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Abstract 

Traditional technology for making commercial coatings is limited in terms of efficiency and 
environmentally sustainability. Emerging machine learning (ML) and artificial intelligence (AI) 
technologies have the potential to transform the coatings industry through data-driven design, 
forecasting, and optimization of coating properties and processes. In this article, a brief overview of 
ML applications in protein-resistant, damping, ferroalloy, TiO₂, and epoxy-based coating design for 
net-zero carbon goals and sustainable production is presented. The major ML methods like neural 
networks and regression models are highlighted in property prediction, design optimization, and 
market analysis. The review concentrates on the transition from empirical and thermodynamic 
models to intelligent, green manufacturing for the substitution of traditional practices with novel, 
eco-friendly technologies. 
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1. Introduction  

Coatings are protective and aesthetic layers in industries like construction, transportation, and 
shipbuilding. They protect against corrosion and increase surface strength, essential for the longevity 
and safety of infrastructure. Traditional coatings depend on fillers, additives, and binders to enhance 
properties such as adhesion, flexibility, and resistance to environmental stress. Nonetheless, these 
techniques are most likely to be challenged in terms of performance, cost, and the environment 
(Magadum, Murgod, Garg, et al., 2025). The international coatings market is led by nations such as 
Germany, the United States, and Japan, considering how technological innovation becomes 
important in terms of competitiveness. Integration of machine learning to coating formulation may 
unlock solutions for current deficiencies through the ability to provide more insightful, faster, and 
more eco-friendly options (Kruppa et al., 2012; Rodriguez-Galiano et al., 2015; Varoquaux et al., 2015). 

2. Machine Learning Principles in Coatings 

Machine learning enables computers to learn from data and make predictions or decisions 
without being explicitly programmed. Supervised, unsupervised, and reinforcement learning are the 
main ML techniques, which are suitable for different coating data types and objectives (Brunton, 2021; 
Candanedo et al., 2018; Garg et al., 2025; Tehrani et al., 2018; Thomare, Magadum, et al., 2025). ML 
algorithms in coating research are applied to process high amounts of data, recognize patterns, and 
streamline formulations. Overall workflow of ML comprises data pre-processing, model training, 
testing, and evaluation, as shown in Figure 1. This facilitates quick iteration and optimization of 
coating properties with minimal dependence on expensive and time-consuming experimental 
techniques (Murgod et al., 2025; Yadav, Deepanshu, et al., 2025; Yadav, S, et al., 2025). 
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Figure 1. Phases of a generalized machine learning coating model, ranging from data preprocessing to prediction 
and model development. 

3. Predictive Design and Estimation Methods 

Machine learning-based predictive models are transforming decision-making across industries 
by deriving actionable insights from dense datasets. In the coatings industry, predictive models 
predict failures, maintenance requirements, production levels, and market directions. Predictive 
maintenance facilitated by ML lowers diagnostic uncertainty and increases efficiency of operations 
(Deepanshu et al., 2025; Saraswat et al., 2025; Thomare, Nagappagol, et al., 2025). Estimation methods 
such as regression and probability modeling are applied to forecast demand, optimize energy 
consumption, and analyze market dynamics for coatings. Figure 2 illustrates probability estimation 
paths in ML, highlighting rule development, examination, and verification for strong predictions 
(Mittal & Kushwaha, 2024; Ramsundar, 2018; Rout et al., 2025) 

 

Figure 2. Paths of probability estimation in machine learning, emphasizing rule building, testing, and 
validation. 
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4. Protein-Resistant Surface Coatings 

Adsorption of protein onto surfaces can result in biofouling, affecting applications ranging from 
biomedical devices to industrial hardware. Additionally, empirical design principles like the 
Whitesides criteria inform the creation of protein-resistant surfaces but are not quantitative in their 
precision. ML methods, especially quantitative structure-property relationship (QSPR) modeling, 
bridge this gap by correlating molecular descriptors to macroscopic properties. Neural networks with 
input, hidden, and output layers are trained from carefully prepared datasets to forecast protein 
adsorption levels, allowing for the design of sophisticated bioinert coatings. Figure 3 illustrates the 
structure of a neural network employed for such predictions (Bowen & Ungar, 2020; Magadum, Garg, 
et al., 2025). 

 

Figure 3. Protein adsorption prediction neural network structure for surface coatings, showing the input, hidden, 
and output layers. 

5. Free Layer Damping Coatings 

Damping coatings are employed to reduce vibrations and noise in metal structures. It is not easy 
to determine mechanical properties like storage modulus and loss factor using conventional methods. 
Finite element analysis (FEA)-based ML algorithms give the solution by simulating the coating 
thickness and damping performance relationship. Regression models from FEA data can be used to 
predict Rayleigh damping coefficients that can be applied in the high-performance damping coatings 
design (Jonayat et al., 2018; Liu et al., 2022; Magadum, Murgod, Mittal, et al., 2025; Schmitz et al., 
2023). The process reduces the complexity of design and minimizes the need for much physical 
testing. 

6. Ferroalloy and Advanced Coating Systems 

Ferroalloy wear-resistanting coatings are required in an attempt to prolong the life of industrial 
parts. Support vector machines, linear regression, and Gaussian process regression models are 
applied to predict wear loss from composition and processing conditions. The models have been 
extremely precise and permit new compositions to be quickly screened. The same machine learning 
methods are applied in other advanced coatings, such as TiO₂ and epoxy composites, to maximize 
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mechanical, thermal, and chemical properties for various applications (Boriratrit et al., 2023; 
Sehrawat et al., 2025). 

7. Green and Sustainable Coating Production 

One of the central goals of modern coatings research is to be net-zero carbon-emitting and 
sustainably manufactured. ML and AI enable the identification of more environmentally friendly raw 
materials, the efficiency optimization of processes, and the reduction of waste. By incorporating ML-
based knowledge into production, the industry is able to move from conventional, resource- and 
energy-consuming processes to more environmentally harmonious approaches (Bajari et al., 2015; 
Hossain & Fredj, 2021). The change not only fulfills the regulatory and societal needs but also 
improves the business case for the new-generation coatings. 

8. Conclusion 

Machine learning is revolutionizing the commercial coatings market by facilitating data-driven 
design, prediction, and optimization. From protein-resistant surfaces to damping and ferroalloy 
coatings, ML models enable record accuracy and efficiency in property prediction and process 
control. ML enables the integration that facilitates the industry's shift toward sustainable, green 
manufacturing with reduced environmental footprint and high performance. With advancing ML 
techniques, their use in coatings will promote innovation, competitiveness, and sustainability in 
global markets. 
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