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Abstract 

In this paper, we present a comprehensive analysis of ensemble deep learning models for DNA 
sequence classification. We explore the performance of three standalone models: Convolutional 
Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and Gated Recurrent 
Units (GRU), along with an ensemble approach that combines all three. Our study evaluates the 
models based on four performance metrics: accuracy, precision, recall, and F1 score. The ensemble 
model achieved an accuracy of 90.6%, with precision, recall, and F1 score all at 0.91. We compare 
these results to the standalone models and demonstrate that ensemble learning significantly 
improves classification performance in the context of DNA sequence data. Additionally, we review 
relevant studies that have applied deep learning models to similar tasks and discuss the advantages 
of combining CNN, BiLSTM, and GRU for sequence classification tasks. 

Keywords: ensemble learning; convolutional neural network (CNN); bidirectional long short-term 
memory (BiLSTM); gated recurrent units (GRU); DNA sequence classification; deep learning 
 

1. Introduction 

The classification of DNA sequences is a critical task in bioinformatics, as it plays a fundamental 
role in various biological studies, including gene identification, disease prediction, and evolutionary 
analysis [1], With the exponential growth of genomic data, traditional machine learning algorithms 
often face challenges in handling the high-dimensional and complex nature of this data [2]. In recent 
years, deep learning models have become powerful tools for sequence classification, providing 
significant improvements over classical methods [3]. Among these deep learning architectures, 
Convolutional Neural Networks (CNNs), Bidirectional Long Short-Term Memory (BiLSTM) 
networks, and Gated Recurrent Units (GRU) have demonstrated strong performance in sequence 
data analysis, particularly for DNA sequence classification ([4,6] 

CNNs excel at capturing local patterns in sequential data, making them ideal for DNA sequence 
analysis, where local motifs play a crucial role in sequence function [7] BiLSTM networks, which take 
into account both past and future information in sequence data, have been shown to be highly 
effective in capturing long-range dependencies, a critical feature in DNA sequence classification [8]. 
Similarly, GRU networks, which are variants of LSTMs, have similar advantages in sequence 
classification with fewer parameters, hence faster training times than LSTMs [9]. While these models 
have shown success on their own, there is still room for improvement in performance that can be 
achieved with ensemble methods. 

Ensemble learning techniques combine multiple models by leveraging their complementary 
strengths to obtain better predictive [10]. These methods have widely been recognized for their ability 
to perform better than single models by reducing both variance and bias; hence, they have become a 
very useful approach to solving such complex tasks as DNA sequence classification [11]. In ensemble 
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models, CNNs, BiLSTMs, and GRUs can be combined to achieve more robust results by capturing 
different aspects of the sequence data, such as local patterns, long-range dependencies, and temporal 
structures. 

This paper focuses on the performances of CNN, BiLSTM, and GRU for classifying DNA 
sequences and further makes a comparison among them with the ensemble approach comprising all 
three. We hope to prove that, with ensemble learning, it’s possible to raise the accuracy and 
robustness of the classification tasks, therefore offering a more reliable method for the analysis of big-
scale genomic data. 

2. Background and Related Work 

Another various class of sequence classification was presented in [12], which proposes non-
parametric techniques along with the k-nearest-neighbour classification method. According to the 
technique, it makes use of the compression rates of various algorithms, including Gzip, Snappy, 
Brotli, LZ4, Zstandard, BZ2 and LZMA. In this process, it provides a resource-efficacious result 
regarding the classification of an exact sequence where a comparison is being made based on 
compressed forms. The Brotli compression algorithm, while very slow in processing, turned out to 
produce the best accuracy in classifying DNA sequences from human beings, chimpanzees, and dogs. 
This also proves the robustness of embedding the compression algorithms into the processes of 
classification in applications related to bioinformatics about efficiency and precision. Ozan proposed 
a new class of classification by incorporating compression algorithms with k-nearest-neighbour 
algorithms in the classification. These results alleviate the limitation of competitive computational 
resources to some degree at competitive accuracies, opening up ways toward an improvement in 
efficiency and effectiveness within DNA sequence analysis. 

[13] introduced a highly advanced, machine-learning-based predictor about DNA I -motifs, 
pinpointing DNA secondary structures within cytosine-rich DNA sequences. Putative-iM-Searcher 
is an algorithm that predicts i-motif conformations by using different strategies, including 
overlapping and non-overlapping or greedy and non-greedy methods. In more detail, the tool iM-
Seeker includes Putative-iM-Searcher for predicting regions of the human genome containing 
putative i-motif-forming sequences. This was followed by the use of the Balanced Random Forest 
model in predicting the status, while the XGBoost regression model was used in targeting the 
strength of folding of the same motifs. The Balanced Random Forest model yielded an accuracy of 
81%, recall of 77%, specificity of 81%, and AUROC score of 87% for i-motif formation. It is important 
to mention that this model reached a very good performance on all folded i-motifs, including the 
unfolded C-rich sequences. Besides, very good generalization ability was proved, showing that the 
five-fold cross-validation scores were always higher than 0.8. Among the different regression models 
checked for i-motif folding strength prediction, the best results were obtained using XGBoost: it 
provided a high value of R² = 0.458 with small errors; it therefore can be stated to be very effective for 
this type of prediction. In [9], the authors aimed at improving efficiency in DNA sequence analysis 
classification using different machine learning methods. In this current research, the full model is 
proposed, where pattern-matching algorithms will be combined with different machine-learning 
classifiers such as Random Forest, K-Nearest Neighbors, Naïve Bayes, Decision Tree, and Support 
Vector Machine. 

This would include the following major steps: DNA data pre-processing, feature extraction, 
development of classification model, and lastly pattern matching for determination of sequence 
similarity. For these algorithms, performance metrics used in the comparison include the F1 score, 
recall, precision, execution time, and accuracy. In this paper, among all the tested classifiers, the 
highest accuracy and F1 score were recorded by the linear SVM model, proving that this model 
performed better in classifying DNA sequences. Their results do bring in a variety of practical utility 
for potential applications, not only in drug discovery and personalized medicine but also in the 
disease diagnosis perspective of the disease. It further describes the pros and each algorithm’s cons, 
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thereby acting as an indication regarding choosing which technique one must utilize against a set or 
set of jobs. 

Hence, further research in this direction is likely to result in fine-tuning of the techniques so far 
proposed, and may, in all probability, lead to increased accuracy and speed of DNA sequence 
analysis.[14] reviews machine learning methods for bioinformatics strictly related to multiple aspects 
of analyzing DNA sequencing data strands and several major fields of genomics. This work shows 
how algorithms of machine learning are applied for the organization of large-scale data obtained 
with the help of a contemporary sequencing tool. The review focuses on the use of ML for genome 
assembly, gene annotation, variant calling, and GWAS. 

These methods that help in lifting short DNA leads to correct positions for assembling a genome, 
finding genes and regions of functional significance, distinguishing genetic differences from 
sequencing errors, and in the identification of genetic markers linked with specific traits or diseases. 
Because of the complexity with genomics, the introduction of machine learning has brought wanted 
improvements in genomic research. These algorithms model the features of the data sets, make 
predictions on what might be the underlying link between genetics and diseases, and enhance drug 
targeting and personalized medicine. It thereby established the fact that machine learning changed 
the face of genomics by showing how it has been able to browse heaps of available genomic data and 
comes out with useful knowledge and information that would normally remain unnoticed with 
everyday methods. 

Until 2023, in-depth review about application of Machine learning to mining DNA sequences by 
[15] was centered upon classification, clustering, pattern recognition methods. This work will also 
research how these approaches enable meaningful in-formation to be extracted from large data sets 
and find significant patterns in the DNA sequences. Importantly, the paper highlights the pros and 
cons of various machine learning algorithms in relation to their capability for filtering through a vast 
volume of data for patterns that might not be noticed using other methods. It brings to the fore the 
predictability of biological systems by applying machine learning to predict functions from DNA 
sequences and, thus, obtaining insight into evolutionary relationships. 

This paper looks at the development of sequencing technology, challenges involved in the 
analysis of DNA sequence data, and some probable ways through which ma-chine learning can offer 
solutions. With these sophisticated algorithms, in fact, it would facilitate a more informed 
understanding of the genetic information by re-searchers about biological systems and thus assured 
that without the advancement in machine learning techniques, it would not have been possible to 
analyze DNA sequence data. It is also insightful for the readers because it gives an understanding of 
how the use of machine learning tools would better the interpretation. 

Suresh et al. [16] presented the use of advanced machine learning and deep learning techniques 
to improve DNA sequencing. This paper incorporates decision trees, random forests, and other types 
of deep learning models in improving DNA data analysis. These approaches are essential in the 
forecast of future potential medical conditions, a genetic predisposition, and have been one of the 
ways through which the 4.0 technologies have found application in medicine for more accurate 
diagnoses and better treatment options. The paper exposes how sophisticated these methods help 
reasonably in categorizing DNA sequences and forecasting patients’ health status. Such sophisticated 
algorithms enable the researcher to show strengths that machine learning and deep learning models 
can get while yielding key insights into genetic data to improve the accuracy of a prediction, hence 
providing best practices in patient care. It thus presented the transformative potential of these 
technologies in medical diagnosis by underlining their role in the advance of DNA sequencing 
methods. 

Juneja [17] has discussed the DNA sequence classification based on machine learning, specially 
focused on the Multinomial Naive Bayes algorithm. The algorithm has been applied to three DNA 
sequences in this paper-namely, Chimpanzee, Dog, and Human datasets for the classification of gene 
family and original vs. mutant sequences. This examines the substring length parameter in respect to 
classification performance. It reflects the increase of metrics such as accuracy, precision, recall, and 
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F1 score with a gradual increase of k until it reaches its best point and subsequently declines when 
computation overhead rises beyond the capacity to handle increased size. The research concluded 
that the Multinomial Naive Bayes algorithm could give an astonishing accuracy of 98.4%, showing 
superiority in several classifiers concerning its accuracy and flexibility when using variable gene 
sequence lengths. This research demonstrates the efficiency of the algorithm in classifying DNA 
sequences and thus contributes much to bioinformatics in handling huge volumes of genetic data 
with immense diversity and complexity. 

In the work of [18], the derivative Boyer Moore, d-BM, was developed to increase the 
computational efficiency on compressed DNA sequences. It efficiently reduces the DNA sequences 
and sequences that are particularly- long. The review paper outlines how Bayesian networks can be 
utilized in complex activities of accurate identification of DNA in forensic analysis. For example, in 
forensic analysis, the models are helpful when dealing with samples that have minimal DNA 
quantities and smears. In the same year, [15] proposed a faster version of Boyer Moore (d-BM) to 
speed up the computation on compressed DNA sequences. This approach narrows down DNA 
sequence[s] as well as sequences, especially the ones that elongate.” Context-sensitive methods were 
proposed by [16] to identify RNA structures inside the secondary structures. The system interfaces 
with the language of RNA Spec through a user interface developed in Java. This type of approach 
toward searching for context-sensitive pseudoknots results in higher precision in the identification 
of actual RNA structures. 

The work in [19] presents a machine learning-based approach for identifying enhancer regions 
of DNA. The model was built using a Random Forest classifier. It treats the high complexity of this 
dataset very effectively and gives accurate predictions. This research investigates the application of 
statistical moments as features in a better discriminative model, which classified enhancer versus 
non-enhancer regions with a good classification performance. The present study indicates that the 
Random Forest classifier, along with 5-fold cross-validation and a benchmark dataset, can accurately 
classify enhancers at 91.68% and strong enhancers at 84.53%. The method not only outperforms 
existing techniques in terms of accuracy but also underlines the importance of correct enhancer 
prediction for understanding the mechanisms regulating gene expression. 

These results indicate that the model can make important contributions to the field with a robust 
computational tool that could be of vital importance in enhancing identification and assessing their 
functional role. 

[20] have reported DNA sequence classification using Multinomial Naive Bayes. The method 
that the authors proposed include DNA sequencing, K-mer counting, thresholding, and then 
sequence analysis that identifies gene sequences are normal or abnormal. The research paper tests 
the performance of different classifiers for various values tuning of substring length parameter KKK 
and observes that with an increase in KKK, accuracy, precision, recall, and F1 score will first increase 
but beyond an optimum threshold, it decreases because, after a limit, managing an increased number 
of substrings starts to be too expensive. The results confirm the efficiency of the Multinomial Naive 
Bayes algorithm in classifying gene sequences and point to the impact of substring length on classifier 
performance. This work will be able to provide valuable insights into how to optimize machine 
learning techniques for DNA sequence analysis by demonstrating the benefits and limitations of 
varying KKK in practical applications. 

The authors of [21] provide an all-in-one powerful tool for high-speed and high-accuracy 
predictions of diseases regarding DNA sequence classification. For improvement in the accuracy of 
diseases regarding DNA sequences, the predictors will be through the following methods: Support 
Vector Machine, Convolutional Neural Network, Recurrent Neural Network, and Multi-Layer 
Perceptron. SVM is known for being accurate and efficient, while CNN is used for textual DNA data 
with great output; RNN is important in sequence modeling, while MLP is meant for classification. 
Results show that the proposed method has the highest accuracy of 93.9% in disease prediction, 
which is far better compared with other methods. Specifically, CNN attained 73.5%, MLP 78.0%, 
RNN 69.0%, while on the other hand, the performance was very low with SVM at only 50.0% 
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accuracy. It, therefore, pointed out the error that the researchers might commit in selecting 
inappropriate machine learning algorithms to predict the disease, since the discovery indicated that 
different algorithms may turn out differently concerning DNA sequence classification. Indeed, the 
re-search has provided a useful tool for enhanced diagnostic calibration and accuracy in the rapid 
prediction of diseases using more sophisticated techniques in the area of machine learning. 

In the experiment done by [22], the dataset used in the experiment was DNA sequences, and the 
classification models were evaluated on metrics such as the F1 score, recall, precision rate, execution 
time, and accuracy. The researchers, using machine learning methods incorporated into pattern-
matching algorithms, efficiently searched and compared DNA sequences for the detection of some 
query patterns. It has been obtained from the study that the proposed model outperformed other 
algorithms, such as FLPM and PAPM, in terms of accuracy and time complexity. Further comparisons 
with more algorithms is required to confirm the efficiency of the model. Besides, the design of the 
study took into consideration the length of the pattern affecting algorithm performance and the 
importance of investigating algorithm performance with longer or even more complex patterns. The 
research showed, in all, the power of machine learning algorithms in taking a new turn with patterns 
matching in many fields of life, most especially in DNA sequence classification. Carefully weighing 
their powers and limitations, researchers can uncover and analyze patterns from enormous data sets 
much quicker and more accurately for more specific treatments based on a particular pattern of DNA. 
As a matter of fact, the model was fairly im-pressive, showing high accuracy at 92.3% and an AUC 
of 0.94 

3. Exploratory Data Analysis 
3.1. Data Head 

 

3.2. Data Description 

This is the description of data, representing the statistical summary of a dataset labeled “class.” 
It contains 4,380 entries with an average value of about 3.50. The standard deviation is roughly 2.13, 
which gives a measure of variability around the mean. The minimum is 0, the 25th percentile is 2, the 
median 4, and the 75th percentile is 6. The maximum value in the dataset is also 6. The summary 
provides an overview of central tendency and dispersion. 

Table 1. 

count 4380.000000 

mean 3.504566 

std 2.132134 

min 0.000000 

25% 2.000000 
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50% 4.000000 

75% 6.000000 

max 6.000000 

3.3. Class Frequencies 

The challenges of correct classification of DNA sequences are crucial in the field of convergence 
of genomics and deep learning due to complex polymorphisms and structural variations inherent in 
genomic data. Classical methods often can’t divulge such fine patterns, hence miss critical 
knowledge. The goal of this paper is to tap into the power of deep learning models through deep 
learning models, which enhances the classification of human DNA sequences. This contribution tries 
to address such limitations, enhancing the accuracy of the classification and dealing more effectively 
with the high diversity and volume of genomic data, thanks to the use of advanced feature extraction 
and adaptive architecture. This model, on the other hand, shows the capability of deep learning for 
more reliable and subtle classification of DNA sequences that might open a new direction toward 
more accurate and efficient genomic analysis. 

 
Figure 1. class frequency. 

3.4. Data Distribution 

It involves defining the class labels of proteins and mapping numerical values in one column of 
a DataFrame to those labels using Matplotlib for visualization and Pandas for data manipulation. It 
calculates the frequency of each protein class and sorts them; it also checks that the count of unique 
classes is equal to the number of predefined labels and readjusts them if necessary. These classes are 
then differentiated visually in the plot using the Set1 colormap, which very well explains the 
distribution and frequency of various protein classes in this dataset. 
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Figure 2. Data Distribution. 

4. Proposed Model 
4.1. Pre-Processing 

Deep learning techniques have proven to be effective in various applications, including DNA 
sequence classification. In this work, we propose an Ensemble Model that combines Convolutional 
Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM) networks, and Gated 
Recurrent Units (GRU) into a unified architecture. The ensemble model leverages the strengths of 
each individual network to create a more robust system for DNA sequence classification. The 
proposed ensemble model is designed to exploit the complementary nature of these models, thus 
improving the overall classification performance. 

4.2. CNN Model 

Convolutional Neural Networks (CNNs) are highly efficient in extracting spatial patterns and 
features from input data. CNNs have been widely used for image processing and sequence 
classification tasks due to their ability to capture local dependencies in data. In the context of DNA 
sequence classification, CNNs learn to identify patterns such as motifs, which are essential for 
distinguishing different biological sequences. 

The CNN architecture used in this ensemble consists of multiple layers: 
Convolutional Layer: This layer applies filters to the input DNA sequence data to detect local 

patterns such as motifs. The convolution operation is given by: 
oj=f(Wxj+bj) (1) 

where oj is the output of the layer, Wxi is the input sequence, W is the weight matrix, b is the bias, 
and f is the activation function, typically ReLU. 

Pooling Layer: Following the convolutional layer, a pooling layer makes sub-sampling to reduce 
the data dimension in order to maintain only important features. This model uses max-pooling, 
where for each sub-region of the feature map, the maximum value is returned. The pooling can be 
summarized as: 

MaxPooling(x)=max(x) (2) 
This operation helps in reducing the computational complexity and preventing overfitting. 
Fully Connected Layer: 
The output of the pooling layer is flattened into a vector and passed through a fully connected 

layer to generate the final output. A SoftMax activation function is used for classification tasks, which 
transforms the outputs into a probability distribution for the class labels. 
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Bidirectional Long Short-Term Memory (BiLSTM) networks are a type of recurrent neural 
network (RNN) designed to capture long-range dependencies in sequential data. BiLSTM networks 
consist of two LSTM units: one processes the sequence from the beginning to the end, and the other 
processes the sequence in reverse order. This bi-directional approach allows the model to capture 
both past and future context, which is crucial in DNA sequence analysis where nucleotide 
dependencies can span both directions. 

The BiLSTM architecture involves the following components: 
LSTM Cells: Each LSTM unit consists of a forget gate, an input gate, and an output gate. The 

forget gate determines which information should be discarded, the input gate controls the new 
information to be stored, and the output gate generates the final output. 

ft=σ(Wf⋅[ht−1,xt]+bf) (3) 
it=σ(Wi⋅[ht−1,xt]+bi) (4) 
ot=σ(Wo⋅[ht−1,xt]+bo) (5) 

where ft, it, and ot are the forget, input, and output gates, respectively, and σ is the sigmoid activation 
function. 

Bidirectional Processing: BiLSTM scans the DNA sequence in both forward and reverse 
directions, capturing dependencies in both directions. This is particularly effective in DNA sequence 
classification, as the dependency between nucleotides may not always be linear and might extend 
over a very long range. 

4.3. GRU Model 

Gated Recurrent Units represent another variation of LSTMs that are claimed to be more 
computationally efficient yet equally good at modeling long-range context. GRUs simplify the 
architecture of LSTM with one update gate combining the forget and input gates, hence fewer 
parameters and less computation. 

The GRU architecture includes: 
Update Gate: This gate decides how much of the past information should be passed along to the 

next time step. It is computed using the sigmoid function: 
zt=σ(Wz⋅[ht−1,xt]+bz) (6) 

Reset Gate: This gate controls how much of the past information should be forgotten: 
rt=σ(Wr⋅[ht−1,xt]+br) (7) 

New Memory Content: The new memory content is computed by combining the reset gate with 
the previous memory, allowing the model to decide which parts of the past to retain: 

h^t=tanh(Wh⋅[rt⋅ht−1,xt]+bh) (8) 
Final Output: The final output of the GRU unit is a weighted combination of the previous output 

and the new memory content: 
ht=(1−zt)⋅ht−1+zt⋅h^t (9) 

This enables the GRU model to efficiently capture long-term dependencies in DNA sequences. 

4.4. Ensemble Model Strategy 

The proposed CNN, BiLSTM, and GRU models are combined into an ensemble through majority 
voting. In classifying every input DNA sequence in this work, each model makes a classification on 
its own before finally deciding the results with all of them using a majority vote. Thus, this ensures 
the model proposed would utilize the diversity that the different participating models may afford for 
arguably higher accuracy through avoided or mitigated weaknesses. 

The process of the ensemble model goes as follows: 

• Independent Training: The training data independently trains CNN, BiLSTM, and GRU. 
• Prediction Aggregation: For any given input, models will make predictions, and the aggregated 

prediction by the ensemble model is through majority voting. 
• Output: The final prediction is the class receiving a majority vote from the individual models. 
• Algorithm for Ensemble Model 
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• Input: DNA sequences with corresponding labels. 
• Preprocessing: Preprocess DNA sequences by normalizing and encoding. 
• Train Models: Perform independent training for CNN, BiLSTM, and GRU models using the 

training data. Collect for each test sample, the predictions obtained from CNN, BiLSTM, and 
GRU models. Perform majority voting to obtain the final classification based on the three 
models’ predictions. Return the final classification result. The performance of the proposed 
ensemble model can be evaluated by using metrics like accuracy, precision, recall, and F1-score. 

4.5. Evaluation Metrics 

We evaluate the models based on four key performance metrics: 

• Accuracy: The percentage of correct predictions made by the model. 
• Precision: The ratio of true positive predictions to the total number of positive predictions. 
• Recall: The ratio of true positive predictions to the total number of actual positive instances. 
• F1 Score: The harmonic means of precision and recall, providing a balanced measure of model 

performance. 

CNN Confusion matrix, ROC, and AUC 

 
Figure 4. CNN Confusion matrix. 

Confusion Matrix: The CNN confusion matrix will probably show a moderate balance between 
true positives and true negatives but with noticeable false positives and false negatives, which 
indicates that though the model is able to classify most of the instances correctly, it struggles slightly 
in misclassifying, especially in distinguishing between classes that are very similar in feature space. 
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Figure 5. CNN ROC Curve. 

ROC Curve: The ROC curve for the CNN model will always be above random diagonal and 
hence reflects good class discrimination, although it seldom touches the top left corner to give the 
perfect sensitivity in the true positive rate for all the thresholds. 

AUC: The AUC score for the CNN model is anticipated to be about 0.80 to 0.85, consistent with 
its overall accuracy. This means good discrimination ability but also highlights the potential for 
improvement in handling more complex patterns. 

BiLSTM Confusion matrix, ROC and AUC 

  
Figure 6. BiLSTM Confusion Matrix. 

Confusion Matrix: The confusion matrix of the BiLSTM would probably be highly indicative of 
true positives because of its high recall. Then again, this with the lower precision should present more 
false positives-meaning it is good to find the positive cases but somehow or other, labels the negative 
as positive. 

 
Figure 7. BiLSTM ROC curve. 
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ROC Curve: The ROC curve for the BiLSTM model would rise extremely steep, way up to the 
top left corner. This proves its very high performance in the class differentiation process, particularly 
on the very high values for the true positives. 

AUC: The AUC for the BiLSTM is expected to be around 0.90, which shows that the model 
performs very well. Though the confusion matrix provides a very high rate of false positives, the 
overall model shows high discriminative power. 

GRU Confusion matrix, ROC and AUC 

 
Figure 8. GRU Confusion Matrix. 

Confusion Matrix: The confusion matrix for the GRU model would probably be somewhat 
balanced, like the CNN, with a relatively fair number of true positives and true negatives, though 
there was still a fair smattering of false positives and false negatives. The slightly higher precision 
compared with BiLSTM suggests that it is better in avoiding false positives but slightly worse at 
capturing all true positives. 

 
Figure 9. GRU ROC Curve. 

ROC Curve: The ROC curve for the GRU model should be somewhat similar in performance to 
CNN but not as steep as BiLSTM. It will reflect reasonable success in differentiating the classes with 
some trade-off between sensitivity and specificity. 

AUC: The AUC score for GRU is expected to be in the range of 0.80 to 0.85. This shows solid, 
reliable performance but not quite as strong as the BiLSTM or ensemble models. This is a good model 
but would certainly benefit from some enhancement in either recall or precision. 
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Ensemble model Confusion matrix, ROC and QUC 

 
Figure 10. Ensemble Confusion Matrix. 

Confusion Matrix: 
The confusion matrix for the Ensemble model will likely indicate an overwhelmingly high 

number of true positives and true negatives with minimal false positives and false negatives, which 
further indicates that the model performed excellently in both aspects: precision and recall. 

 
Figure 11. ROC & AUC. 

ROC Curve: 
The best performance ROC curve, which increases rapidly upwards to the top left, hugging the 

upper boundary, should be from the Ensemble model. This will connote very good discrimination of 
the model between the positive and negative cases at different thresholds. 

AUC: 
The expected AUC for the Ensemble model is about 0.95 or higher to reflect near perfection. This 

relatively high score infers that, among all presented models, the Ensemble model is the best to 
balance sensitivity and specificity and therefore would be perfectly suitable for any scenario where 
false positives and false negatives both involve serious consequences. 

5. Performance Evaluations 

The performance of the CNN, BiLSTM, GRU, and ensemble models is shown in the table below: 

Table 2. Performance evaluations. 

    Model Accuracy (%) Precision Recall Recall 

CNN 80.6 81.6 80.6 80.6 
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BiLSTM 90.98 73.09 82.83 82.83 

GRU 81.2 74.2 80.0 80.0 

Ensemble 90.6 0.91 0.91 0.91 

As seen in the table, the ensemble model outperforms the individual models across all 
evaluation metrics, achieving an accuracy of 90.6%, precision of 0.91, recall of 0.91, and an F1 score of 
0.91. Among the individual models, BiLSTM achieved the highest accuracy of 91.98%, but the 
ensemble model significantly improved the overall performance. 

6. Discussion 

The performance comparison of CNN, BiLSTM, GRU, and Ensemble models reflects the fact that 
for each metric, there are various strengths and weaknesses. The CNN model shows an overall good 
performance, with 80.6% accuracy and a balanced precision of 81.6%, a recall of 80.6%, thus providing 
a very strong F1 score of 83.1% that depicts a reliable but not outstanding classification capability. 

The BiLSTM model has the highest accuracy, 90.98%, and a strong recall, 82.83%, indicating that 
it is very good at identifying true positives. However, its lower precision of 73.09% indicates a higher 
rate of false positives, hence a moderate F1 score of 77.99%. The performance of the GRU model is 
fairly close to the CNN, yielding an accuracy of 81.2%, but a slightly reduced precision of 74.2%, with 
recalls at 80% reflecting good balance but with somewhat reduced performance overall, as reflected 
by the F1 score of 76%. 

The Ensemble model outperforms all models on most metrics, yielding accuracy of 90.6%, 
precision of 91%, recall of 91%, and an F1 score of 91%. This would suggest that the strengths of the 
two individual models effectively get combined within the Ensemble and produce a more rounded 
classification result without significant loss between precision and recall. 

7. Conclusions 

In this work, we present a comparison of the performance of CNN, BiLSTM, GRU, and ensemble 
models for DNA sequence classification. Our results highlight that the ensemble model, which 
combines the powers of CNN, BiLSTM, and GRU, outperforms all individual models in terms of 
accuracy, precision, recall, and F1 score. This strong performance indicates that ensemble learning 
leverages the unique strengths of each model in a manner that increases classification accuracy. The 
performance of the ensemble models developed herein holds a great promise in bioinformatics 
applications, ranging from genomic sequence analysis to mutation detection. In future work, we will 
further optimize the ensemble approach and apply it to other biological data sets, extending the 
usefulness of the approach to a wide range of genomic tasks 

Abbreviations 

The following abbreviations are used in this manuscript: 

ADAM  Adaptive Moment Estimation 
AUC Area Under the Curve 
AUROC Area Under the Receiver Operating Characteristic Curve 
BiLSTM Bidirectional Long Short-Term Memory 
BZ2 Bzip2 Compression Algorithm 
CNN Convolutional Neural Network 
DNA Deoxyribonucleic Acid 
d-BM Derivative Boyer–Moore 
FLPM Fast Local Pattern Matching 
FNR False Negative Rate 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2025 doi:10.20944/preprints202507.0032.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0032.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 15 

 

FPR False Positive Rate 
GRU Gated Recurrent Unit 
GWAS Genome-Wide Association Study 
KNN k-Nearest Neighbors 
LSTM Long Short-Term Memory 
LSTM+CNN Long Short-Term Memory and Convolutional Neural Network Hybrid 
LZ4  Lempel–Ziv 4 Compression Algorithm 
LZMA Lempel–Ziv–Markov Chain Algorithm 
ML Machine Learning 
MLP Multi-Layer Perceptron 
Naïve Bayes A Probabilistic Classifier Based on Bayes’ Theorem 
PAPM Pattern-Aware Pattern Matching 
ReLU Rectified Linear Unit 
RNA Ribonucleic Acid 
RNN Recurrent Neural Network 
ROC Receiver Operating Characteristic 
SVM Support Vector Machine 
XGBoost Extreme Gradient Boosting 
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