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The Modelling of Dielectric Relaxation Under
Microwave Treatment into Porous Humidified Body

Taras Volodymyrovych Holubets

Department of Physico-Mechanical Fields: Pidstryhach Institute for Applyed Problems of Mechanics and
Mathematics of NAS Ukraine, Naukova Street 3-b, 79060, Lviv, Ukraine, e-mail: taras_holubets@yahoo.com

Abstract

According to the method of local special averaging, a porous medium is considered as a continuum
of material points with averaged or effective physical properties. The equations of electrodynamics
are written in the reduced form thought the definition of the generalized dielectric displacement
vector. To describe the dielectric properties of a modelled three-phase porous medium, the possibility
of using the pulse relaxation method is demonstrated. Based on the dielectric properties by the using
of pulse relaxation function, the polarization and current via delay functions are defined depending
on the volume fraction of the saturation of the porous medium with liquid phases. The time limits of
the proposed relaxation functions are analysed and in the harmonic approximation of the field
amplitudes, a transparent expression for the generalized dielectric displacement vector is written in
terms of physical content. Within the framework of the approximation of the effective macroscopic
field according to the cluster approach, a method of averaging local equations of the electromagnetic
field is demonstrated. The generalized complex dynamic dielectric permittivity of a composite
porous body is determined. The compatibility conditions of the demonstrated method for describing
of electromagnetic processes in a heterogeneous multiphase porous medium are recorded.

Keywords: porous media; equations of electromagnetic field; dielectric relaxation; effective dielectric
constant; wave processes

Introduction

We are considering the porous three-phase medium, as composite material, which is
characterized by the low conductivity. This is a composite body of low electro-conductivity (K.B.L.E.)
(not ideal dielectric [1]). The low electrical conductivity of such body in general is conditioned with
conductive properties of water (liquid phase). In general the energy dissipation of the external
microwave electromagnetic field (E.M.F) can be caused by the charged particles during own

S . . ) ) . . .
oscillation or orientations movements: P =kkE fe'tgo=xE" /" , this is the dielectric losses

(polarization heat release), here P is the power of heat releasing into body on the unity of the

volume, « is the dimension constant, £ and f are the stretch a frequency of electric field, g and

€ are the real and imaginary part of dielectric constant Bignocna , @ is the tangent of dielectric

loss, so and dissipation of energy by the charge carries (free electrons or ions): P, = E’gnyu, this is
Joule's heat releases (ionic conductivity ), here E -is the electric field stretch, § is the electric charge

of each of ions, and /1 and 4 are concentration and mobility of ions correspondingly.

In the future corresponding to the effective macroscopic field under harmonically approach of
E.M.F. we will be modelling the polarization heat releases which are causes by the dielectric losses
from the side of hard matrix (carcass or skeleton) and free (not joined or not adsorbed) water. We will
review the humidified air as not conductive media. The joules heat releases because of ions and
electrons conductivity of liquid phase (water) we are neglectedor bypassed.
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1. The Local Space Averaging

The three-phase macroscopic porous area, volume or cell P of the humidified porous body,
as it was mentioned into work [2], consist from the solid Pfg, liquid PL and gas PG , so arbitrary
volume of averaging AV}, contains the phases sub volume of the skeleton AV;(?) (solid phase),

water AV, (®) (liquid phase) and gas AV, (%) (air and water like phase), which may to changes with
time I. Subvolumes AV, (t) and AV.(t) defines the volume of pores AV,(t)= AV, ()L AV (1)

under condition AV}, = ZA V (1), where O :{SL, G} is the index of phase.

The configuration and displacement of phases into area of averaging can rewrite with usage of
the characteristics function

1, when re 4V (1)
0, when 7e AV, (1)

190(771)={ here o={S L,G}. (1)

This function also takes into account the time moving of phases for considering body, which can be
conditioned by the mass transfer processes or the mechanical deformations. Then

AV (1) = I & (F1)dV , and volume fraction of C- phase of the material can be determined as

AVR

0,6y=2200 (30,=1) @

R

Also reviewing the physical quantities of the pore saturation by the liquid 7, or the gas 7,
correspondingly
AV, A
M=

- = e 1)) 3
v rar. " apray (6T ®

Then, according to the definition [3] of the local porosity
_ AV AV, AV,

, @)
AV AV
for the volume fractions of the phases gets the following relations
0= 1= @, 6,= on., 6= o(1-1n.). ()

Let's define the function (;¢) which describe into ranges of R.E.V. (the Representative

Averaging Volume [4]) a certain the local value of the physical quantity, which characterize the
macroscopic physical volume P of porous body. The space averaging of such quantity in the point

X of the macroscopic porous volume into the time moment ! determines [3] in the such way

= | oar. ©)

RAV

Similarly, with usage of the characteristic function (1), reproduce the phase

[ & 09 ,(r,t)av
R4V, %)

Dfaqx’t)= A

and internal
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&, (x, t=ALJ. (r,0)8 (r,t)dV
7 ®)

averaged quantities.
Because take the place the relation
| cow,@0av = [ &ro,oav
4 VR 4 Va

so phase and internal averaged are interconnected
¢, E0)=0,(%0s5 (%.1)

Thus, using the method of local spatial averaging, a reviewing heterogeneous porous cell can be
described by certain continuous local physical quantities in coordinate and time space. This makes it
possible to consider this one as a superposition of the three material continua: skeleton, liquid, and
gas. With this approach, the equations of the physical model of a porous cell are written relatively to
the specified average values (6-8) and are formally equivalent to the equations for a homogeneous
(isotropic) single-phase cell according to the approximation of the model [9] for the continuous solid
medium.

2. The Equations of Electrodynamics

For microwave electromagnetic field (E.M.F) according to the theory of dielectric relaxation
Botcher-Bordewijk [5] we can review the vector of the generalized dielectric displacement for the
known relation

B (7.0)=B(re)+ [ 7(7r )ar ©)
where f)(;t): gOE(;’, t)+13(;,t) is the vector of dielectric displacement, which consider

polarization processes into continuous media, P (l’,t ) and E‘(;,t) are the vectors of polarization

and stretch of electric field, and J (;7, z) is the density of polarization current.

From the condition of continuity dp/dt+V-J=0 itis following the expression for the density

t
of polarization charge p(r,t) = —J. V-J (r, t ) dt , according to this into the local averaging volume

(R.E.V) [2] the microscopic equations of E.M.F. Maxwell-Lorents into homogeneous form [6,7] and
boundary conditions have the form

9B(rt) _ . . 9D (rt
E()t | v ()= a(t | (10a)

VD (r)=0, V-B(rni)=0,

ﬁi/ﬁ(?,t):—

where

E)(0)=E.(c), B ()=H. (1), D ())=D" (1), B, (¢)=B (1) (105)
Are the conditions of continuity for components and derivatives of the field. Here
{a|a’}={SL,G}(a¢o") are denotations of phases, ¢ and 7 are indexes, which define the

tangential and normal components of field on the surfaces A4S, _, of separations of phases

accordingly. The system of equations (10a) is satisfied under conditions, that charges and currents
of other nature into the investigated closed system are absent.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.1. The Operators of Dielectric Susceptibility and Conductivity
The constitutive or material equations is proposed to write into following case
D(r.t)\=e8E(r.t),  B(rt)=uH/(r1),
()=eiE(5a). 35 (5 N

7(;Z)=ﬁ;)f(;t) TYT &= (1+)(),
where € 7 and ¢ are operators of dielectric permeability, susceptibility and conductivity of cell

correspondingly, & and 4, are dielectric and magnetic constants into vacuum respectively. It is

important to note, that under conditions of absence of joules heat releasing at the fixed frequency of
E.M.F. and absence of dispersion, into harmonic approximation of the field amplitudes (see Section
2, subsection 2 eqv. (28)) the operators of dielectric permeability and conductivity must have to satisfy
the known [7] relation

6, =—iwe,[&5—1]=—iwe,y,, (12)

where @ is the index, which point on the fixed frequency of harmonic field. Then the density of
polarization current p, = —V-P ,here P isthe polarization vector, is is determined in the usual
way.

Let's define the operators of dielectric susceptibility X and conductivity € of the considering

media in the form of linear integration operators
o (r.t)= jX(?,t’)f(?,t)w,,(t—t’)dt' and of (r,t)= j'a(?,t')f(?,t)guj(t—t’)dt’,

(13)
where f (r,t) is the arbitrary continuous function of values for the coordinates and time. If

X (r, t ) and O (l’, t ) are local susceptibility and conductivity of medium, then
Yy (t—t') =—a, (t—t') and vy, (t—t') =-a, (t—t') are pulse-relaxation functions [5], also
aP(t —t ') and a, (l‘ —t ') are functions of delaying for polarization and current, which describe the
reverse processes of relaxation for polarization ﬁ(;t) and current j(; t) accordingly.

We are considering the linear homogeneous dielectric, for each point of which the principle of
superposition of electromagnetic fields is satisfied. It is taking a possibility to modelling of time

hopping (Figure 1) of electrical field AEIG) = —AEZ(_) = Ei L (r)— E;(F) >0 into fixed point 7 of
investigated medium relatively to constant quantity El(f) of electric field stretch into ranges of ¢ -

phase of porous material
E(F)=Ef)+AE” @t —t') = EF) - AE Fe(t—1') =
= (94 1=t -1

where 1(2) ={O,t <0;1,¢> 0} is the theta-function of Heaviside [8]. Then the dielectric response of

>

substance for o - phase (Figure 2) can be defined by the relation
P70 =y, (Ep ()= AE (Paft =t )=

T~ = / ) 14
— &y (B () + AE Dot~ ) (¢ 21 ) (14

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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here O(t ~ )=1-1(t ~t ) is the stepped function of response for polarization, J, is the static
susceptibility of ¢c-phase.

A A
Pi+1
Ei+1 T - o T
i
el Pl
i 1
o - > t' t
t' t

Figure 1. The quantities of polarization for o - Figure 2. The quantities of electric field stretch E
phase: [; = gOXUE;, ,when <! and when <7 and E, ,when t>r.

P =XUE~+1 ,when #>7.

o 1

It should be noted, what defined abstractly the step response function of the polarization & for

dielectric material of the ¢-phase is displayed by the real function (Figure 3) of polarization
delaying

(o]

A GP

0 ¢

v

Figure 3. The function of delaying a,(#) of polarization for O-phase.

Because a(D = {L 7<0;0,7 >0, where f =t—{ is the time offset symbol, when at =0 we
get OC;( 0)=1, and when { —+oo we have OC; (+o2)=0, under executing [5] of a necessary
condition Ia; (9)dt =1 of normalization.

In the case of the Debay s type of relaxation [5] we receive the known classical relaxation relation

P.(F.)= B (7.0 )ap(t) =&,y E(F.0)ag(1). (15)
The local macroscopic field E(7 ¢ can be defined, as superposition of amplitude-vector

(coordinate) fields E[f) through the time step-impulse function in the interval #—Af <t<f, at

the arbitrary current # value of time

EF0)= Y E @[ttt +4)~t~1,)]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Then a vector of polarization for the medium of ¢-phase the material have viewed

PR =61, Y E(F)ag(t—t,+A)—aj(t—t,)) -

Under boundary limit 4f —0 with considering of material properties for ¢-phase we get the
expression for determining of polarization vector

. L. | dalt—t)
EGy=er, | ERL )| ——-—

t
di' = ey, [ EGA pipt=)de . ()
here /7 (t—t )= —a, (1 —t ') is the impulse-relaxation function for polarization of ¢-phase.

Similarly by the mirroring of images Figure 1 and Figure 2 relaying to averaged hope of
electric field stretch and current along the abscissa axis and shifting for modulus per unit of current
relaxation values (see Figure 3) under inverse mapping along the axis we get the expression for

determining of the polarization current vector for ¢-phase of material

- Lo dacit—-t)| . L. o
J,G)=0, [ EGt) —% di' =o, [ EG{ Wi~ )i, 17)

here Y/ (t—t , )=—00(t—t ' ) is the impulse-relaxation function for & -phase polarization current.

According to the local averaging method (see. Section 1, eqv. (6)) it is possible to define the

averaged susceptibility < )(> and conductivity <O'> into the local volume of averaging in the such

< X(},?)>=;Q, (%), (7) i <a(},t_)>=;90(;c,t)aﬂ(;c,t_), (18)

here y_ ~and ¢, isthe specific values of susceptibility and conductivity, and 0, (x, t ) is the volume

way

fraction of o-phase correspondingly. Here the times of polarization / and heat and mass
exchanges processes ¢ are separated because of the transience of polarization processes (

L 3,0
060

irradiation) relatively to the slow temporal changes in the heat and mass transfer phenomena.

<, where @ is the fixed so match frequency of EMM.F. under microwave

Into approach of local macroscopic field [9] the space averaged kernels of relaxation for
susceptibility and current into range of [4] can rewrite (see also Appendix) through approximate
expressions

<X>(xt)t//Pt t') Z){U (xt)l//P(t t_za)ZX (xt)[l af;(r—r’)},
<>(xt)1//Jt t') ZO' ()6, (xt)l//Jt t') ——ZCI)ZO' ()0, (xt)[lﬂx (t- I)J

here y/(t—t') and o (¢ —t), where [ ={P,J} is the index of conventional designation for

vectors of polarization P and current J relatively, the impulse-relaxation functions and functions
of response for polarization and current of ¢- phase.

According to (16) and (17) under applying of local averaging method [4] we receive the averaged
vectors of the orientational polarization

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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t
P(xt)= [ x(xt)y, (=) E(x.t')de' =
- , : (19)
=y %, (@), (%) [ E(x.t')ys (¢~1) e
and the current of polarization into porous media
j(;c,t)=j- (x.t)y, (=) E(x0')dr =
h , (20)

= —ia);aﬂ (), (},t)if«?(},t')[l +aj (t-t')]ar

here . (a)) and o, (a)) is the static susceptibility and conductivity of a-phase, which are
interconnected through the known [6] relation
o, (w)=iwe,x, (o).
From the received expressions, the vectors of dielectric displacement and current into porous
media take the form
t t

D(xt)=¢, [, (t=t)E(xe')dt' i J(xt)= [w,(t=t)E(xt)at, 1)

—oco —oco

where

vy (t=t)=0(t=t)+ 2, (o), (x2)y; (t=t)  and
(22)
w, (1—t') =—ia);00(a))00 (xt)[1405 (t=1")] (23)

Are corresponding impulse-relaxation functions and 0 (t -1 ') is the Dirace [8] delta function.

Then the functions of delaying for dielectric displacement and polarization current (see
Appendix) have the view

o (=) =1=2(t=t')+ Y x, (), (x.t)as (1), (24)
o, (t—t")= —ia);aa (w)o, (;c,t)ocj (1—t") (25)

(lima, (1=1')=1+(x)(xt), lima, (i-t')==io(o)(x1)),

f—>too

where <X>(;C,t) :;XJ (60)90 (;C,t) and <O'>(;C,f) :Z:O'a (60)9,, (;C,l‘) are defined above

averaged susceptibility and conductivity accordingly.

During receiving of expressions (22) and (23) for impulse-relaxation functions is taken into
account the join (12) between the polarization and current vectors as well, as also reverse relatively
to polarization similarity to the relaxation properties of current. According to the definition (9) of

generalized displacement vector of 7. phase the material on the base of relations (16) and (17) it is
follows

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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D, (;ct) =E(},z)+ j Z(},t')dt' -

—oo

80_[1/&, t t (xt)dt +o, IIWJ f—t (}’t,’)dt,dt’,.

In the way of integration by parts of second application of sum from the definition of impulse-
response function, it is follows

[ TwtnE(iepie= [ (= (=) (r)ar.
then )
Bu(5t)= e, [wp -0V E(mir o, [ (1-a (1-2)E (5.0)dr
From this according to (190; with taking into account r:ceived expressions for impulse-response

functions (22) and (23) it follows, that space averaged vector of generalized dielectric displacement
can be defined in the such way

<5'>(},t) — g, [1+< )((fc,t)>RP(;c,t)}f?(;,t)+<a(7c,t)>[l—RJ (}z)}ﬁ(?r)

here RP and RJ are the relaxation products for polarization and current accordingly, which can

be described by the following relations

R,(xt)= G >ZX0 (xt)J-l//P (t—t")dr'=
, .8
>Z;(J (@), (x, t)i[l—a}’,(t—t')]dt’

Ill

(x (x f)

R, (;ct) <0(x t)>20' w)@ (x t) j af (t—t')dt’, (27)

here < x(X, t)> and <0‘(55,t)> are averaged according to the relation (18) susceptibility and

conductivity of porous body.

With taking into account the known relation o, (w)=iwe,x, (») [6] for o-phase

under condition of executing of averaged material or constitutive equation
(o(%,0)) =iwe,( y(3,1))

On the mezoscopic level of the space averaging [4] we're going to more transparent for the physical
sense equation

<5’>(;,t):g{1+<f’<go ﬂ ()
+zwz,1/6(a))0 (%, t)j{ (t=0)+af (t=0) | E(r.0)dr

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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here Olg (t—l") and 0{5’ (l‘—t') are relaxation functions for polarization (24) and current (25),

which needs to determine.

2.2. The Harmonic Approach of Field Amplitude

Into harmonic approach of electric and magnetic fields amplitudes
o(r1)=Re| @ (r.) ¢ |=Re[ @i () |, (o ={E.7H)) 9

where @, (; t) = P! (;7) are complex amplitudes, which light varying with the time ¢ function due

to moving of liquid phases into porous skeleton, according to the local view of equations E.M.F. (10a)
the averaged (mezoscopic) equation are received

T (3)= o, (), 948" () = 50 - (),

(29)
VB (7)-0.9 7 (7)-0
with corresponding material relations
—t =\ e[\t~ =t~ —t [~
Dc(x)=ejﬂ(x,t)E*(x), B*(x)=,uOH*(x), (30)

where g (},1): g_t(;cw)Jr o, (;c,a))/ia) and gt(}w):gt(}w)_lgt(}w) are effective
dynamical  generalized and  local complex  dielectric  permeability (C.D.p),
o, (x, co) = O'; (x, a)) —iO't” (x, a)) is the local complex conductance.

Also

% (x0) =22, (@), (x1) L[ (e-1) ], G1)
at(;c,a))2200(60)(90(;c,t)(l+L[aj(t—t’)])

oo
are corresponding Laplace [8] images L|:f(”"s):|: jf(l”,t)e'Stdt (s=y+ia),y%0) from
0

averaged (22) and (23) relaxation functions.

Because 5, (;c, a)) =&, {1 + Xz, (;c, a))} i EZ (x, a)) = 80){; (x, a)) , so  real
Esz(l) (;C,t) =Re [Ew (;C,t)} and imaginary Esz(z) (;c,t) = Im[?w (;c,t )} part of generalized dynamic
(CDP) and g (}t) takes the form

- - o, (x,0 3 .y o(xe
£ (xw) =, {1 + 1. (xa))} _¥ , 5 (xa)) =¢, 1 (xa)) +’(T) , (32
here z*" (} t) is the effective-generalized complex dynamic dielectric permittivity (C.D.D.P).

By the using of definition (9) of the generalized dielectric displacement vector and complex
amplitudes (28) of field, the material equation (30) in the case of composite bodies with low electrical
conductivity (C.B.L.C) we can define trough relation

D! (F)=&,(F.OE(F), B.(F)=H.(F), (33)
where E;,(ﬁa))zgﬁlfl)(ﬁa))—lﬁé)(z)(ﬁa)) is generalized complex dynamical dielectric permeability

(G.C.D.D.P), 50;(1) (7,w) and 56;(2)(77, ®) are the real and imaginary parts correspondingly.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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—

Because the joules heat exchanges was missing or neglected, so takes 0o, (x, a)) = O'(X, a)) and

O't, (x, a)) =0. According to the relation (30) into taken definitions, we receives
8w = {l+ 1F0), &FEo)=er o), (34)

where real 8 V7= Refz, (7,¢)] and imaginary 8 ( = Im|: (7 U:| part of generalized
complex dynamic dielectric permittivity z (7,¢) (G.C.D.D.P.) (33) have the view

Gy =5 G-I+ 7F0), &OFE)=E Fo)= soxtfw)+0(w) (35)

hereg, (7,w) =%, (F,w) - i%, (V,w) isthelocal complex dynamical permeability.

Also according (28) the dispersion relation [12] are satisfied

e EY=2\) 0, g F)=—2") ), (36)

—_ [ —(2
here 860(7;,0:86((,)(77;0_186((, )(ﬁt) is the generalized complex dynamical dielectric permeability
(G.CD.D.P).

Under known material or constitutive relations for field equation (33) into (C.B.L.C) relatively
to complex amplitudes of E.M.F. (10a) orpuMyeMO y HaCTyITHOMY BUTA5A]

VXEL(F) =—iau, H.(F), VxH.(F)=icE, (7,1 E.(F)
IR S - N ) 37
VxD:(f):V-[Ew(f,z)E,ﬁ(f’)]:0, V- H(7)=0 &7

where € (H t)= 8 f t)— 18 f t) isthe generalized complex dynamical dielectric permeability
(G.C.D.D.P), which is defined according to equation (35) under conditions of satisfied of dispersion

(36) relations.
2.3. The Space Averaged Equations of Electromagnetic Field

Because into multiphase porous cell electro-physical characteristics change like jumpy on the
surface separation of two phases, so generalized complex (dynamical) dielectric permittivity
(G.C.D.D.P) g, (#t) can not be the continues function of coordinate. In general the last one can be

defined by the characteristic (phase) function ¥ (here 0= {S,L, G} is point to the index of phase),
which is defined according to known relation (Section 1, eqv. (1), through this relation

2,(7,0) = el (0)0s(F.0) + &/ (0)0,(F. 1) + & (0) g (7,1) » (38)
where el(w)=¢ (w)+a,/io is the generalized complex dynamical dielectric permeability

(G.CD.D.G) for o0 -phase (here O

characteristics of field, which is included into the equations (37) of electrodynamics also will be

» is conductivity of 0 -¢asu). Because of this the

stepping like functions of coordinate. To describe the electromagnetic field in a porous cell, as in a
continuous medium by continuous functions, we will use the methods of the theory of local spatial
averaging [6]. For this purpose, we assume that the equations of electrodynamics and material
relations relative to the specified average (effective) quantities have the same form as in the case of a
single-phase (continuous) medium, i.e. they are formally equivalent. Formal equivalence of
equations is ensured by fulfilling boundary conditions (10b) at the interface of two media on a
microscopic scale at each (current) moment of time, and formal equivalence of material relations is
ensured by defining effective electro physical characteristics. Such effective characteristics are

established within the averaging region Q (R.E.V) [2] and are determined through local properties
of the environment based on certain geometric model considerations.
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Let's review the simple example of averaging the material relation
VxD! )= V. [E w(l_; N )E,f (F)J , which is the part of equation of E.M.F (37) rewriting relatively to
complex amplitudes (28) of filed. Suppose, that into each point of averaging area R.E.V. the electrical
field is potential, ie., E(1)=-Vw(#,1) [10] E(Ft)= RG[E*(f, lﬂ = Re[Ei@eiwt:' ), where
w(7,t)=Re [l/,j (F)e'™! ] is the dynamical potential and l,l/l(f) is the complex amplitude of dynamical

potential. Then joining between complex amplitudes of the generalized dielectric displacement and
the stretch of electric field have the view

DI(7) = &, (FOE!(r) = =&, (F.)V y ! (F) - %

According to approach of local macroscopic field into area of averaging Q (R.E.V) in each moment
of time I the field is homogeneous, i.e., E! (77)=E£0 , where Efﬂ is the complex amplitude of
external field. Then the expression for amplitude of dynamic potential in this case have the view
yL)=—E., -7 (Fe).

We are defining the generalized complex dynamical dielectric permeability (G.C.D.D.P) of the
cell (1) on the base of equality, that expresses the formal equivalence of material relations

D)= e GENE) = 5 GOVYiE)- (40)

According to definition of space average quantity (see Section 1, eqv. (6)) and reviewing relations
we have

m;’mx)=—vij (1 )V W(r)aVe= £, 6,(x,t)e(w)

RVq (41)

Here is taking into account, that space averaged from the gradient of dynamic potential will be

vl (x)= ViRj v y(r)dV, =-E,

(42)
After substitution of (41) and (42) into definition of G.C.D.D.P (40) we gets
€ (X,1)=) 6,(x,t)el(w)
‘ , (43)

where Ef()?,t)ZEt(w) +0 /iw, here &(w) and O is the effective complex dynamical dielectric

permeability and conductivity of the reviewed cell and ! is the index which points on the light time
dependence of physical quantity.

From the expression (43) it is follows, that quantity " subject to neglect of dispersion
phenomena into the material depends on constant frequency of external microwave irradiation, ,
dielectric permeability and volume fraction of cell phases

N (x,t)=f(w;€,8,), 0={S,L,G}
€= & (w)6,= 6,(x,t)

It should be noted that under the condition of weak variability of the volumetric characteristics
of the porous material the E.G.C.D.D.P. Eafff (x,t) = E;ff (X) can be reviewed, as constant physical

quantity in the volume of averaging Q (R.E.V), which takes the constant into the time interval
values.

Taking into account the definition of E.G.C.D.D.P (39) into harmonic approach of local field (28)
after applying described above the homogenization [4] on the mezoscopic level into range of R.E.V.
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considering approach of not interacting clusters we get (see Section 2, subsection 2, eqv. (37)) the
averaged equation of field

vx<12";(7)> = —iwy, <FI£(F)>, v><<H,:(7)> = ia)e_‘[;(?,t)<E£ (7)>
Vx(E!(F))=0, V-(H!(7))=0
®={E, H}

(44)

where @(X,t)= Re[@i ()E)] ( yand £ (%) are the light (slowly) changed functions of

coordinate and (%) are the complex amplitudes of EIM.F. into the porous cell. Here time ! have

the sense of parameter with usage of which can be taken into account the moving of phases.

When obtaining the averaged field equations (44), a relatively simple method of finding the
effective electro physical characteristics (the method of local spatial averaging) of a multiphase
porous cell was used. Interesting comparative results of the dependence of the G.C.D.D.P on the
internal geometry or structure of the composite material of the sample [2] are highlighted in the
author's article. For a more adequate description, it is necessary to take into account the dependence
of E.G.C.D.D.P not only on the dielectric properties of the phases of the cell, but also on its local
microstructure [11], the interaction between phase inclusions [12,13], and their geometric shape and
orientation [14].

3. Propagation of Electromagnetic Waves

According to the system of averaged equations EIM.F (44) the wave equation for the T.EM
(Transference Electromagnetic Wave) for monochromatic wave in the terms of electric field strength
into C.B.L.C have the view

oL LE [()+kaIm, (x, )]?[E [(x)=0
—eff _ 7 eff _ ff T eff
here o (X, @)=k, (x, 1)/ ko= éw (*.7) s the complex refractive index, ko (x.1) is the

ky=w \3080= wlc,

co= 1/ N2 is the velocity of light) is the wave vector of electromagnetic wave into vacuum,

w=2nf €,

correspondingly the magnate and electric constant into vacuum. The analytical solving of such

(45)

effective wave vector into the porous (inhomogeneous) media, (where

is the angle frequency of E.M.F. (f is the lineal frequency), fo and are
equation is into details described by the author of this paper [15], where is demonstrated the
possibility of applying of Wentzel-Kramers-Brillouin (W.K.B.) [16,17] method for founding the
analytical solution of wave equation (45) into approach of slowly varying refractive properties of the
T.E.M. wave.

4. Compatibility Conditions of the Electromagnetic Field Equations

The closed-form electrodynamic equations were obtained under the conditions of weak
variation of the bulk (phase) and dielectric (wave) properties of a three-phase porous wetted material.

—eff
Lm0 i L9, &8 ey, (46)

0 (x,t) ot 0 n" () ox

As well as condition

2 (x
/l(f)ff(x,t)zw—()>>l,
@y
which determines the possibility of using the effective macroscopic field approximation in the study
(determination) of the effective electro physical properties of a porous material according to the
method of local spatial averaging.
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Here k"(x,t)=2x/2"(x,t) and v (x,t)=c, /7 " (x,t) isthe wave vector and phase velocity

of propagation the electromagnetic (T.E.M.) wave in the modelling media, 7 (x,2) is the effective
value of refractive index, 0 (x,#) is the volume fraction f O-phase, (, in the constant angle

frequency the microwave field, / is the characteristic length of the volume £ (RE.V) for space
averaging.

Appendix

The simplest correlations between impulse-relaxation functions as well as the function of
delaying for relation polarization and current can be received into harmonical approach of E.M.F.
(28) in the range of local averaging volume (R.E.V.) based on the macroscopic mean field
approximation.

For this we will use the known [5] relation

w, (t=t")==a,(t-1"), (48)

here o ={P,J} is the index of vector notation for polarization P and current J. From this
purpose we take the reviewed above integrals, which consist of impulse-relaxation function, and
according to replacement (48), using the method of integration by the parts, let's reduce them to an
equivalent form:

Case A. For the vector of polarization, we have gets

I W (t—1")E(x,t")dt' = - (0)E(x, t)+_[ oy (- t')aE(x 1) gy
Case B. For the vector of current, we have gets
[y =tV Bty = E(roo) - [ a7 (7 M

For electric field strengths at infinities, we assume the conditions of f1n1teness and equivalence
of the field amplitude values (28) to the macroscopic field value E(X, —°°) =FE , where

E =E¢™ Here E is the finite constant amplitude value.

When taking into account the harmonic approximation for electric field strengths within the
R.E.V., the following relation holds: E(X,?)= E(x)e_”"
field.

In the case of [A] at the replacing of variable t =t—t' for the integral into right part of

, where E(X) is the complex amplitude of

equality we have gets the equivalent relation
0E(x,t'
j as(t—1') ( )dt' j as (1)

After constituting the amplitude of harmoruc field in the previous relatlon, we receive the appropriate

equality
j as(7) dt'= iw(af (7 )>E(x)e-fwfj “df =—(af(T))E(x), (&)

here <0{P (t )> is the average constant value of response function for polarization, for which

BE(xt )dt

aE(xt 1)

saxomy obviously it is possible to match a certain fixed real time value T with a known expression

for the response function. When approximate equality is obtained, (A) is taken J.(:m e”dt'=-1/iw
, [Im(a)) > 0] . Similarly, for the current vector in case [B] it can be shown that

I_ oy (t )Mdt =—io(a] (7)) E(x)e” j “di =(af (i) E(x). (B)
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Let us now consider the integral common to cases [A] and [B], which, by means of identical
transformations, can be reduced to the approximate expression
! o ' ' ' o7\ I —ion [ it 7.0 1 o7\ I —iat
[ wsa—E@ae =(yi () E(x)e jo edt'=——(y5 (i) E(x)e™,
- 170
here f={P,J} istheindex of the conventional designation of polarization vectors P and current
J accordingly.
Then, according to the expressions for the polarization vectors (case [A]) and current (case [B]),
we obtain the actual approximate relations

(wp @) zio{i-(ag@))]. ©

(w5 (@) E(x) = ~iwE’ {1 +(af () Eéx)} : (D)

~k
From which it is follows the expressions for relaxation functions, if you put E(x)=E into the

relations (C) and (D) correspondingly.

Conclusions

The study of the distribution of the electromagnetic field in composite structures is one of the
fundamental problems of mathematical physics. This is evidenced by many numbers of scientific
works (see, for example, [18] and [19]), which describe not only analytical models for calculating the
field in relatively simple geometric structures, but also propose numerical methods for modelling the
distribution of the electromagnetic field in inhomogeneous bodies. The author of this article has
attempted to propose a comprehensive theoretical approach to describing the phenomena of
dielectric relaxation in porous wetted materials. The adequacy of the above mathematical
relationships can only be confirmed by experimental research methods.
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