1 78 14 12 234 192.70 221.34 207.02 11.53
2 78 14 12 234 193.54 220.89 207.22 11.45
4 77 13 12 231 193.19 217.16 205.18 11.18
8 74 14 11 222 184.30 208.86 196.58 11.45
100 70 12 11 210 178.72 195.91 187.32 10.80

Note: k = 2, p0,2 = .60, δ∗0,1 = .01, δ∗0,2 = .01, δ∗1,1 = .30, δ∗1,2 = .25 P∗
0 = .90, P∗

1 = .85
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Table 4. Design parameters when k = 2, P∗
1 = .90.

p0,1 ϕ n c1 c2 N E0(N|R) E1(N|R) E(N|R) RS(%)
0.4 0 96 15 14 288 237.24 272.11 254.67 11.57

0.01 96 15 14 288 237.93 271.76 254.85 11.51
0.10 96 15 14 288 239.33 271.17 255.25 11.37
1 92 15 13 276 231.39 258.66 245.02 11.22
2 92 15 13 276 232.31 258.15 245.23 11.15
4 90 14 13 270 228.93 251.92 240.42 10.95
8 90 14 13 270 229.75 251.42 240.58 10.90
100 85 14 12 255 217.44 236.74 227.09 10.94

0.5 0 95 15 14 285 234.97 269.09 252.03 11.57
0.01 95 15 14 285 235.24 268.96 252.10 11.54
0.10 93 16 13 279 230.01 263.14 246.57 11.62
1 91 15 13 273 228.35 256.03 242.19 11.29
2 91 15 13 273 229.28 255.49 242.39 11.21
4 89 14 13 267 225.99 249.27 237.63 11.00
8 89 14 13 267 226.93 248.71 237.82 10.93
100 82 13 12 246 211.21 227.98 219.59 10.73

0.6 0 89 15 13 267 219.34 252.27 235.80 11.68
0.01 89 15 13 267 219.46 252.20 235.83 11.67
0.10 89 15 13 267 220.23 251.86 236.04 11.59
1 88 14 13 264 221.17 247.47 234.32 11.24
2 87 16 12 261 216.51 245.11 230.81 11.57
4 85 15 12 255 213.46 238.66 226.06 11.35
8 83 14 12 249 210.29 232.34 221.31 11.12
100 78 14 11 234 198.57 217.13 207.85 11.17

Note: k = 2, p0,2 = .60, δ∗0,1 = .01, δ∗0,2 = .01, δ∗1,1 = .30, δ∗1,2 = .25 P∗
0 = .90, P∗

1 = .90
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Table 5. Design parameters when k = 3, P∗
1 = .80.

p0,1 ϕ n c1 c2 N E0(N|R) E1(N|R) E(N|R) RS(%)
0.4 0.00 95 16 15 380 308.89 362.28 335.59 11.69

0.01 94 17 14 376 305.01 357.95 331.48 11.84
0.10 93 17 14 372 303.28 354.08 328.68 11.65
1.00 91 16 14 364 300.94 344.40 322.67 11.35
2.00 89 15 14 356 296.73 335.82 316.27 11.16
4.00 88 15 14 352 293.36 331.98 312.67 11.17
8.00 86 14 14 344 288.88 323.93 306.41 10.93
100.00 82 14 13 328 277.11 307.69 292.40 10.85

0.5 0.00 92 17 14 368 297.22 351.12 324.17 11.91
0.01 92 17 14 368 297.68 351.02 324.35 11.86
0.10 92 17 14 368 299.18 350.45 324.82 11.73
1.00 90 16 14 360 296.63 340.58 318.61 11.50
2.00 88 15 14 352 292.18 332.41 312.30 11.28
4.00 87 15 14 348 289.80 328.60 309.20 11.15
8.00 85 16 13 340 282.10 320.37 301.24 11.40
100.00 80 14 13 320 270.15 300.19 285.17 10.88

0.6 0.00 88 16 14 352 284.93 335.77 310.35 11.83
0.01 88 16 14 352 285.05 335.56 310.30 11.85
0.10 86 15 14 344 280.29 327.42 303.86 11.67
1.00 86 17 13 344 279.82 326.74 303.28 11.84
2.00 85 16 13 340 279.78 321.82 300.80 11.53
4.00 82 15 13 328 271.86 309.96 290.91 11.31
8.00 80 14 13 320 267.28 301.55 284.42 11.12
100.00 74 13 12 296 250.71 277.28 263.99 10.81

Note: k = 3, p0,2 = .60, δ∗0,1 = .01, δ∗0,2 = .01, δ∗1,1 = .30, δ∗1,2 = .25 P∗
0 = .90, P∗

1 = .80
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Table 6. Design parameters when k = 3, P∗
1 = .85.

p0,1 ϕ n c1 c2 N E0(N|R) E1(N|R) E(N|R) RS(%)
0.4 0.00 101 17 15 404 330.13 383.44 356.78 11.69

0.01 101 17 15 404 330.85 382.99 356.92 11.65
0.10 101 17 15 404 333.10 382.08 357.59 11.49
1.00 98 16 15 392 326.96 369.43 348.19 11.18
2.00 97 17 14 388 323.57 364.62 344.09 11.32
4.00 95 16 14 380 319.33 356.19 337.76 11.12
8.00 94 16 14 376 316.11 352.35 334.23 11.11
100.00 91 15 14 364 309.03 340.14 324.59 10.83

0.5 0.00 99 17 15 396 323.11 376.07 349.59 11.72
0.01 99 17 15 396 323.68 375.74 349.71 11.69
0.10 99 17 15 396 325.23 375.14 350.18 11.57
1.00 97 16 15 388 322.80 365.79 344.29 11.26
2.00 96 17 14 384 319.40 361.15 340.28 11.39
4.00 93 16 14 372 311.32 349.43 330.38 11.19
8.00 93 16 14 372 312.71 348.76 330.74 11.09
100.00 86 15 13 344 291.61 320.66 306.13 11.01

0.6 0.00 94 17 14 376 306.26 357.10 331.68 11.79
0.01 94 17 14 376 306.41 356.78 331.60 11.81
0.10 94 17 14 376 307.53 356.55 332.04 11.69
1.00 92 16 14 368 305.01 347.17 326.09 11.39
2.00 91 16 14 364 302.20 343.25 322.72 11.34
4.00 90 15 14 360 301.71 338.37 320.04 11.10
8.00 87 16 13 348 290.26 326.94 308.60 11.32
100.00 84 15 13 336 284.41 313.77 299.09 10.98

Note: k = 3, p0,2 = .60, δ∗0,1 = .01, δ∗0,2 = .01, δ∗1,1 = .30, δ∗1,2 = .25 P∗
0 = .90, P∗

1 = .85
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Table 7. Design parameters when k = 3, P∗
1 = .90.

p0,1 ϕ n c1 c2 N E0(N|R) E1(N|R) E(N|R) RS(%)
0.4 0.00 111 18 16 444 365.66 419.29 392.48 11.60

0.01 111 18 16 444 366.71 418.74 392.73 11.55
0.10 110 17 16 440 366.62 413.66 390.14 11.33
1.00 108 18 15 432 361.99 404.50 383.24 11.29
2.00 106 17 15 424 358.00 395.96 376.98 11.09
4.00 106 17 15 424 359.44 395.26 377.35 11.00
8.00 104 16 15 416 354.66 387.29 370.97 10.82
100.00 101 17 14 404 343.97 375.04 359.50 11.01

0.5 0.00 109 19 15 436 357.96 411.50 384.73 11.76
0.01 109 19 15 436 358.33 411.49 384.91 11.72
0.10 109 19 15 436 360.19 410.60 385.40 11.61
1.00 107 18 15 428 358.00 401.18 379.59 11.31
2.00 105 17 15 420 354.04 392.32 373.18 11.15
4.00 104 17 15 416 351.23 388.19 369.71 11.13
8.00 103 16 15 412 350.99 383.49 367.24 10.86
100.00 97 16 14 388 332.10 359.83 345.97 10.83

0.6 0.00 104 18 15 416 341.64 392.59 367.11 11.75
0.01 103 17 15 412 340.19 388.10 364.14 11.62
0.10 103 17 15 412 341.38 387.88 364.63 11.50
1.00 102 19 14 408 337.08 383.75 360.41 11.66
2.00 100 18 14 400 332.66 375.32 353.99 11.50
4.00 98 17 14 392 329.37 366.73 348.05 11.21
8.00 97 16 14 388 328.98 361.58 345.28 11.01
100.00 91 16 13 364 309.59 337.64 323.62 11.09

Note: k = 3, p0,2 = .60, δ∗0,1 = .01, δ∗0,2 = .01, δ∗1,1 = .30, δ∗1,2 = .25 P∗
0 = .90, P∗

1 = .90

6. Examples
6.0.1. Immunotherapy in Elderly Patients with Non-Small Cell Lung Cancer

This example considers an experimental trial involving two immunotherapy-based treatments for
elderly patients (≥ 75 years old) diagnosed with advanced non-small cell lung cancer (NSCLC). The
trial compares two immunotherapy strategies—PD1-A (anti-PD-1 monotherapy) and PD1-B (anti-PD-1
combined with low-dose chemotherapy)—against the standard chemotherapy regimen consisting of
carboplatin and pemetrexed, which serves as the control treatment.

While carboplatin plus pemetrexed is considered the standard of care in general NSCLC populations,
this regimen has not been adequately studied in patients aged 75 and above. As a result, its efficacy and
safety profile in this elderly subgroup remain uncertain. Historically, in younger NSCLC populations,
this standard chemotherapy yields approximately 40% objective response rate (ORR), and around 40%
of patients experience grade 3 or higher treatment-related adverse events. These outcomes establish
the benchmark efficacy and safety rates for the control treatment as p0,1 = 0.40 and p0,2 = 0.60,
respectively. Prior analyses in younger patients suggest an odds ratio of approximately 2 between
efficacy and safety, indicating that patients who do not experience toxicity are more likely to respond
to treatment.

The goal of the trial is to evaluate whether either PD1-A or PD1-B is superior to the control treatment
in terms of both efficacy and safety. Specifically, the experimenter seeks an increase in the response
rate of at least 0.30 and a reduction in high-grade toxicity of at least 0.25, corresponding to δ∗1,1 = 0.30
and δ∗1,2 = 0.25. If both experimental treatments fail to demonstrate improvements over the control,
the standard chemotherapy will be selected, with thresholds δ∗0,1 = δ∗0,2 = 0.01.
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When P∗
1 = 0.85 and P∗

0 = 0.90, Table 3 shows that the fixed sample size procedure requires n = 81
observations per treatment, with corresponding critical values c1 = 14 and c2 = 12. Therefore, the
total number of observations required for the fixed sample size procedure to satisfy the probability
constraints is 3 × 81 = 243. In contrast, the curtailment procedure, while also using at most n = 81
observations per treatment and the same critical values c1 = 14, c2 = 12, is expected to achieve the
same probability guarantees with fewer observations on average. According to Table 3, the expected
relative sample size saving from using the curtailment procedure is approximately 11.2767%.

6.0.2. Chemotherapy of Acute Leukemia

This example involves an experimental trial comparing two different combinations of Gemcitabine
and Cyclophosphamide—denoted as GemCy1 and GemCy2—each with varying dosage proportions,
against the standard Ara-C regimen for treating patients with good-prognosis acute myelogenous
leukemia (AML) or myelodysplastic syndrome. Historically, the standard treatment Ara-C yields
approximately 60% of patients achieving complete remission (CR), while around 40% either die or
experience severe myelosuppression within the first five weeks. These historical outcomes establish the
efficacy and safety rates for the control treatment as p0,1 = 0.6 and p0,2 = 0.6, respectively. Additionally,
the odds ratio between efficacy and safety is estimated to be 4, indicating that patients who do not
experience toxicity are more likely to achieve complete remission.

The goal of the trial is to determine whether either GemCy1 or GemCy2 surpasses the control treatment
in both efficacy and safety by at least 0.3 and 0.25, respectively, corresponding to threshold values
δ∗1,1 = 0.3 and δ∗1,2 = 0.25. If both experimental treatments fail to outperform Ara-C in terms of both
endpoints, the control treatment will be selected, with equivalence thresholds set at δ∗0,1 = δ∗0,2 = 0.01.

When P∗
1 = 0.80 and P∗

0 = 0.90, Table 2 shows that the fixed sample size procedure requires n = 69
observations per treatment, with corresponding critical values c1 = 13 and c2 = 11. Therefore, the
total number of observations required for the fixed sample size procedure to satisfy the probabil-
ity constraints is 3 × 69 = 207. In contrast, the curtailment procedure, while also using at most
n = 69 observations per treatment and the same critical values c1 = 13, c2 = 11, is expected to
achieve the same probability guarantees with fewer observations on average. According to Table 2,
the expected relative sample size saving from using the curtailment procedure is approximately 11.48%.

7. Conclusions
This paper considers a curtailment procedure for selecting a random-size subset that contains the
best treatment whenever it is significantly better than the control treatment. The comparison is made
according to the two endpoints associated with the Bernoulli outcomes from each of the k experimental
treatments and the control treatment. The proposed procedure is based on the fixed sample size
procedure defined by Buzaianu et al (2025). The proposed procedure satisfies the same probability
requirements in reaching the selection goal as does the original fixed sample size procedure, but
requires fewer observations from the experimental treatments. Based on our simulations, using the
curtailment procedure over the original fixed sample size procedure, would produce between a relative
total sample size saving of 10%− 12%. The sampling rule with curtailment is a highly desirable feature,
not only because it reduces the overall sample size, but because it reduces the sample sizes from
potentially undesirable populations. However, in order for such a curtailment procedure to be used, it
is desirable that the time between application of the treatment and the observation of the response is
small compared to the duration of the experiment.

Also, our simulations showed that the odds ratios have minimal impact on sample size; being non-
sensitive to the odds ratio makes the procedure robust with regard to departures from independence.
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We only considered cases where there is the same type of association between the two endpoints of a
treatment, for all treatments. However, this can be easily relaxed to accommodate situations where
there are treatments that do not display the same type of association between their two endpoints.
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