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Abstract 

The economics of the energy storage system is constrained by the wind and solar outputs and load 
demand, so the time scale and representativeness of the dataset are crucial for the optimisation of the 
system. In order to accurately extract typical operating condition data, this paper adopts the Parzen 
window estimation method, which is suitable for the characteristics of wind, PV and load data, and 
the method is able to accurately extracting the typical operating condition data. In this paper, in the 
process of wind power, photovoltaic and load data analysis and extraction of typical working 
conditions, the establishment of a reasonable typical time scale to select indicators, in accordance with 
the three evaluation indexes of the typical time length of 1-7 days to make a separate evaluation of 
the three indicators of wind power, the three indicators of the optimal typical length of 4 days; 
photovoltaic indicator 1 optimal typical length of 3 days, indicator 2 and indicator 3 optimal typical 
length of 2 days; The optimal typical length of time for all three indicators of customer load is 3 days. 
Then using the game theory combination assignment method, the most realistic typical time scale is 
3 days. 

Keywords: energy storage systems; Parzen window estimation method; typical operating condition 
data; typical time scales; the game theory combination assignment method 
 

1. Introduction 

The problems of grid integration of wind power and solar power systems stem mainly from 
their intermittent and fluctuating nature. Fluctuations in wind speed and solar irradiance lead to 
instability in power generation, which poses a challenge to the stable supply of electricity to the grid. 
Energy storage technology provides a solution by storing energy during excess wind and solar 
generation and releasing it during peak demand or generation shortfalls, enhancing grid flexibility 
and reliability. However, the economics of energy storage systems are constrained by the output of 
wind energy, the output of solar energy and the load demand. The time scales and representativeness 
of the fundamental datasets made up of wind, solar and load more closely fit the actual scenarios, the 
size and operating strategy of the energy storage system is more reliable [1]. A control-oriented 
optimization framework for grid-tied wind-solar-battery hybrid systems has been developed, 
addressing renewable intermittency challenges through dynamic storage coordination algorithms 
that enhance energy dispatch precision and grid resilience [2]. Recent advancements in energy 
storage systems have been comprehensively categorized, with in-depth analyses of their real-world 
implementations and critical roles in enhancing grid stability through dynamic compensation 
mechanisms [3]. Research has indicated that a substantial decrease in energy storage costs can have 
a profound impact on the development of a highly reliable wind power system. This finding offers a 
crucial viewpoint for the exploration of energy storage economics [4]. The synergistic application of 
solar/wind energy and advanced water electrolysis methods in hydrogen generation has been 
extensively analyzed in technical literature, particularly regarding system configurations and 
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efficiency benchmarks [5]. The transition toward decentralized energy systems prioritizes grid 
integration of solar and wind resources as sustainable alternatives to fossil-fuel plants, ensuring 
reliable electricity supply during demand surges while optimizing cost-efficiency for end-users 
through distributed generation architectures [6]. A dynamic optimization framework is introduced 
to assess how strategically deploying renewables and storage technologies affects grid reliability and 
cost structures across multiple time horizons [7]. The rapid deployment of grid-tied photovoltaic 
infrastructure introduces operational complexity to regional power networks, as solar output 
intermittency driven by meteorological variability poses significant challenges to energy 
management systems attempting to balance supply-demand equilibrium [8]. 

In this context, the Parzen window estimation method, due to its non-parametric nature, 
provides a more flexible solution. 

A nonparametric framework has been developed for power system security evaluation, 
employing kernel-based density estimation to model probabilistic distributions of wind power 
profiles, generation patterns, and load fluctuations [9]. A novel two-stage thresholding method for 
image segmentation is proposed, integrating weighted Parzen window and linear programming for 
efficiency [10]. An architecture for multivariate probability density estimation via the Parzen window 
approach was proposed. It leverages Parzen window methodology to estimate multivariate 
probability densities, offering a structured framework for such estimations [11]. A two-phase 
methodology is introduced for region segmentation: initial seed point generation via kernel-based 
density estimation, followed by logarithmic clustering for boundary identification; iterative region 
expansion and contour refinement through probabilistic density modeling of spatial distributions 
[12]. The Parzen window estimation method is employed to extract features from historical data, 
deriving distributions of typical weekly wind power, solar power, and load. These distributions are 
compared with Weibull and Beta distributions. A multi-objective optimization framework, combined 
with evolutionary algorithms, enhances the sizing and allocation of hybrid wind-solar-storage 
systems to achieve better economic efficiency under dynamic energy market constraints [13]. A 
stochastic computational framework is developed for power flow uncertainty quantification, 
employing kernel-based nonparametric methods to derive probabilistic distributions of grid 
variables while explicitly modeling interdependencies among wind farms, demand profiles, and 
electric vehicle charging infrastructures [14]. A novel threshold selection framework for image 
segmentation is developed by integrating information-theoretic metrics with kernel density 
estimation, enabling adaptive boundary detection in complex visual datasets [15]. 

In the process of extracting typical data characteristics of wind power, photovoltaic, and load, 
known functions (such as normal distribution, Beta distribution, and Weibull distribution) fail to 
accurately describe the probability distribution. Moreover, some classical probability density 
functions are unimodal, while the probability density functions of wind power, photovoltaic, and 
load sample data are mostly multimodal, which directly affects the accuracy of the typical day data. 
The paper proposes a method using the Parzen window estimation method and a weighted average 
method to obtain typical data. As a non-parametric estimation method, the Parzen window 
estimation does not rely on the constraints of the overall probability distribution and does not overly 
depend on probability parameters, making the model robust. A review of wind speed and wind 
power prediction methods is presented, focusing on analyzing the characteristics and probability 
distributions of wind power data, along with the processing of such data by various prediction 
techniques[16]. A review of data preprocessing and mining methods applied to smart meter data 
profiling was conducted, offering novel insights for data processing in wind power and photovoltaic 
datasets[17]. A dimensionality-aware scene analysis framework is developed by integrating manifold 
learning techniques with adaptive density modeling, enabling robust identification of representative 
patterns in high-dimensional visual data[18]. An intelligent control framework for hybrid solar-wind 
energy systems is developed, integrating fuzzy inference mechanisms at critical operational nodes to 
dynamically optimize renewable resource utilization and maximize power conversion efficiency[19]. 
A description of the seasonal distribution characteristics of photovoltaic (PV) power generation 
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fluctuations was presented, along with a method for predicting PV power generation uncertainty 
based on seasonal classification. This approach leverages seasonal patterns to enhance the accuracy 
of uncertainty predictions in PV power generation[20]. This study evaluates the performance of 
multiple machine learning algorithms in predicting energy output and power generation for 
integrated PV/wind systems, leveraging seven meteorological variables identified as critical 
determinants of renewable energy yield[21]. 

During the selection of typical time scales, different time scales can influence economic 
optimization, such as inaccurate energy reserve estimates, neglecting long-term trends, failing to 
consider multiple system operating scenarios, and declining reliability. Therefore, this paper 
establishes reasonable indicators for typical time scale selection and uses a game theory-based 
combination weighting method to obtain the most practical typical time scale. 

This paper first establishes a Parzen window model and extracts typical data characteristics of 
wind power, photovoltaic, and user demand. Then, it develops evaluation indicators for time scale 
selection, and finally uses the game theory-based combination weighting method to determine the 
optimal time scale. 

2. Parzen Window Estimation Method 

The main methods for extracting typical data curves are parametric and non-parametric 
estimation methods. For the uncertainty characteristics of wind/photovoltaic, the Parzen window 
estimation method (non-parametric estimation method) will be more applicable. 

The expression for the Parzen window estimation method is as follows[22]: 𝑓(𝑥) = ଵே௛ ∑ 𝐾(௫ି௑೔௛ே௜ୀଵ ), (1) 

In (1), f(x) represents the probability density function; K(x) for the window function;h is the 
bandwidth (smoothing parameter);N is the total number of sample data;Xi for the given sample. 
Parzen Window functions commonly used in window estimation methods include Gaussian 
Functions, Triangle functions and Epanechniko function. Their expressions are respectively: 

𝐾(𝑥) = ⎩⎨
⎧ ଵ√ଶగ 𝑒𝑥𝑝( − ଵଶ 𝑥ଶ)    Gaussian

1-|𝑥|                        Triangleଷସ (1-𝑥ଶ)                   Epanechniko
, (2) 

In (2), The value domain of x in the trigonometric and Epanechniko functions is 0-1, which needs 
to be normalised if used for wind speed/solar irradiance and user load estimation. and the three 
window functions have little effect on Parzen window estimation. A major influence on the Parzen 
window estimation method is the bandwidth h. The effect of different bandwidths on the results for 
wind speed, for example, is shown in Figure 1. The bandwidth h is in the interval of [0.01,10], and 
the bandwidth with the smallest mean square error is selected as the best bandwidth by matching 
the optimisation in steps of 0.01. 
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Figure 1. Probability density curves for different bandwidths. 
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3. Extract Typical Data Features 

3.1. Extraction of Typical Data Features for Wind Power 

Extracting typical data features for wind power includes three steps: firstly, Wind power data 
pretreatment. Removing outliers, filling in missing values, and data smoothing to ensure the quality 
and reliability of the data used. Secondly, create a probability density curve. This is done through 
Parzen window estimation method and this method helps to establish the trend of power generation 
at different wind speeds. Thirdly, verify the theoretical output curve of the turbine. The established 
wind speed probability density curves need to be validated against the theoretical power curves of 
the turbines to assess the accuracy of the model and provide reference for subsequent work. Through 
this series of steps, the researcher can establish the typical data wind output power curve model, 
which is of significant value for optimising the design and operation of wind farms. 

In this paper, a region in Inner Mongolia Autonomous Region, China, was selected to（N 39°61′
、E 109°78′）The actual wind speed data of a weather station from 1 January 2020 to 31 December 
2020 were analysed with a sampling interval of fifteen minutes as shown in Figure 2. 

(1) Wind power data pretreatment 
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Figure 2. Real-time wind speed at wind farms. 

The wind speed range probability plot is shown in Figure 3. Based on the above data 
characteristics Goldwind AW82/1500 wind turbine is selected and its parameters are shown in Table 
1. As shown in Figure 4, Goldwind AW82/1500 wind turbine can be used for 92.08 % of the total 
number of working hours, of which 22.92 % of the total number of working hours are in full state. 
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Figure 3. Probability chart of wind speed rang. 
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Table 1. AW82/1500 wind turbine. 

Parametes 

Rating 
（MW
） 

Cut-in wind 

speed  

(m/s) 

Rated wind 

speed 

(m/s) 

Cut out air speed 

(m/s) 

Blade length 

(m) 

Value 1.5 3 11 25 34 

The expression of the Goldwind AW82/1500 wind turbine is: 

69.16% 22.92%

0.02%
7.9%

 <3  3-11  11-25  >25

 

Figure 4. Probability plot of operating range Goldwind AW82/1500 wind turbine. 

𝑃ௐ௧(𝑡) = ൞ 0, 𝑣 ≤ 𝑣௖௨௧ି௜௡𝑜𝑟 𝑣 ≥ 𝑣௖௨௧ି௢௨௧𝑃ௐ௥ ൬௩యି௩೎ೠ೟ష೔೙య௩ೝయି௩೎ೠ೟ష೔೙య ൰ , 𝑣௖௨௧ି௜௡ < 𝑣 ≤ 𝑣௥𝑃ௐ௥ ,𝑣௥ < 𝑣 ≤ 𝑣௖௨௧ି௜௡ , (3) 

In (3), v、vr、vcut-in and vcut-out represent the actual wind speed, rated wind speed, cut-in wind 
speed and cut-out wind speed of the wind turbine, respectively. Pr Indicates rated power. The 
relationship between the data is shown in Figure 5, and the red line is the theoretical output power 
curve of the wind turbine. 
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Figure 5. Wind turbine output power curve. 
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Taking the typical data time selection of 24 hours as an example, the modeling process of the 
Parzen window estimation method for the typical power curve extraction for the minutes 0:00-0:15 is 
as follows: 

(1) According to the IEC61400-12-1 standard [23], valid wind speed data from available samples 
were counted from 0:00 to 0:15 every day. 

(2) Use Bin's method for interval delineation to calculate the probability density of each interval 
using an integer multiple of 0.5 m/s as the center point. 

(3) Summarize all probability densities to create a Parzen window probability distribution curve. 
The optimal Weibull probability density distribution curve [24] was obtained using the method 

described in reference [25]. Figure 6 shows the probability distributions of wind speeds from 0:00 to 
0:15 minutes obtained by different methods. In this time period, the optimal bandwidth is 0.3209 and 
the optimal shape and scale parameters in the Weibull probability distribution function are 2.1066 
and 8.7573, respectively. 
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Figure 6. Probability plot of wind speed distribution (00:00-00:15). 

In order to compare the closeness of the Parzen probability , Weibull probability curves to the 
wind speed probability, respectively, the following Root Mean Squared Error (RMSE) formula can 
be used: 𝑅𝑀𝑆𝐸 = ටଵ௡∑ ൫𝑦ଵ，௜ − 𝑦ଶ，௜൯ଶ௡௜ୀଵ , (4) 

In (4), n is the total number of data points, y 1, i is the ith Standard value, y 2, i is the ith value to 
be compared. 

The root mean square error was calculated to be 0.001879 for Parzen probability and wind speed 
probability and 0.005260 for Weibull probability and wind speed probability. In Figure 6 the Weibull 
probability distribution differs from the probability histogram, especially at wind speeds between 10 
m/s-15 m/s. The Parzen window estimation method is more in line with the true distribution of the 
data and has a higher degree of accuracy, which provides an initial validation of the reliability of the 
Parzen probability distribution. 

3.2. Extracting Typical Data Characteristics of PV 

In this paper, the actual solar irradiance data from a meteorological station in a region of Inner 
Mongolia Autonomous Region, China (N 39°61′, E 109°78′) from January 1, 2020 to December 31, 2020 
are selected for analysis with a sampling interval of fifteen minutes. As shown in Figure 7, the solar 
irradiance observed at the weather station throughout the year is demonstrated. 
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Figure 7. Real-time solar energy of photovoltaic power plants. 

As shown in Figure 8, 45.91 % of the total annual data observed by the weather stations had solar 
irradiance equal to 0, 4.19 % had solar irradiance greater than 1000 W/m2. Solar irradiance greater 
than 0 and less than 200 W/m2 accounted for 19.22 % of the total. Solar irradiance in the range of 200 
W/m2 – 1000 W/m2 accounted for 30.68 % of the total. The annual average solar irradiance in the data 
observed at the meteorological stations was 237.07 W/m2. But when selecting PV panels, it is not 
necessary to consider the period of time when the solar irradiance is 0. If this situation is not taken 
into account, the annual average solar irradiance is 529.07 W/m2. 

In a photovoltaic power plant, the theoretical expression between solar irradiance and the output 
power of photovoltaic power generation is: 𝑃௉௏(𝑡) = 𝐼(𝑡) ∗ 𝐴 ∗ 𝜂௉௏, (5) 

In (5), PPV is the output power of the photovoltaic plant (in W),I is the solar irradiance (in 
W/m2),A is the area of the photovoltaic panel (in m2),ηPV For the photovoltaic panel conversion 
efficiency, the current domestic mainstream photovoltaic panel conversion efficiency between 15 %-
40 %, the photovoltaic panel conversion efficiency selection of 30 %. 

The annual solar irradiance is converted into the output power of the PV plant per unit area, and 
its distribution is shown in Figure 8. The PV panel model CY-TJ 250 is selected and its parameters are 
shown in Table 2. According to the above data features CY-TJ 250, without counting the moments 
when the output power is 0, the distribution of the PV panel output power is shown in Figure 9, the 
PV panel full working hours accounted for 7.75 % of the total number of hours, and the output power 
is less than 100W hours accounted for 51.60 % of the total number of hours, which further verifies the 
scientific nature of the selected PV panel model. 

Taking the typical data time selection of 24 hours as an example, the typical power curve is 
extracted for the minutes 10:00-10:15, and the modeling process of the Parzen window estimation 
method is as follows: 

(1) Normalize the data and consider the solar irradiance exceeding 1000 W/m2 as 1000 W/m2. 
(2) Use Bin's method to divide the intervals, and use 0.1 W/m2 as an integer multiple of 0.1 W/m2 

as the center point, and calculate the probability density of each interval. 
(3) Summarize all the probability densities to build the Parzen window probability distribution 

curve. 
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Figure 8. Probability plot of wind speed ranges. 

Table 2. CY-TJ 250 photovoltaic panel. 

Parameters 
Rating 

（W） 

Conversion 

efficiency（%） 

Theoretical 

temperature（K） 

Best angle 

（°） 

Value 250 25 296 30 

7.74%

11.06%

29.59%

51.61%

 0-100  100-200  200-250  >250

 

Figure 9. Probability plot of the working interval of CY-TJ 250. 

The best Beta probability density distribution curve was obtained using the method described 
in reference [26]. Figure 10 shows the probability distribution of solar irradiance for the 10:00-10:15 
minutes obtained by different methods. The optimal bandwidth is 0.0273 for this time period. 

When examining the probability distribution characteristics of PV data, Beta distribution curves 
are often used to model the knowledge accumulation of the data. As shown in Figure 10, the shape 
parameter of the Beta distribution determines the type of distribution it can represent, and for 
complex PV data distributions, it is still not possible to accurately capture all the peaks, resulting in 
its inability to fully reflect the overall distribution trend. 
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Figure 10. Standardized solar irradiance distribution probability chart(10:00-10:15). 

In contrast to the Beta distribution, the Parzen window method provides a nonparametric means 
of estimating probability densities that makes no assumptions about the form of the distribution of 
the data. A more flexible density estimate is constructed by accumulating weights in the vicinity of 
sample points through a sliding window. In Figure 10, the root-mean-square error of Parzen 
probability and wind speed probability is calculated to be 0.020376, and the root-mean-square error 
of Weibull probability and wind speed probability is 0.039799, and the Parzen probability 
distribution is more effective in fitting the PV data.This method is not limited by the shape of a 
particular distribution, and thus can better accommodate the phenomenon of multiple peaks in the 
data, exhibiting a smaller overall error than the Beta distribution. 

In summary, although the Beta probability distribution is widely used in various types of data 
analysis due to its computational simplicity and solid theoretical foundation, the Parzen window 
method clearly provides a more reasonable and effective probability density estimation for 
photovoltaic data with complex distributional characteristics. 

3.3. Extract Typical Data Features of User Requirements 

In this paper, the actual customer load data from January 1, 2020 to December 31, 2020 in a region 
of Inner Mongolia Autonomous Region of China (N 39°61′, E 109°78′) is selected for analysis, with a 
sampling interval of fifteen minutes, as shown in Figure 11. 
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Figure 11. Real-time load demand. 

Taking the typical data time selection of 24 hours as an example, typical power curves were 
extracted for the minutes 10:00-10:15, and the modeling procedure for the Parzen window estimation 
method was as follows: 

(1) Normalize the data; 
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(2) Use Bin's method to partition the intervals, using an integer multiple of 0.1 MW as the center 
point, and calculate the probability density of each interval. 

(3) Summarize all probability densities to create a Parzen window probability distribution curve. 
Figure 12 shows the probability distribution profile of the customer load demand from 00:00 to 

00:15 minutes obtained using the Parzen window estimation method. The optimal bandwidth is 0.02 
during this time period. 
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Figure 12. Probability distribution plot of customer load demand (00:00-00:15). 

4. Typical Time Scale Selection 

In the process of analyzing wind power data, photovoltaic power generation data and customer 
load data and extracting typical working conditions, the selection of typical time length is a decisive 
factor. It directly affects the type of wind, photovoltaic, load variation characteristics and operating 
conditions that we are able to identify. 

As shown in Figure 13, the typical time lengths were selected as 1 day, 4 days and 7 days, and 
using the typical operating condition curves obtained for wind power output. Because the cube of 
wind speed is proportional to the wind power output, resulting in large differences in the wind 
power output curves obtained for different typical time lengths, which demonstrates the importance 
of the typical time length selection. 
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Figure 13. Comparison of typical time scales for wind power. 

As shown in Figure 14, typical time lengths of 1 day, 4 days and 7 days were selected and the 
typical operating conditions curves of the obtained photovoltaic outputs were utilized, from which 
it can be seen that there are large differences in the peak areas of the two typical operating conditions 
curves (with typical time lengths of 1 day and 7 days) in the interval from 0 to 24 hours. And in the 
interval from 24 to 48 hours, the two typical operating conditions curves (with typical time lengths 
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of 4 days and 7 days)，  there is a large difference in the peak region, which also proves the 
importance of the selection of the typical time length. 
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Figure 14. Comparison of typical time scales for photovoltaic. 

As shown in Figure 15, the typical time lengths of 1 day, 4 days and 7 days were selected and 
the typical operating conditions curves of the obtained photovoltaic outputs were utilized, from 
which it can be seen that there are differences in the peak areas of the three typical operating 
conditions curves in the interval from 0 to 24 hours. In particular, there are large differences in the 
peaks between the operating conditions curves when the typical time length is 1 day and the curves 
for the other two days. In the interval from 72 to 96 hours, both the peak region and the peak-to-
valley region of the two typical operating condition curves (with typical time lengths of 4 and 7 days) 
differed considerably. This also demonstrates the importance of the typical length of time chosen. 
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Figure 15. Comparison of typical time scales of load. 

4.1. Extract Typical Data Features of User Requirements 

The purpose of creating statistical indicators is to quantify the difference between a typical day 
relative to the raw data in the aggregate and across time periods. In particular, the deviation of the 
total load power for the year represents the relative error of the total load power on a typical day, 
calculated by weighting, to the total load power of the original data, as follows [27]: 𝛥𝐶1 = ቀ೤೐ೌೝ೏ ቁ஼೏ି஼೤೐ೌೝ஼೤೐ೌೝ , (6) 

In (6), Cd Indicates the sum of typical data selected;Cyear Indicates one year of total data;year 
Equals 365;d Indicates the number of days selected. The smaller the deviation of the resource 
throughout the year, the more accurate the data selected for the typical time. 

Pearson Correlation Coefficient describes well the correlation of 2 sets of data, let there exist 2 
arrays of X、Y，When r>0, then the positive correlation between the 2 sets of data is stronger, and 
when r<0, then the negative correlation between the 2 sets of data is stronger. 𝑟 = ∑ (௫ೖି௫̄)(௬ೖି௬̄)೘ೖసభට∑ (௫ೖି௫̄)మ ∑ (௬ೖି௬̄)మ೘ೖసభ೘ೖసభ , (7) 
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In (7), m is the number of elements in the array. The average of the absolute values of the 
correlation coefficients between the typical time data and all the data is used as indicator 2, which is 
calculated as follows: 𝛥𝐶2 = ∑ ห௥ೕห೤೐ೌೝೕసభ௬௘௔௥ , (8) 

The larger the indicator 2, the stronger the correlation between the typical time data and the 
original data, and the better the selection of typical data. The data bias represents the relative error 
of the data for the same time period over all typical days as compared to the data for the same time 
period of the historical data, and indicator 3 is the average of the deviations of the data over all time 
periods, as follows: 𝛥𝐶3 = ଵௗଶସସ∑ ∑ ௉೔,೟ି∑ ௉೔,೟೔∈ವబ೔∈ವ∑ ௉೔,೟೔∈ವబௗଶସସ௧ୀଵ , (9) 

In (9), D and D0 are the set of all dates for typical and original data, respectively; Pi,t is the data 
value of date d at moment t. The smaller the indicator 3, the better the selection of typical data. 

Strictly in accordance with the above three evaluation indexes to make a separate evaluation of 
the typical time length of 1-7 days, the results are shown in Table 3. The optimal typical length of 
time for all three indicators of wind power is 4 days; the optimal typical length of time for 
photovoltaic indicator 1 is 3 days, and the optimal typical length of time for indicators 2 and 3 is 2 
days; the optimal typical length of time for all three indicators of customer load is 3 days. In order to 
select the optimal typical time length, need to develop a harmonized weighting scheme. 

Table 3. Results of selection indicators for different typical time lengths. 

Name 1 2 3 4 5 6 7 

Wind energy 

ΔC1 0.0112 0.0094 0.0087 0.0083 0.0089 0.0086 0.0090 

ΔC2 0.9643 0.9766 0.9853 0.9925 0.9923 0.9923 0.9919 

ΔC3 0.0471 0.032 0.0217 0.0136 0.0138 0.0149 0.0139 

Photovoltaic 

ΔC1 0.0141 0.0125 0.0109 0.0126 0.0137 0.0153 0.0168 

ΔC2 0.9835 0.9885 0.9839 0.9803 0.9699 0.9626 0.9516 

ΔC3 0.0394 0.0241 0.0267 0.0343 0.0413 0.0457 0.0460 

Burden 

ΔC1 0.0182 0.0116 0.0076 0.0151 0.0188 0.0209 0.0264 

ΔC2 0.9634 0.9747 0.9822 0.9746 0.9725 0.9535 0.9486 

ΔC3 0.3423 0.2513 0.0125 0.0241 0.0417 0.0523 0.0619 

4.2. Evaluation Methodology 

Ordinal Relationship Method [28] (ORA) is a subjective assignment method, with the 
advantages of small amount of calculation, without the need to construct judgment matrix, and its 
general steps are as follows: 

(1) Determine the ordinal relationship of the indicators; based on importance and expert 
recommendations, establish the ranking order among the three indicators. 

(2) The expression of the judgment of the degree of importance between the two neighboring 
indexes is: 𝑅௞ = ௑ೖషభ௑ೖ , (10) 
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In (10): k takes values of 2 and 3, X represents the value of the evaluation indicator, and Rk 
denotes the importance between the k-th evaluation indicator and the k-1-th evaluation indicator. 

(3) The weight coefficient of the k-th evaluation indicator is: 𝜔௞ = (1 + ∑ ∏ 𝑅௜ଷ௜ୀ௞ଷ௞ୀଶ )ିଵ, (11) 

The weight coefficient of the k-1-th evaluation indicator is： 𝜔௞ିଵ = 𝑅௞𝜔௞, (12) 

Based on the above process, the subjective weights of the indicators are shown in Table 4. 
Because in the source-load-storage system the generation side (source) is wind and solar energy, and 
the load side (load) is the customer load, the load share is 0.5; the share of wind and solar energy is 
80 % + 20 %[29], so the share of wind energy is 0.4 and the share of solar energy is 0.1. 

Table 4. Results of selection indicators for different typical time lengths. 

Norm 
Wind power Photovoltaic User load 

ΔC1 ΔC2 ΔC3 ΔC1 ΔC2 ΔC3 ΔC1 ΔC2 ΔC3 

Value 0.1333 0.1334 0.1333 0.0333 0.0334 0.0333 0.1667 0.1667 0.1666 

Entropy Weight Method is an objective assignment method [30] with the following general 
steps: 

(1) The data Xm×n are quantized with the expression: 

𝑋௠×௡ = ൥𝑥ଵଵ  ⋯  𝑥ଵ௠ ⋮    ⋯   ⋮ 𝑥௡ଵ  ⋯  𝑥௡௠൩, (13) 

𝑧௜௝ = 𝑥௜௝ − min൛𝑥ଵ௝ , … , 𝑥௡௝ൟ
max൛𝑥ଵ௝ , … , 𝑥௡௝ൟ − min൛𝑥ଵ௝, … , 𝑥௡௝ൟ , (14) 

In (14), zij is the standardized value of the j-th evaluation indicator in the i-th evaluation scheme. 
(2) The weight of the j-th evaluation indicator in the i-th evaluation program is: 𝑝௜௝ = ௭೔ೕ∑ ௭೔ೕ೙೔సభ , (15) 

(3) The entropy value of the j-th evaluation indicator is: 𝑒௝ = − ଵ௟௡௡ ∑ 𝑝௜௝௡௜ୀଵ 𝑙𝑛 𝑝௜௝, (16) 

(4) The weight of the j-th evaluation indicator is: 𝜔௝ = ଵି௘ೕ∑ ൫ଵି௘ೕ൯೘ೕసభ , (17) 

Based on the above process, the objective weights of the indicators are shown in Table 5. 

Table 5. Results of selection indicators for different typical time lengths. 

Norm 
Wind power Photovoltaic User load 

ΔC1 ΔC2 ΔC3 ΔC1 ΔC2 ΔC3 ΔC1 ΔC2 ΔC3 

Value 0.1465 0.1759 0.0976 0.0428 0.0514 0.0105 0.1769 0.1801 0.1183 

The two sides of the game are the subjective weight W1 obtained by ORA and the objective 
weight W2 obtained by Entropy Weight Method, whose expressions are[31]: 
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𝑊ଵ = ሾ𝜔ଵଵ,𝜔ଵଶ,⋯  ,𝜔ଵ௠ሿ் , (18) 𝑊ଶ = ሾ𝜔ଶଵ,𝜔ଶଶ,⋯  ,𝜔ଶ௠ሿ், (19) 

The combination weight expression is: 

𝑊ଵଶ = ൥𝜔ଵଵ 𝜔ଶଵ ⋮      ⋮𝜔ଵ௠ 𝜔ଶ௠൩ ൬𝜆ଵ𝜆ଶ൰, (20) 

In (20), λ is the linear combination coefficient. With the sum of the minimum deviations between 
the combined weights and the individual weights as the objective function, the optimal linear 
combination coefficient is solved, and its constraint condition expression is: 

Min(‖𝑊ଵଶ −𝑊ଵ‖ଶ + ‖𝑊ଵଶ −𝑊ଶ‖ଶ) = 𝑚𝑖𝑛(‖𝜆ଵ𝑊ଵ + 𝜆ଶ𝑊ଶ −𝑊ଵ‖ଶ + ‖𝜆ଵ𝑊ଵ + 𝜆ଶ𝑊ଶ −𝑊ଶ‖ଶ), 
(21) 

In (21): λ1 and λ2 are both greater than or equal to 0, and their sum equals 1. From the principle 
of differentiation, the model is also required to satisfy the first-order derivative condition, which is 
expressed as: ቊ𝜆ଵ𝑊ଵ𝑊ଵ் + 𝜆ଶ𝑊ଵ𝑊ଶ் = 𝑊ଵ𝑊ଵ்𝜆ଵ𝑊ଶ𝑊ଵ் + 𝜆ଶ𝑊ଶ𝑊ଶ் = 𝑊ଶ𝑊ଶ், (22) 

Normalizing λ yields the optimal linear combination coefficients, which are expressed as: 

ቐ𝜆ଵ,ைௌ = |ఒభ||ఒభ|ା|ఒమ|𝜆ଶ,ைௌ = |ఒమ||ఒభ|ା|ఒమ|, (23) 

The expression for the optimal combination of weights for the evaluation indicators is: 𝑊ைௌ = 𝜆ଵ,ைௌ𝑊ଵ + 𝜆ଶ,ைௌ𝑊ଶ, (24) 

In summary, the optimal linear scaling factors are found to be 0.3854 and 0.6146 respectively. 
The final combination weights are obtained by calculation as shown in Table 6. 

Table 6. Results of selection indicators for different typical time lengths. 

Norm 
Wind power Photovoltaic User load 

ΔC1 ΔC2 ΔC3 ΔC1 ΔC2 ΔC3 ΔC1 ΔC2 ΔC3 

Value 0.1414 0.1595 0.1114 0.0391 0.0445 0.0193 0.173 0.1749 0.1369 

It was obtained that the typical time length choice of 3 days best characterized the original data 
and had the best overall correlation with the original data. The typical data feature extraction method 
is strictly implemented to obtain the typical operating condition curves of wind power, PV, and 
customer loads as shown in Figure 16. 
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Figure 16. Typical time power curve. 

From the figure, it can be seen that the average wind power generation is 0.67 MW. At this power 
level, the wind speed is 8.48 m/s, which is only 0.23 m/s higher than the actual annual average wind 
speed, with an error of 2.7 %. This indirectly demonstrates the feasibility of selecting typical wind 
power data. Ignoring the moments when the power generation is 0, the average photovoltaic power 
generation is 74.05 W/m². At this power level, the solar irradiance is 246.83 W/m², which is only 9.76 
W/m² higher than the actual annual average solar irradiance, with an error of 3.94 %. This indirectly 
demonstrates the feasibility of selecting typical photovoltaic data. The average user load power is 
64.83 MW, which is only 2.24 MW higher than the actual annual average electricity load, with an 
error of 3.45 %. This indirectly demonstrates the feasibility of selecting typical user load data. 

5. Conclusions 

This paper analyzes the uncertainty of wind power generation, solar power generation, and user 
load variations. Through comparative analysis, when dealing with the uncertainty of wind power 
generation and user load under typical operating conditions, the Parzen window estimation method 
(a non-parametric estimation method) is more consistent with the true distribution of the data and 
offers higher accuracy during the process of extracting probability distribution curves. Since the 
output curves differ significantly when the typical time lengths are set to 1 day, 4 days, and 7 days, 
the best indicator weight is finally calculated, and it is determined that the typical operating condition 
curve most closely aligns with the actual situation when the typical time scale is 3 days. 
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