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Abstract

Traditional technology for making commercial coatings is limited in terms of efficiency and
environmentally sustainability. Emerging machine learning (ML) and artificial intelligence (AI)
technologies have the potential to transform the coatings industry through data-driven design,
forecasting, and optimization of coating properties and processes. In this article, a brief overview of
ML applications in protein-resistant, damping, ferroalloy, TiO,, and epoxy-based coating design for
net-zero carbon goals and sustainable production is presented. The major ML methods like neural
networks and regression models are highlighted in property prediction, design optimization, and
market analysis. The review concentrates on the transition from empirical and thermodynamic
models to intelligent, green manufacturing for the substitution of traditional practices with novel,
eco-friendly technologies.
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1. Introduction

Coatings are protective and aesthetic layers in industries like construction, transportation, and
shipbuilding. They protect against corrosion and increase surface strength, essential for the longevity
and safety of infrastructure. Traditional coatings depend on fillers, additives, and binders to enhance
properties such as adhesion, flexibility, and resistance to environmental stress. Nonetheless, these
techniques are most likely to be challenged in terms of performance, cost, and the environment
(Magadum, Murgod, Garg, et al., 2025). The international coatings market is led by nations such as
Germany, the United States, and Japan, considering how technological innovation becomes
important in terms of competitiveness. Integration of machine learning to coating formulation may
unlock solutions for current deficiencies through the ability to provide more insightful, faster, and
more eco-friendly options (Kruppa et al., 2012; Rodriguez-Galiano et al., 2015; Varoquaux et al., 2015).

2. Machine Learning Principles in Coatings

Machine learning enables computers to learn from data and make predictions or decisions
without being explicitly programmed. Supervised, unsupervised, and reinforcement learning are the
main ML techniques, which are suitable for different coating data types and objectives (Brunton, 2021;
Candanedo et al., 2018; Garg et al., 2025; Tehrani et al., 2018; Thomare, Magadum, et al., 2025). ML
algorithms in coating research are applied to process high amounts of data, recognize patterns, and
streamline formulations. Overall workflow of ML comprises data pre-processing, model training,
testing, and evaluation, as shown in Figure 1. This facilitates quick iteration and optimization of
coating properties with minimal dependence on expensive and time-consuming experimental
techniques (Murgod et al., 2025; Yadav, Deepanshu, et al., 2025; Yadav, S, et al., 2025).
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Figure 1. Phases of a generalized machine learning coating model, ranging from data preprocessing to prediction

and model development.

3. Predictive Design and Estimation Methods

Machine learning-based predictive models are transforming decision-making across industries
by deriving actionable insights from dense datasets. In the coatings industry, predictive models
predict failures, maintenance requirements, production levels, and market directions. Predictive
maintenance facilitated by ML lowers diagnostic uncertainty and increases efficiency of operations
(Deepanshu et al., 2025; Saraswat et al., 2025; Thomare, Nagappagol, et al., 2025). Estimation methods
such as regression and probability modeling are applied to forecast demand, optimize energy
consumption, and analyze market dynamics for coatings. Figure 2 illustrates probability estimation
paths in ML, highlighting rule development, examination, and verification for strong predictions
(Mittal & Kushwaha, 2024; Ramsundar, 2018; Rout et al., 2025)

a. Construct Rule| |b. Evaluate Rule c. Validate Rule

' Select Variants | Establish Association

Figure 2. Paths of probability estimation in machine learning, emphasizing rule building, testing, and

validation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.2431.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2025 d0i:10.20944/preprints202506.2431.v1

3of 6

4. Protein-Resistant Surface Coatings

Adsorption of protein onto surfaces can result in biofouling, affecting applications ranging from
biomedical devices to industrial hardware. Additionally, empirical design principles like the
Whitesides criteria inform the creation of protein-resistant surfaces but are not quantitative in their
precision. ML methods, especially quantitative structure-property relationship (QSPR) modeling,
bridge this gap by correlating molecular descriptors to macroscopic properties. Neural networks with
input, hidden, and output layers are trained from carefully prepared datasets to forecast protein
adsorption levels, allowing for the design of sophisticated bioinert coatings. Figure 3 illustrates the
structure of a neural network employed for such predictions (Bowen & Ungar, 2020; Magadum, Garg,
et al., 2025).

Input Hidden Output
layer layer layer

Figure 3. Protein adsorption prediction neural network structure for surface coatings, showing the input, hidden,

and output layers.

5. Free Layer Damping Coatings

Damping coatings are employed to reduce vibrations and noise in metal structures. It is not easy
to determine mechanical properties like storage modulus and loss factor using conventional methods.
Finite element analysis (FEA)-based ML algorithms give the solution by simulating the coating
thickness and damping performance relationship. Regression models from FEA data can be used to
predict Rayleigh damping coefficients that can be applied in the high-performance damping coatings
design (Jonayat et al., 2018; Liu et al., 2022; Magadum, Murgod, Mittal, et al., 2025; Schmitz et al.,
2023). The process reduces the complexity of design and minimizes the need for much physical
testing.

6. Ferroalloy and Advanced Coating Systems

Ferroalloy wear-resistanting coatings are required in an attempt to prolong the life of industrial
parts. Support vector machines, linear regression, and Gaussian process regression models are
applied to predict wear loss from composition and processing conditions. The models have been
extremely precise and permit new compositions to be quickly screened. The same machine learning
methods are applied in other advanced coatings, such as TiO, and epoxy composites, to maximize
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mechanical, thermal, and chemical properties for various applications (Boriratrit et al., 2023;
Sehrawat et al., 2025).

7. Green and Sustainable Coating Production

One of the central goals of modern coatings research is to be net-zero carbon-emitting and
sustainably manufactured. ML and Al enable the identification of more environmentally friendly raw
materials, the efficiency optimization of processes, and the reduction of waste. By incorporating ML-
based knowledge into production, the industry is able to move from conventional, resource- and
energy-consuming processes to more environmentally harmonious approaches (Bajari et al., 2015;
Hossain & Fredj, 2021). The change not only fulfills the regulatory and societal needs but also
improves the business case for the new-generation coatings.

8. Conclusion

Machine learning is revolutionizing the commercial coatings market by facilitating data-driven
design, prediction, and optimization. From protein-resistant surfaces to damping and ferroalloy
coatings, ML models enable record accuracy and efficiency in property prediction and process
control. ML enables the integration that facilitates the industry's shift toward sustainable, green
manufacturing with reduced environmental footprint and high performance. With advancing ML
techniques, their use in coatings will promote innovation, competitiveness, and sustainability in
global markets.
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