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Article 

The Modelling of Dielectric Relaxation Under 
Microwave Treatment into Porous Humidified Body 
Taras Volodymyrovych Holubets 

Department of Physico-Mechanical Fields: Pidstryhach Institute for Applyed Problems of Mechanics and 
Mathematics of NAS Ukraine, Naukova Street 3-b, 79060, Lviv, Ukraine, e-mail: taras_holubets@yahoo.com 

Abstract 

According to the method of local special averaging, a porous medium is considered as a continuum 
of material points with averaged or effective physical properties. The equations of electrodynamics 
are written in the reduced form thought the definition of the generalized dielectric displacement 
vector. To describe the dielectric properties of a modelled three-phase porous medium, the possibility 
of using the pulse relaxation method is demonstrated. Based on the dielectric properties by the using 
of pulse relaxation function, the polarization and current via delay functions are defined depending 
on the volume fraction of the saturation of the porous medium with liquid phases. The time limits of 
the proposed relaxation functions are analysed and in the harmonic approximation of the field 
amplitudes, a transparent expression for the generalized dielectric displacement vector is written in 
terms of physical content. Within the framework of the approximation of the effective macroscopic 
field according to the cluster approach, a method of averaging local equations of the electromagnetic 
field is demonstrated. The generalized complex dynamic dielectric permittivity of a composite 
porous body is determined. The compatibility conditions of the demonstrated method for describing 
of electromagnetic processes in a heterogeneous multiphase porous medium are recorded. 

Keywords: porous media; equations of electromagnetic field; dielectric relaxation; effective dielectric 
constant; wave processes 
 

Introduction 

We are considering the porous three-phase medium, as composite material, which is 
characterized by the low conductivity. This is a composite body of low electro-conductivity (K.B.L.E.) 
(not ideal dielectric [1]). The low electrical conductivity of such body in general is conditioned with 
conductive properties of water (liquid phase). In general the energy dissipation  of the external 
microwave electromagnetic field (E.M.F) can be caused by the charged particles during own 

oscillation or orientations movements: 2 2 /νP =κE fε'tgδ=κE ε'' , this is the dielectric losses 

(polarization heat release), here νP  is the power of heat releasing into body on the unity of the 

volume, κ is the dimension constant,E and f  are the stretch a frequency of electric field, ε'  and 

ε'' are the real and imaginary part of dielectric constant відносна , tgδ is the tangent of dielectric 
loss, so and dissipation of energy by the charge carries (free electrons or ions): 2

νP = E qnμ , this is 

Joule's heat releases (ionic conductivity ), here E - is the electric field stretch, q is the electric charge 

of each of ions, and n and μ are concentration and mobility of ions correspondingly.  
In the future corresponding to the effective macroscopic field under harmonically approach of 

E.M.F. we will be modelling the polarization heat releases which are causes by the dielectric losses 
from the side of hard matrix (carcass or skeleton) and free (not joined or not adsorbed) water. We will 
review the humidified air as not conductive media. The joules heat releases because of ions and 
electrons conductivity of liquid phase (water) we are neglectedor bypassed. 
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1. The Local Space Averaging 

The three-phase macroscopic porous area, volume or cell P  of the humidified porous body, 
as it was mentioned into work [2], consist from the solid SP , liquid LP  and gas GP  , so arbitrary 

volume of averaging RΔV   contains the phases sub volume of the skeleton SΔV (t) (solid phase), 

water LΔV (t) (liquid phase) and gas GΔV (t) (air and water like phase), which may to changes with 

time t.  Sub volumes LΔV (t) and  GΔV (t) defines the volume of pores P L GΔV (t)= ΔV (t) ΔV (t)∪  

under condition R σ
σ

ΔV = ΔV (t) , where { }σ= S,L,G  is the index of phase.  

The configuration and displacement of phases into area of averaging can rewrite with usage of 
the characteristics function 

1 when ,
0 when

σ
σ

σ

, r ΔV (t)(r,t)=
, r ΔV (t)

ϑ
 ∈
 ∉


  here { }σ= S,L,G .   (1) 

This function also takes into account the time moving of phases for considering body, which can be 
conditioned by the mass transfer processes or the mechanical deformations. Then 

σ σ
ΔVR

ΔV (t)= (r,t)dVϑ
 , and volume fraction of σ- phase of the material can be determined as 

σ
σ

R

ΔV (x,t)θ (x,t)= ,
ΔV

 . ( 1σ
σ
θ = )     (2) 

Also reviewing the physical quantities of the pore saturation by the liquid lη  or the gas gη  

correspondingly 

GL
L g

L G L

ΔVΔVη = , η = ,
ΔV +ΔV ΔV +ΔV

 1L G(η +η = ) .   (3) 

Then, according to the definition [3] of the local porosity  

1L G S

R R

ΔV +ΔV ΔVφ= =
ΔV ΔV

− ,     (4) 

for the volume fractions of the phases gets the following relations 

θS= 1− φ, θL= φηL , θG= φ(1− ηL ).      (5) 

Let's define the function ξ(r,t)


 which describe into ranges of R.E.V. (the Representative 
Averaging Volume [4]) a certain the local value of the physical quantity, which characterize the 

macroscopic physical volume P of porous body. The space averaging of such quantity in the point 

x of the macroscopic porous volume into the time moment t determines [3] in the such way 

1
R ΔVR

ξ(x,t)= ξ(r,t)dV
ΔV 

  .        (6) 

Similarly, with usage of the characteristic function (1), reproduce the phase  

�ξσ�( x , t )= 1
ΔV R

∫
ΔV R

ξ( r , t )ϑ σ( r , t )dV
    (7) 

and internal  
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�ξσ�
σ( x , t )= 1

ΔV σ
∫
ΔV σ

ξ (r , t )ϑ σ( r , t )dV
     (8) 

averaged quantities.  
Because take the place the relation 

σ σ
ΔV ΔVR σ

ξ(r,t) (r,t)dV = ξ(r,t) (r,t)dVϑ ϑ 
    ,      

so phase and internal averaged are interconnected  

σ σξ (x,t)= θ (x,t) (x,t)σ
σξ   .        

Thus, using the method of local spatial averaging, a reviewing heterogeneous porous cell can be 
described by certain continuous local physical quantities in coordinate and time space. This makes it 
possible to consider this one as a superposition of the three material continua: skeleton, liquid, and 
gas. With this approach, the equations of the physical model of a porous cell are written relatively to 
the specified average values (6-8) and are formally equivalent to the equations for a homogeneous 
(isotropic) single-phase cell according to the approximation of the model [9] for the continuous solid 
medium. 

2. The Equations of Electrodynamics 

For microwave electromagnetic field (E.M.F) according to the theory of dielectric relaxation 
Botcher-Bordewijk [5] we can review the vector of the generalized dielectric displacement for the 
known relation  

( ) ( ) ( )
t

' ' 'D r,t = D r,t + J r,t dt
−∞


     
,      (9) 

where ( ) ( ) ( )0D r ,t = ε E r ,t + P r ,t
     

 is the vector of dielectric displacement, which consider 

polarization processes into continuous media, ( )P r,t
 

 and ( )E r,t
 

 are the vectors of polarization 

and stretch of electric field,  and ( )J r ,t
 

 is the density of polarization current.  

From the condition of continuity / 0ρ t+ J=∂ ∂ ∇⋅
 

 it is following the expression for the density 

of polarization charge ( ) ( )
t

' 'ρ r,t = J r,t dt
−∞

− ∇⋅
   

, according to this into the local averaging volume 

(R.E.V) [2] the microscopic equations of E.M.F. Maxwell-Lorents into homogeneous form [6,7] and 
boundary conditions have the form 

( ) ( ) ( ) ( )

( ) ( )0 0

'

'

B r ,t D r,t
譋 r,t = , 譎 r,t = ,

t t

D r,t = , B r,t = ,

∂ ∂
∇ − ∇

∂ ∂

∇⋅ ∇ ⋅

   
     

     
    (10a) 

where 
( ) ( ) ( ) ( )'
t t
σ σE t =E t
 

, 
( ) ( ) ( ) ( )'
t t
σ σH t =H t ,

 
 ( ) ( ) ( ) ( )'' 'n n

σ σD t = D t ,
 

 
( ) ( ) ( ) ( )'
n n
σ σB t =B t
 

    (10b) 

Are the conditions of continuity for components and derivatives of the field. Here 

{ } { }( )| 'σ σ' = S,L,G σ σ≠  are denotations of phases,  t  and n are indexes, which define the 

tangential and normal components of field on the surfaces 'σσΔS  of separations of phases 

accordingly.  The system of equations (10a) is satisfied under conditions, that charges and currents 
of other nature into the investigated closed system are absent.  
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2.1. The Operators of Dielectric Susceptibility and Conductivity 

The constitutive or material equations is proposed to write into following case 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0ˆ

ˆ垐 тут 1

D r,t = ε εE r,t , B r ,t = μ H r,t ,

J r ,t = σ r E r ,t , ε= + χ ,

       

          (11) 

where ε̂, χ̂  and σ̂ are operators of dielectric permeability, susceptibility and conductivity of cell 

correspondingly,  0ε  and 0μ  are dielectric and magnetic constants into vacuum respectively. It is 

important to note, that under conditions of absence of joules heat releasing at the fixed frequency of 
E.M.F. and absence of dispersion, into harmonic approximation of the field amplitudes (see Section 
2, subsection 2 eqv. (28)) the operators of dielectric permeability and conductivity must have to satisfy 
the known [7] relation 

[ ]0 0垐ˆ 1i iω ω ωσ ωε ε ωε χ= − − = − ,     (12) 

where ω  is the index, which point on the fixed frequency of harmonic field. Then the density of 
polarization current p Pρ = −∇ ⋅

 
 , here P


 is the polarization vector, is  is determined in the usual 

way. 

Let's define the operators of dielectric susceptibility χ and conductivity σ of the considering 
media in the form of linear integration operators 

( ) ( ) ( ) ( )ˆ
t

Pχf r ,t = χ r,t' f r,t ψ t t' dt'
−∞

−
  

 and ( ) ( ) ( ) ( )ˆ
t

Jσf r ,t = σ r,t' f r ,t ψ t t' dt'
−∞

−
  

,  

 (13) 

where ( )f r,t


 is the arbitrary continuous function of values for  the coordinates and time. If 

( )'χ r,t


 and ( )σ r ,t


 are local susceptibility and conductivity of medium, then 

( ) ( )P Pψ t t' = α t t'− − −  and ( ) ( )J Jψ t t' = α t t'− − −  are pulse-relaxation functions [5], also 

( )Pα t t'−  and ( )Jα t t'−  are functions of delaying for polarization and current, which describe the 

reverse processes of relaxation for polarization ( )P r,t
 

 and current ( )J r ,t
 

 accordingly. 

We are considering the linear homogeneous dielectric, for each point of which the principle of 
superposition of electromagnetic fields is satisfied.  It is taking a possibility to modelling of time 

hopping (Figure 1) of electrical field 1 0(+) ( )
i i i+ iΔE = ΔE = E (r) E (r)>−− −
    

 into fixed point r of 

investigated medium relatively to constant quantity iE (r)
 

 of electric field stretch into ranges of σ - 

phase of porous material 

[ ]1

' '

1 '

(+) ( )
i i i i

(+)
i+ i

E(r,t)= E (r)+ΔE (r)τ(t t )= E (r) ΔE (r)τ(t t )=

= E (r) ΔE (r) τ(t t )

−− − −

− − −

        
   ,     

where { }0 0 1 0τ(t)= ,t ; ,t >≤  is the theta-function of Heaviside [8]. Then the dielectric response of 

substance for σ - phase (Figure 2) can be defined by the relation  

0 1

0 1

(+) '
σ σ i+ i

( ) ' '
σ i+ i

P (r,t)= ε χ (E (r) ΔE (r)α(t t ))=

= ε χ (E (r)+ΔE (r)α(t t ))(t t )−

− −

− ≥

    
   ,    (14) 
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here 1' 'α(t t )= τ(t t )− − −  is the stepped function of response for polarization, σχ  is the static 

susceptibility of σ-phase. 

 
 

Figure 1. The quantities of polarization for σ -

phase: 0
i
σ σ iP = ε χ E  , when 't t≤  and 

1
1

i+
σ σ i+P = χ E  , when 't>t . 

Figure 2. The quantities of electric field stretch iE  , 

when 't t≤  and 1i+E  , when 't>t . 

It should be noted, what defined abstractly the step response function of the polarization α  for 
dielectric material of the σ-phase is  displayed by the real function (Figure 3) of polarization 
delaying 

 

Figure 3. The function of delaying σ
Pα (t) of polarization for σ-phase. 

Because { }1 0 0 0α(t)= , t ; ,t >≤ , where 't =t t−  is the time offset symbol, when at  0t =  we 

get 0 1σ
Pα ( )= , and when t +→ ∞  we have 0σ

Pα (+ )=∞ , under executing [5] of a necessary 

condition 1σ
Pα (t)dt =  of normalization. 

In the case of the Debay`s type of relaxation [5] we receive the known classical relaxation relation 

0,0 ,0σ σ
σ σ P σ PP (r,t)= P (r )α (t)= ε χ E(r )α (t)
     .     (15) 

The local macroscopic field E(r,t)
   can be defined, as superposition of amplitude-vector 

(coordinate) fields iE (r)
 

 through the time step-impulse function in the interval i it Δt<t t− ≤  at 

the arbitrary current t  value of time 

i i i
i

E(r,t)= E (r)[τ(t t +Δt) τ(t t )]− − −
  

,      

Ei+1

Ei

t ' t

Pσ
i+1

Pσ
i

t ' t

α P
σ

0
t ' t

1
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Then a vector of polarization for the medium of σ-phase the material have viewed 

0
σ σ

σ σ i P i P i
i

P (r,t)= ε χ E (r)(α (t t + Δt) α (t t ))− − −
   .     

Under boundary limit 0Δt→  with considering of material properties for σ-phase we get the 
expression for determining of polarization vector 

0 0

σ 't t
p' ' ' σ ' '

σ σ σ P

α (t t )
P (r,t)= ε χ E(r,t ) dt = ε χ E(r,t )ψ (t t )dt

t−∞ −∞

 ∂ −
− − ∂  

 
    

,  (16) 

here σ ' σ '
p pψ (t t )= α (t t )− − −   is the impulse-relaxation function for polarization of σ-phase. 

Similarly by the  mirroring of  images Figure 1 and Figure 2 relaying to averaged hope of 
electric field stretch and current along  the abscissa axis and shifting for modulus per unit of current 
relaxation values (see Figure 3) under inverse mapping along the axis we get the expression for 
determining of the polarization current vector for σ-phase of material 

σ 't t
j' ' ' σ ' '

σ σ σ J

α (t t )
J (r,t)=σ E(r,t ) dt = σ E(r,t )ψ (t t )dt

t−∞ −∞

 ∂ −
− − ∂  

 
    

,    (17) 

here σ ' σ '
J Jψ (t t )= α (t t )− − −  is the impulse-relaxation function for σ  -phase polarization current. 

According to the local averaging method (see. Section 1, eqv. (6)) it is possible to define the 
averaged susceptibility χ  and conductivity σ  into  the local volume of averaging in the such 

way 

( ) ( ) ( )σ σ
σ

χ x,t = θ x,t χ x,t
  

 і ( ) ( ) ( )σ σ
σ

σ x,t = θ x,t σ x,t
  

,   (18) 

here σχ  and σσ   is the specific values of susceptibility and conductivity, and ( )σθ x,t


 is the volume 

fraction of σ-phase correspondingly. Here the times of polarization t   and heat and mass 
exchanges processes t  are separated because of the transience of polarization processes (

1 σ

σ

θ (x,t) ω
θ (x,t) t

∂ <<
∂

, where ω  is the fixed so match frequency of E.M.F. under microwave 

irradiation) relatively to the slow temporal changes in the heat and mass transfer phenomena. 
Into approach of local macroscopic field [9]  the space averaged kernels of relaxation for 

susceptibility and current into range of [4] can rewrite (see also Appendix) through approximate 
expressions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1σ σ
P σ σ P σ σ P

σ σ
χ x,t ψ t t' = χ ω θ x,t ψ t t' i χ ω θ x,t t t'ω α − − ≅ − −  
  

,  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1σ σ
J σ σ J σ σ J

σ σ
σ x,t ψ t t' = ω θ x,t ψ t t' i σ ω θ x,t α t t'σ ω  − − ≅ − + −  
  

,  

here ( )σψ t t'α −  and ( )σα t t'α − , where { , }P Jβ =  is the index of conventional designation for 

vectors of polarization P  and current J  relatively, the impulse-relaxation functions and functions 
of response for polarization and current of σ- phase.  

According to (16) and (17) under applying of local averaging method [4] we receive the averaged 
vectors of  the orientational  polarization 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )0

t

P

t
σ

σ σ p
σ

P x,t = χ x,t ψ t t' E x,t' dt' =

= ε χ ω θ x,t E x,t' ψ t t' dt'

−∞

−∞

−

−



 

    

   ,   (19) 

and  the current of polarization into porous media 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1

t

J

t
σ

σ σ J
σ

J x,t = σ x,t ψ t t' E x,t' dt'

i σ ω θ x,t E x,t' α t t' dt'ω

−∞

−∞

− ≅

 ≅ − + − 



 

    

   ,    (20) 

here ( )σχ ω  and ( )σσ ω  is the static susceptibility and conductivity of σ-phase, which are 

interconnected through the known [6] relation 

( ) ( )0σ σω i χ ωσ ωε= . 

From the received expressions, the vectors of dielectric displacement and current into porous 
media take the form 

 ( ) ( ) ( )0

t

DD x,t = ε ψ t t' E x,t' dt'
−∞

−
   

 і ( ) ( ) ( )
t

JJ x,t = ψ t t' E x,t' dt'
−∞

−
   

,    (21) 

where 

 ( ) ( ) ( ) ( ) ( )σ
D σ σ p

σ
ψ t t' =δ t t' + χ ω θ x,t ψ t t'− − −


 and      

 (22) 

( ) ( ) ( ) ( )1 σ
J σ σ J

σ
ψ t t' = i σ ω θ x,t α t t'ω  − − + − 


   (23) 

Are corresponding impulse-relaxation functions and ( )δ t t'−  is the Dirace [8] delta function. 

Then the functions of delaying for dielectric displacement and polarization current (see 
Appendix)  have the view 

( ) ( ) ( ) ( ) ( )1 σ
D σ σ p

σ
α t t' = t t' + χ ω θ x,t α t t'τ− − − −


,       (24) 

( ) ( ) ( ) ( )σ
J σ σ J

σ
α t t' = i σ ω θ x,t α t t'ω− − −


 (25) 

( ( ) ( )lim 1Dt t'
α t t' = + χ x,t

→
−


, ( ) ( )lim Jt +

α t t' = i σ x,tω
→ ∞

− −


),     

where ( ) ( ) ( )σ σ
σ

χ x,t = χ ω θ x,t
 

 and ( ) ( ) ( )σ σ
σ

σ x,t = σ ω θ x,t
 

  are defined above 

averaged susceptibility and conductivity accordingly. 
During receiving of expressions (22) and (23)  for impulse-relaxation functions is taken into 

account the join (12)  between the polarization and current vectors as well, as also reverse relatively 
to polarization similarity to the relaxation properties of current. According to the definition (9) of 

generalized displacement vector of σ - phase the material on the base of relations (16) and (17) it is 
follows 
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( ) ( ) ( )

( ) ( ) ( ) ( )0

t
' ' '
σ σ σ

t t t
σ σ
D σ J

D x,t = D x,t + J x,t dt =

= ε ψ t t' E x,t' dt' +σ ψ t t E x,t dt dt '

−∞
′

−∞ −∞ −∞

′ ′′ ′′ ′ ′− −



  

     

    .   

In the way of integration by parts of second application of sum from the definition of impulse-
response function, it is follows 

( ) ( ) ( )( ) ( )1
t t t

σ σ
J Jψ t t' E x,t' dt' = α t t' E x,t' dt'

−∞ −∞ −∞

− − −  
   

, 

then  

( ) ( ) ( ) ( )( ) ( )0 1
t t

' σ σ
σ D σ JD x,t = ε ψ t t' E x,t' dt' +σ α t t' E x,t' dt'

−∞ −∞

− − − 
     

.    

From this according to (19) with taking into account received expressions for impulse-response 
functions (22) and (23) it follows, that space averaged vector of generalized dielectric displacement 
can be defined in the such way 

( ) ( ) ( ) ( ) ( )0 1 ( , ) ( , ) 1
'

P JD x,t = ε + χ x t R x,t E r,t + σ x t R x,t E r,t   −   
         ,  

  

here PR  and JR  are the relaxation products for polarization and current accordingly, which can 

be described by the following relations 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
( , )

1
( , )

t
σ

P σ σ P
σ

t
σ

σ σ P
σ

R x,t = χ ω θ x,t ψ t t' dt'
χ x t

i χ ω θ x,t t t' dt'
χ x t

ω α

−∞

−∞

− ≅

 ≅ − − 

 

 

 





,   (26) 

 ( ) ( ) ( ) ( )1
( , )

t
σ

J σ σ J
σ

R x,t = σ ω θ x,t α t t' dt'
σ x t −∞

− 
 

 ,   (27) 

here ( , )χ x t  and ( , )σ x t  are averaged according to the relation (18) susceptibility and 

conductivity of porous body. 
With taking into account the known relation ( ) ( )0σ σω i χ ωσ ωε=  [6] for σ -phase 

under condition of executing of averaged material or constitutive equation 

0( , ) ( , )x t i x tσ ωε χ=   

On the mezoscopic level of the space averaging [4] we're going to more transparent for the physical 
sense equation 

( ) ( )

( ) ( ){ } ( )

0
0

( , )
1

( ) ( , ) 1

'

t

P J

x t
D x,t = ε + E r,t +

ε

i x t t t t t E r,t dtσ σ
σ σ

σ

σ

ω χ ω θ α α
−∞

 
 
 

′ ′ ′ ′ + − − + −  

   

 
,   
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here ( )P t t
σα ′−  and ( )J t t

σα ′−  are relaxation functions for polarization (24) and current (25), 

which needs to determine. 

2.2. The Harmonic Approach of Field Amplitude 

Into harmonic approach of electric and magnetic fields amplitudes  

( ) ( ) ( )* *Re Reiωt t iωtΦ r,t = Φ r,t e Φ r e ,   ≡   
  

, ( { }Φ= E,H
 

)   (28) 

where ( ) ( )* *
tΦ r ,t Φ r≡

 
 are complex amplitudes, which light varying with the time t  function due 

to moving of liquid phases into porous skeleton, according to the local view of equations E.M.F. (10a) 
the averaged (mezoscopic) equation are received  

( ) ( ) ( ) ( ) ( )
( ) ( )

eff
* * * *0

* *

ωμ

0 0

t t t t

ω

t t

譋 x = i H x , 譎 x = iωε x,t E x ,

E x = , H x = ,

∇ − ∇

∇ ⋅ ∇ ⋅

          

         (29) 

with corresponding material relations 

( ) ( ) ( ) ( ) ( )t eff
* * * *0

t t t

ωD x =ε x,t E x , B x =μ H x ,
        

     (30) 

where ( ) ( ) ( )eff /ω t tε x ,t = ε x ,ω + σ x ,ω iω
  

 and ( ) ( ) ( )' ''
t t tε x ,ω = ε x ,ω iε x ,ω−
  

  are effective 

dynamical generalized and local complex dielectric permeability (C.D.P), 

( ) ( ) ( )' ''
t t tσ x,ω =σ x,ω iσ x,ω−
  

 is the local complex conductance.  

Also 

( ) ( ) ( ) ( )σ
t σ σ P

σ
χ x,ω = χ ω θ x,t L ψ t t' − 
 

,       (31) 

 ( ) ( ) ( ) ( )( )1 σ
t σ σ J

σ
σ x,ω = σ ω θ x,t L α t t' + − 
 

  `  

are corresponding Laplace [8] images ( ) ( ) -st

0

dt
+

L f r,s = f r,t e
∞

 
  
 

 ( )0s= γ+iω,γ→  from 

averaged (22) and (23) relaxation functions. 

Because ( ) ( ){ }0 1' '
t tε x,ω = ε + χ x,ω
 

 і ( ) ( )0
'' ''
t tε x,ω =ε χ x,ω
 

,  so real 

( ) ( ) ( )eff 1 Reω ωε x,t = ε x,t 
 

 
 and imaginary ( ) ( ) ( )eff 2 Im '

ω ωε x,t = ε x,t 
 

 
 part of generalized dynamic 

(C.D.P.)  and ( )eff
ωε x,t


 takes the form 

( ) ( ) ( ){ } ( )eff 1
0 1

''
t'

ω t

σ x,ω
ε x,ω = ε + χ x,ω

ω
−


 

, ( ) ( ) ( ) ( )'
eff 2 ''

0
t

ω t

σ x,ω
ε x,ω = ε χ x,ω +

ω


 

,  (32) 

here ( )eff
ωε x,t


 is the effective-generalized complex dynamic dielectric permittivity (C.D.D.P). 

By the using of definition (9) of the generalized dielectric displacement vector and complex 
amplitudes (28) of field, the material equation (30) in the case of composite bodies with low electrical 
conductivity (C.B.L.C)  we can define trough relation 

' '
* * * 0 *( ) ( , ) ( ), ( ) ( ),t t t tD r r t E r B r H rωε μ= =
            (33) 

where ( ) ( )' 1 ' 2'
ω ω(r,ω)= ε (r,ω) iε (r,ω)ωε −  

 is generalized complex dynamical dielectric permeability 

(G.C.D.D.P), ( )' 1
ωε (r,ω)

 and ( )' 2
ωε (r,ω)

 are  the real and imaginary parts correspondingly. 
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Because the joules heat exchanges was missing or neglected, so takes ( ) ( )'
tσ x,ω =σ x,ω
 

 and 

( ) 0''
tσ x,ω =


. According to the relation  (30) into taken definitions, we receives 

{ }' ' '' ''
0 01t t t tε (r,ω)= ε + χ (r,ω) , ε (r,ω)= ε χ (r,ω)    ,    (34) 

where real ( )' 1 'Reω ωε (r,t)= [ε (r,t)] 
 and imaginary 

( )' 2 Im '
ω ωε (r,t)= ε (r,t)  
 

 part of generalized 

complex dynamic dielectric permittivity '
ωε (r,t)
  (G.C.D.D.P.) (33) have the view 

( ) { }' 1 ' '
0 1ω t tε (r,t) ε (r,ω)= ε + χ (r,ω)≡   , ( )' 2 '' ''

0ω t t
σ(r,ω)ε (r,t) ε (r,ω)= ε χ (r,ω)+
ω

≡
   , (35) 

here ' ''
t t tε (r,ω ) = ε (r,ω ) i ε (r,ω )−    is the local complex dynamical permeability. 

Also according (28) the dispersion relation [12] are satisfied 

( ) ( ) ( ) ( )' 1 ' 1 ' 2 ' 2
ω ω ω ωε (r,t)= ε (r,t), ε (r,t)= ε (r,t)− −−    ,    (36) 

here 
( ) ( )' 1 ' 2'

ω ω ωε (r,t)=ε (r,t) iε (r,t)−  
 is the generalized complex dynamical dielectric permeability 

(G.C.D.D.P). 
Under known material or constitutive relations for field equation (33) into (C.B.L.C) relatively 

to complex amplitudes ofE.M.F. (10a) отримуємо у наступному вигляді 
'

* 0 * * *

' '
* * *

( ) ( ), ( ) ( , ) ( )

( ) ( , ) ( ) 0, ( ) 0

t t t t

t t t

E r i H r H r i r t E r

D r r t E r H r
ω

ω

ωμ ωε

ε

∇× = − ∇× =

 ∇× = ∇⋅ = ∇⋅ = 

         
         ,   (37) 

where ( ) ( )' 1 ' 2'
ω ω ωε (r,t)= ε (r,t) i ε (r,t)−  

 is the  generalized complex dynamical dielectric permeability 

(G.C.D.D.P), which is defined according to equation (35) under conditions of satisfied of dispersion 
(36) relations. 

2.3. The Space Averaged Equations of Electromagnetic Field 
Because into multiphase porous cell electro-physical characteristics change like jumpy on the 

surface separation of two phases, so generalized complex (dynamical) dielectric permittivity 
(G.C.D.D.P) '

ωε (r,t)
  can not be the continues function of coordinate. In general the last one can be 

defined by the characteristic (phase) function σϑ  (here { }σ= S,L,G  is point to the index of phase), 

which is defined according to known relation (Section 1, eqv. (1), through  this relation 

' S L G
ω с S c l c Gε (r,t) = ε (ω ) (r,t)+ ε (ω ) (r,t)+ ε (ω ) (r,t)ϑ ϑ ϑ    ,    (38) 

where /σ
c σ σε (ω ) = ε (ω )+ σ iω  is the generalized complex dynamical dielectric permeability 

(G.C.D.D.G.) for σ -phase (here σσ  is conductivity of  σ -фази).  Because of this the 

characteristics of field, which is included into the equations (37) of electrodynamics also will be 
stepping like functions of coordinate. To describe the electromagnetic field in a porous cell, as in a 
continuous medium by continuous functions, we will use the methods of the theory of local spatial 
averaging [6]. For this purpose, we assume that the equations of electrodynamics and material 
relations relative to the specified average (effective) quantities have the same form as in the case of a 
single-phase (continuous) medium, i.e., they are formally equivalent. Formal equivalence of 
equations is ensured by fulfilling boundary conditions (10b) at the interface of two media on a 
microscopic scale at each (current) moment of time, and formal equivalence of material relations is 
ensured by defining effective electro physical characteristics. Such effective characteristics are 

established within the averaging region Ω  (R.E.V) [2] and are determined through local properties 
of the environment based on certain geometric model considerations. 
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Let's review the simple example of averaging the material relation 
' '
* *( ) ( , ) ( )t tD r r t E rωε ∇× = ∇⋅  

     
, which is the part of equation of E.M.F (37) rewriting relatively to 

complex amplitudes (28) of filed. Suppose, that into each point of averaging area R.E.V. the electrical 

field is potential, i.e., ( , )E(r,t)= r tψ−∇
    [10] * *Re Re t iωtE(r,t)= E (r,t) = E (r)e      

    
), where 

*R e t iω tψ (r,t) = ψ (r)e  
  is the dynamical potential and  *

tψ (r)  is the complex amplitude of dynamical 

potential. Then joining between complex amplitudes of the generalized dielectric displacement and 
the stretch of  electric field have the view 

' ' '
* * *
t t t

ω ωD (r) = ε (r ,t)E (r) = ε (r ,t) ψ (r)− ∇
     .     (39)  

According to approach of local macroscopic field into area of averaging Ω  (R.E.V) in each moment 

of time t the field is homogeneous, i.e., * *0
t tE (r)= E
 

, where *0
tE


 is the complex amplitude of 

external field. Then the expression for amplitude of dynamic potential in this case have the view 

* *0
t tψ (r)= E r− ⋅

 
 (r Ω∈ ). 

We are defining the generalized complex dynamical dielectric permeability (G.C.D.D.P) of the 
cell eff

ωε (t)  on the base of equality, that expresses the formal equivalence of material relations 

eff
* * *
t t eff t

ω ωD' (x)= ε (x,t)E (x)= ε (x,t) ψ (x)− ∇
      .    (40) 

According to definition of space average quantity (see Section 1, eqv. (6)) and reviewing relations 
we have 

�D *
't�( x )=− 1

VR
∫
V R

ε̄ω
' ( r , t )  ∇ ψ*

t ( r )dVR= E* 0
t ∑

σ
θσ(  x ,t )εc

σ(ω)
.  (41) 

Here is taking into account, that space averaged from the gradient of dynamic potential will be 

� ∇ ψ*
t �( x)= 1

VR
∫
VR

 ∇ ψ*
t ( r )dVR=− E* 0

t

.     (42) 

After substitution of (41) and (42) into definition of  G.C.D.D.P (40) we gets 

ε̄ω
eff (  x ,t )=∑

σ
θσ(  x,t )εc

σ(ω)
,     (43) 

where /eff
ω tε (x,t)=ε (ω)+σ iω

, here tε (ω)  and σ  is the effective complex dynamical dielectric 

permeability and conductivity of the reviewed cell and t is the index which points on the light time 
dependence of physical quantity. 

From the expression (43) it is follows, that quantity eff
ωε   subject to neglect of dispersion 

phenomena into the material depends on  constant frequency of external microwave irradiation, , 
dielectric permeability and volume fraction of cell phases 

ε̄ω
eff ( x ,t )= f (ω ; εc

σ ,θσ), σ= {S, L ,G}
εc
σ= εc

σ(ω)θσ= θσ( x ,t ) .     
It should be noted that under the condition of weak variability of the volumetric characteristics 

of the porous material the E.G.C.D.D.P. effeff
ω ωε (x,t) ε (x)≅   can be reviewed, as constant physical 

quantity in the volume of averaging Ω  (R.E.V), which takes the constant into the time interval 
values. 

Taking into account the definition of E.G.C.D.D.P (39) into harmonic approach of local field (28) 
after applying described above  the homogenization [4] on the mezoscopic level into range of R.E.V. 
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considering approach of not interacting clusters we get (see Section 2, subsection 2, eqv. (37))  the 
averaged equation of field  

'
* 0 * * *

* *

( ) ( ) , ( ) ( , ) ( )

( ) 0, ( ) 0

t t t t

t t

E r i H r H r i r t E r

E r H r

ωωμ ωε∇ × = − ∇ × =

∇ × = ∇ ⋅ =

         

       (44) 

where *Re tΦ(x,t)= Φ (x)  
   ( Φ= {E,H } ) and eff

ωε (x,t)  are the light (slowly) changed functions of 

coordinate and *
tΦ (x) are the complex amplitudes of Е.M.F. into the porous cell. Here time t have 

the sense of parameter with usage of which can be taken into account the moving of phases. 
When obtaining the averaged field equations (44), a relatively simple method of finding the 

effective electro physical characteristics (the method of local spatial averaging) of a multiphase 
porous cell was used. Interesting comparative results of the dependence of the G.C.D.D.P on the 
internal geometry or structure of the composite material of the sample [2] are highlighted in the 
author's article. For a more adequate description, it is necessary to take into account the dependence 
of E.G.C.D.D.P not only on the dielectric properties of the phases of the cell, but also on its local 
microstructure [11], the interaction between phase inclusions [12,13], and their geometric shape and 
orientation [14]. 

3. Propagation of Electromagnetic Waves 

According to the system of averaged equations E.M.F (44) the wave equation for the Т.Е.М 
(Transference Electromagnetic Wave) for monochromatic wave in the terms of electric field strength 
into C.B.L.C have the view 

∂x
2� E*

t�( x)+k0
2[ n̄ω

eff (  x ,t)] 2� E*
t �( x)= 0 ,     (45) 

here n̄ω
eff( x ,ω)= k̄ω

eff( x , t)/ k0= √̄εωeff( x ,t )  is the complex refractive index, k̄ω
eff( x , t)  is the 

effective wave vector into the  porous (inhomogeneous) media, k0= ω√μ0 ε0= ω/c0  (where 
c0= 1/√μ0 ε0  is the velocity of light)  is the wave vector of electromagnetic wave into vacuum, 
ω= 2πf  is the angle frequency of E.M.F. ( f  is the lineal frequency),  μ0  and ε0  are 

correspondingly the magnate and electric constant into vacuum. The analytical solving of such 
equation is into details described by the author of this paper [15], where is demonstrated the 
possibility of applying of Wentzel-Kramers-Brillouin (W.K.B.) [16,17] method for founding the 
analytical solution of wave equation (45) into approach of slowly varying refractive properties of the 
T.E.M. wave. 

4. Compatibility Conditions of the Electromagnetic Field Equations 

The closed-form electrodynamic equations were obtained under the conditions of weak 
variation of the bulk (phase) and dielectric (wave) properties of a three-phase porous wetted material. 

0
1 σ

σ

θ (x,t) ω
θ (x,t) t

∂ <<
∂

  і 
eff

eff
eff

1 ω
ω

ω

n (x,t) k (x,t)
n (x,t) x

∂ <<
∂

,   (46) 

As well as condition 
eff

eff

0

2 ω
ω

πυ (x,t)λ (x,t)= l
ω

>> ,       

which determines the possibility of using the effective macroscopic field approximation in the study 
(determination) of the effective electro physical properties of a porous material according to the 
method of local spatial averaging. 
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Here eff eff2 /ω ωk (x,t)= π λ (x,t)  and eff eff
0 /ω ωυ (x,t)= c n (x,t)   is the wave vector and phase velocity 

of propagation the electromagnetic (T.E.M.) wave in the modelling media, eff
ωn (x,t)  is the effective 

value of refractive index, σθ (x,t)  is the volume fraction f σ -phase, 0ω  in the constant angle 

frequency the microwave field, l  is the characteristic length of the volume Ω (R.E.V) for space 
averaging. 

Appendix 

The simplest correlations between impulse-relaxation functions as well as the function of 
delaying for relation polarization and current can be received into harmonical approach of Е.М.F. 
(28) in the range of local averaging volume (R.E.V.) based on the macroscopic mean field 
approximation. 

For this we will use the known [5] relation  

( ) ( )ψ t t' = α t t'α α− − − ,      (48) 

here { , }P Jα =  is the index of vector notation for polarization P  and current J . From this 
purpose we take the reviewed above integrals, which consist of impulse-relaxation function, and 
according to replacement (48), using the method of integration by the parts, let's reduce them to an 
equivalent form: 

Case А. For the vector of polarization, we have gets 
( , ')( ') ( , ') ' (0) ( , ) ( ') '

'
t t

P P P
E x tt t E x t dt E x t t t dt
t

σ δ σψ α α
−∞ −∞

∂− = − + −
∂  ; 

Case В. For the vector of current, we have gets 

0

( , )( ') ( , ') ' ( , ) ( )J J
E x t tt t E x t dt E x t dt

t
σ σ σψ α

+∞

−∞

∂ −− = −∞ −
∂  . 

For electric field strengths at infinities, we assume the conditions of finiteness and equivalence 

of the field amplitude values (28) to the macroscopic field value 
*( , )E x E−∞ = , where 

* * i tE E e ω−=  . Here *E  is the finite constant amplitude value. 
When taking into account the harmonic approximation for electric field strengths within the 

R.E.V., the following relation holds: ( , ) ( ) i tE x t E x e ω−=  , where ( )E x  is the complex amplitude of 
field. 

In the case of [А] at the replacing of variable 't t t= −  for the integral into right part of 
equality we have gets the equivalent relation 

0

( , ') ( , )( ') ' ( )
'

t

P P
E x t E x t tt t dt t dt
t t

σ σα α
+∞

−∞

∂ ∂ −− = −
∂ ∂  , 

After constituting the amplitude of harmonic field in the previous relation, we receive the appropriate 
equality 

* *

0 0

( , )( ) ' ( ) ( ) ( ) ( )i t i t
P P P

E x t tt dt i t E x e e dt t E x
t

σ σ ω ω σα ω α α
+∞ +∞−∂ − ≅ = −

∂   , (A) 

here *( )P t
σα  is the average constant value of response function for polarization, for which  

якому obviously it is possible to match a certain fixed real time value *t  with a known expression 

for the response function. When approximate equality is obtained, (A) is taken  '

0
' 1 /i te dt iω ω

+∞
= −

, [ ]Im( ) 0ω > . Similarly, for the current vector in case [B] it can be shown that 

* *

0

( , )( ) ' ( ) ( ) ( ) ( )
t i t i t

J J J
E x t tt dt i t E x e e dt t E x

t
σ σ ω ω σα ω α α

+∞−

−∞

∂ − ≅ − =
∂   . (B) 
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Let us now consider the integral common to cases [A] and [B], which, by means of identical 
transformations, can be reduced to the approximate expression 

* ' *

0

1( ') ( , ') ' ( ) ( ) ' ( ) ( )
t i t i t i tt t E x t dt t E x e e dt t E x e

i
σ σ ω ω σ ω
β β βψ ψ ψ

ω
+∞− −

−∞
− ≅ = −   , 

here { , }P Jβ =  is the index of the conventional designation of polarization vectors P  and current 

J  accordingly.  
Then, according to the expressions for the polarization vectors (case [A]) and current (case [B]), 

we obtain the actual approximate relations 

{ }* *( ) 1 ( )P Pt i tσ σψ ω α≅ − ,       (С) 

* * *
*

( )( ) ( ) 1 ( )J J
E xt E x i E t
E

σ σψ ω α
 

≅ − + 
 

 
 ,     (D) 

From which it is follows the expressions for relaxation functions, if you put 
*( )E x E≅   into the 

relations (С) and (D) correspondingly. 

Conclusions  

The study of the distribution of the electromagnetic field in composite structures is one of the 
fundamental problems of mathematical physics. This is evidenced by many numbers of scientific 
works (see, for example, [18] and [19]), which describe not only analytical models for calculating the 
field in relatively simple geometric structures, but also propose numerical methods for modelling the 
distribution of the electromagnetic field in inhomogeneous bodies. The author of this article has 
attempted to propose a comprehensive theoretical approach to describing the phenomena of 
dielectric relaxation in porous wetted materials. The adequacy of the above mathematical 
relationships can only be confirmed by experimental research methods. 
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