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Abstract

This paper investigates the interplay between prime numbers and geometric singularities in algebraic
varieties defined over Z. By analyzing singular loci, discriminants, resultants, and p-adic conditions,
we establish a series of theorems that connect the arithmetic properties of prime numbers to geometric
irregularities in scheme fibers. Our results unify local and global perspectives, providing a novel
framework to interpret primes as geometric objects through singularity theory, leveraging tools from
algebraic geometry, p-adic analysis, étale cohomology, and motivic cohomology. A key contribution
is the classification of primes inducing non-isolated singularities based on quadratic residue classes,
with potential applications to number theory and cryptography.
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1. Introduction
1.1. Research Background and Motivation

Prime numbers have long captivated mathematicians for their fundamental yet elusive nature.
Traditionally studied through analytic and algebraic number theory, primes are increasingly being
explored from geometric and topological perspectives. Recent advances in arithmetic geometry and
the study of schemes have opened new possibilities for interpreting prime numbers as geometric or
singular structures within algebraic varieties.

This research is motivated by the hypothesis that prime numbers may correspond to singulari-
ties—or regular points—on algebraic varieties defined by certain classes of polynomials. We seek to
understand how primes are distributed in relation to the singular loci of these varieties, and to what
extent their number-theoretic properties can be interpreted geometrically.

1.2. Review of Prior Research

Historically, the relationship between geometry and prime numbers has been explored through
such lenses as:

e  Elliptic curves over finite fields, where primes influence the number of rational points;

e Discriminants and resultants, which connect factorization and singularity theory;

*  p-adic geometry, providing a local analytic framework to study number-theoretic phenomena;

*  Arakelov geometry and Néron models, which model smooth and singular behaviors over arith-
metic bases.

However, relatively little work has focused specifically on the direct correspondence between singular-
ities in algebraic geometry and prime numbers as arithmetic objects. Our work attempts to fill this gap
by formalizing that connection through singularity theory and the fiber structures of morphisms.

1.3. Research Objectives and Overview

This study aims to:
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1.  Analyze how singular loci and regular points of algebraic varieties correspond to the existence or
absence of prime-valued solutions to certain polynomial equations;

2. Formulate and prove a series of theorems relating singularity conditions to p-adic local properties
and modulo p behavior;

3.  Explore how singular fibers, discriminants, and resultants reflect arithmetic data such as prime
factorization;

4. Generalize these findings into a geometric framework where prime distributions can be inter-
preted as topological or cohomological phenomena.

1.4. Structure of the Paper
This paper is structured as follows:

¢  Chapter 2 introduces the mathematical background, covering singularity theory, local rings,
scheme morphisms, and the number-theoretic roles of discriminants and resultants.

*  Chapters 3-8 explore the relationship between primes and singularities, covering local and global
perspectives, with each chapter culminating in an original theorem (Theorems A-F).

*  Chapter 9 synthesizes the theorems and provides a unifying framework.

®  Chapter 10 concludes with a summary and suggestions for future research directions, including
potential connections to deep open problems such as the Riemann Hypothesis.

2. Theoretical Background
2.1. Overview of Singularity Theory

Singularity theory studies points on algebraic varieties or manifolds where the usual properties of
smoothness or regularity fail. These points, known as singularities, often exhibit exceptional algebraic
or geometric behavior and are central objects in both algebraic geometry and differential topology.

In the context of algebraic geometry, singularities of a variety defined by a polynomial
f(x1,...,x0) € C[x1,...,x,] can be detected using the vanishing of partial derivatives. Specifically, a
point P € C" is called a singular point of the hypersurface V(f) if:

of of

—=—(P)=---==—=(P)=0.

5o (P) () =0

The set of all such points forms the singular locus of the variety.
Key tools in singularity theory include:

® Jacobian Criterion: A method to detect singularities based on the rank of the Jacobian matrix.

e  Zariski Tangent Space: Provides a linear approximation at a point and indicates singularity when
its dimension exceeds that of the variety.

* Local Rings: The local ring Ox p at a point P € X helps determine whether P is regular (i.e.,
nonsingular).

2.2. Structure of Regular and Singular Local Rings

In algebraic geometry, local rings play a fundamental role in understanding the local behavior of
schemes and varieties. The concepts of regular and singular rings are central to classifying points as
smooth or singular.

Regular Local Rings: A local ring (R, m) is called regular if the dimension of the Zariski tangent
space m/m? equals the Krull dimension of R. Equivalently, this means the minimal number of
generators of the maximal ideal m equals the dimension of the ring:

dimy () (m/m?) = dim R.

This condition implies that locally at that point, the variety behaves like a smooth manifold.
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Singular Local Rings: If the above condition fails, i.e., the number of generators of m exceeds the
Krull dimension, then the point is singular, and the local ring is called a singular ring.

2.3. Algebraic Varieties and Fiber Structures

Algebraic varieties form the geometric backbone of modern algebraic geometry. They are defined
as the solution sets of systems of polynomial equations and can be studied locally and globally through
their structure sheaves and morphisms.

A fiber in algebraic geometry arises when one considers a morphism of schemes f : X — S. For a
point s € S, the fiber over s, denoted X;, is the scheme X x g Spec(x(s)). This represents the geometric
shape of X as seen “over” the point s.

2.4. Arithmetic Applications of Discriminants and Resultants

Discriminants and resultants are classical tools in algebra and number theory that encode subtle
information about the roots and singularities of polynomials. In algebraic geometry, they provide a
means of detecting where fibers become singular or where multiple roots coalesce.

Discriminants: Given a polynomial f(x) € Z[x], its discriminant A(f) is a function of its coeffi-
cients that vanishes if and only if the polynomial has a multiple root. For example, if f(x) = x> +bx +¢,
then

A(f) = b* — 4c.

In general, if p | A(f), then modulo p, the polynomial f(x) has a multiple root, indicating a singular
fiber when f is viewed as part of a family.

3. Polynomial Singular Loci and Prime Correspondence
3.1. Classification of Singular Points via the Jacobian Criterion

To understand the structure of singularities on algebraic varieties, the Jacobian criterion is one
of the most fundamental tools. For a polynomial f(xy,...,x,) € Z[xy,...,Xy], the singular locus is

determined by the vanishing of all first-order partial derivatives.
Jacobian Criterion: A point P = (ay, ..., a,) on the variety defined by f is singular if:

S py=...2 L pyp

oxq C0x,

This condition ensures that the Jacobian matrix loses rank at P, implying that the tangent space is
larger than expected.

3.2. Comparison of Prime Distribution at Regular and Singular Points

A central theme in this study is the comparative behavior of prime-valued solutions at regular
versus singular points of a given algebraic variety. The underlying hypothesis is that prime occurrences
may correlate with the nature of a point in terms of singularity.

3.3. Conditions and Validity for Primes Corresponding to Singularities
Let f(x1,...,Xn) € Z[x1,...,x,] be a polynomial. We consider the following two propositions:

*  Proposition 1: The condition required to define a sheaf structure supported only on singular
integer solutions that yield prime values.

*  Proposition 2: The condition under which a prime-valued integer solution corresponds to a
singular point.

3.4. Theorem A: Prime-Valued Solutions Corresponding to Singular Points

Theorem 3.1. Let f(x1,...,%,) € Z[x1,...,x,] be a polynomial. Suppose there exists a point 4 =
(a1,...,an) € Z" such that:

1. Vf(@) =0,ie.,deSing(f), and
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2. f(@) = p € P, a prime number,
then the point 4 is a singular integer solution corresponding to a prime value. Moreover, such a solution validates
both a geometric and arithmetic condition simultaneously.

Proof. By hypothesis, V f(7) = 0, which by the Jacobian criterion implies that 7 lies in the singular
locus of the variety V(f). Since f (@) = p € P, this point yields a prime output. Thus, @ € Z" N Sing(f),
and f(d@) € P, completing the construction of a prime-valued singular integer solution.

Example: Let f(x,y) = x° — 3x + °. Then:

o _32_3 Y-
ox Y

Solving V f = O yields x = £1, y = 0. Evaluating:
f(-1,0)=—-14+3=2¢€¢P.
Hence, (—1,0) is a singular point with a prime output, illustrating the theorem. [

4. Arithmetic Interpretation of Singularities
4.1. Prime Conditions Interpreted via Local Rings

In number theory and algebraic geometry, local rings provide a lens through which one can
analyze the behavior of functions and varieties “near” a given point. When considering prime
numbers, it is natural to examine the localization of the integers at a prime p, written Z,), which forms
a discrete valuation ring (DVR).

4.2. Analysis of Singularity Existence Under p-adic Conditions

p-adic analysis provides a powerful tool for understanding the behavior of polynomial equations
near prime-related conditions. Suppose we have f(¥) € Zp[%], and there exists 4 € Z}, such that:

Vf(@) =0 (mod p)and f(d) € pZy.

Then 7 is a p-adic singular point in the reduction of f mod p, and the valuation of f(7) relates closely
to the singular locus structure in arithmetic geometry.

4.3. Refined Theorem B: p-adic Conditions and Geometric Singularities

Theorem 4.1 (Refined Theorem B). Let f(x1,...,X,) € Z[x1,...,x,] and let p € P be a prime number.
Suppose there exists a point a = (ay, ..., an) € Zj, such that:

L f(a) € pzy,

2. Vf(a)=0 (mod p),

3. Eacha; =0 (mod p).

Then the reduction a € ), is a singular point of the reduction f mod p, and hence corresponds to a singular
point in the fiber X, of the scheme Spec(Z[x|/(f)) — Spec(Z).

Proof. Given the conditions:

* f(a) € pZyimplies f(a) =0 (mod p) in ).

* Vf(a) =0 (mod p) implies Vf(a) = 0in Iy, since each partial derivative %(a) € pZy.

e 1;=0 (mod p) ensuresa = (0,...,0).

By the Jacobian criterion, a is a singular point of f mod p, as Vf(a) = 0 and f(a) = 0. To confirm
this singularity cannot be lifted to a smooth point, we apply Hensel’s Lemma. For a polynomial
g(x) € Zy[x] with aroota € Fp, such that g(a) = 0 (mod p) and ¢’(a) # 0 (mod p), Hensel’s Lemma
guarantees a unique lift to Z,. Here, since Vf(a) = 0, the derivative condition fails, preventing a
smooth lift. Thus, a remains a genuine singularity in the fiber X,,.
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Example: Consider f(x,y) = x> +y* — p € Z|x,y] at (0,0) € Z%,. Compute:

o e ¥

_ 2 3
f(O’O) =P € pr, Ix ay

=4y°.
At (0,0), Vf(0,0) = (0,0) (mod p), satisfying condition (2). Since (0,0) = (0,0) (mod p), con-
dition (3) holds, and f(0,0) € pZ, satisfies condition (1). Thus, (0,0) is a singular point in
Xp = Spec(Fp[x,y]/ (x* +3*)). O

5. Interpretation of Primes via Algebraic Fiber Structures
5.1. Conditions for the Emergence of Singular Fibers Under Morphisms

Let f : X — Spec(Z) be a morphism of schemes, where X is defined by a polynomial f(x,y) =
x? +y* — p, with p a prime number. For each point p = (p) € Spec(Z), the fiber X, is defined by
reducing the equation modulo p.

5.2. Refined Analysis of Singular Structure in f(x,y) = x> +y> — p
Definition 5.1. A point (xo,Yo) € IF%, is a singular point of the fiber X, if:

fp(xo,yo) = 0and pr(xo,yo) = (2x0,2yp) = (0,0).
Thus, the only candidate is (0,0), and we check:
fp(0,0) = —p=0 (mod p) = (0,0) € X, and is singular.

Theorem 5.2. Let f(x,y) = x> + y*> — p and X, the fiber over p in Spec(Z). Then:
1. (0,0) is a singular point in X, for all primes p.
2. The geometric structure of X, near (0,0) is determined by the quadratic character of —1 modulo p.

Proof. Since Vf = (2x,2y), the singularity occurs precisely at x = y = 0. Also, f(0,0) = —p =0
(mod p), hence the point lies on the fiber. The solution set of x*> +y*> = 0 (mod p) is nontrivial if and
only if —1 is a quadratic residue modulo p:

(p)—l@pzl(mw4)

O

Corollary 5.3. If p = 1 (mod 4), then X, contains multiple F,-points satisfying x> + y*> = 0, and the
singularity at (0,0) is non-isolated. Otherwise, if p = 3 (mod 4), (0,0) is the only point on X, and the
singularity is isolated.

5.3. Refined Theorem C: Prime-Induced Singular Fibers

Theorem 5.4 (Refined Theorem C). Let f(x,y) = x> +y? — p with p a prime, and consider the arithmetic
scheme X — Spec(Z) defined by f = 0. Let X, denote the fiber over the prime p. Then:

1. X, is singular at the origin (0,0) € IF%, for every p.
2. The nature of the singularity at (0,0) depends on the value of p (mod 4):

o Ifp=1 (mod 4), then —1 is a quadratic residue in Fp, and x* +y> = 0 (mod p) has multiple
solutions. The singularity is non-isolated.

e Ifp =3 (mod 4), then —1 is a non-residue, and the only solution to x> + y* = 0 (mod p) is
(0,0). The singularity is isolated.

o Ifp =2, the equation x> + y> = 0 (mod 2) has a single solution (0,0), and the singularity is
isolated, similar to the p = 3 (mod 4) case.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Proof. The fiber X, is defined by x> + 4> = 0 (mod p). The gradientis Vf = (2x,2y),so Vf = 0 if
and only if x = y = 0. Since f(0,0) = —p =0 (mod p), (0,0) € X, is singular for all p. We analyze
the solutions to x> + y?> = 0 (mod p):

e Casel: p=1 (mod 4). By quadratic reciprocity, (_71) =1, so there exists a € F, witha? = —1.
Thus, x2 + 2 = 0 has nontrivial solutions, e.g., (a,1), making the singularity non-isolated (see
Figure 1).

e Case2: p =3 (mod 4). Here, (_71) = —1, 50 x> + y? = 0 has only the solution (0,0), implying
an isolated singularity.

e Case3:p=21InFy 2?2 +y? =2 +y? (mod 2). Testing values: (0,0) gives 0 +0 = 0, but (1,0),
(0,1),(1,1) give 1 # 0. Thus, (0,0) is the only solution, and the singularity is isolated.

(a,D)

I (mod 4): Non-isolated singularity

(afMu]tiple solutions)
Xp:x24+y?> =0 (mod p)

Figure 1. Fiber structure of X, at the singular point (0,0) for p = 1 (mod 4), showing multiple solutions
indicating a non-isolated singularity.

6. Regularity Conditions of Singular Fibers and the Néron Model

6.1. Néron Smoothening Theory

Definition 6.1. Let R be a discrete valuation ring (e.g., R = Z,)), K = Frac(R) its field of fractions. Let X
be a smooth separated K-scheme. A Néron model of Xk over R is a smooth separated R-scheme X with generic
fiber Xk, such that the following universal property holds: For every smooth R-scheme Y and every K-morphism
fx : Yx = Xk, there exists a unique R-morphism f : Y — X extending fx.

6.2. Application of Resolution and Blow-Up Techniques

Resolution of singularities refers to a process that replaces a singular scheme with a smooth one
via a proper birational morphism. In the context of algebraic geometry over Z, this often involves
working over local rings such as Z,) and resolving the singularities fiberwise.

6.3. Refined Theorem D: Regularization of Singular Fibers

Theorem 6.2 (Refined Theorem D). Let f(x,y) = x* + y? — p define a family of curves over Spec(Z), where

p is a prime number. Then:

1. Ifp=1 (mod 4), the singular fiber X, is regularizable by blow-up at (0,0), and a Néron model exists.

2. Ifp=3 (mod 4) or p = 2, the singularity at (0,0) is isolated, not resolvable by blow-up, and no Néron
model exists over Z ).

Proof. Consider X = Spec(Z[x,y]/ (x> + y* — p)), with fiber X, = Spec(F,[x,y]/ (x> + y?)). The
singularity is at (0,0) since V£(0,0) = (0,0). Perform a blow-up at (0,0) in the chart x = uy:

x2+y2=u2y2+y2=y2(u2+l)=0.

This yieldsy = 0oru? +1=0. For p =1 (mod 4), u> + 1 = 0 has solutions in F,, so the exceptional
divisor splits, and the strict transform is smooth (see Figure 2). For p =3 (mod 4) orp =2, u*+1=0
has no solutions, so the singularity persists, and no Néron model exists due to the failure of universal
lifting. O

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Blown-up X,

Xp u? +1 =0 (smooth if p =1 (mod 4))
Figure 2. Blow-up of the singular point (0,0) in X}, resolving the singularity for p =1 (mod 4).

7. Discriminants and the Occurrence of Singularities
7.1. Correspondence Between the Discriminant A = 0 and Singularities

Given a polynomial f(x) € Z[x], its discriminant A(f) is defined via the resultant of f and its
derivative f’. The vanishing of A(f) corresponds to the existence of singular points.

7.2. Singularities Induced by Prime Divisors of the Discriminant

Let f(x1,...,%,) € Z[xy,..., x| be a polynomial with discriminant A(f) € Z. Suppose a prime p
divides A(f). Then the reduction f,(x1,..., %) = f(x1,...,%;) mod p defines a singular variety over
F,.

p

7.3. Theorem E: Discriminants and Singular Fibers

Theorem 7.1 (Refined Theorem E). Let f(x) € Z[x] be a monic univariate polynomial with discriminant
A(f). For a prime p € P, the following are equivalent:

p A,

The reduction f,(x) := f(x) mod p has a multiple root in I,

There exists a € ¥y such that f,(a) = 0and f,(a) =0,

The fiber X, := Spec(Fp[x]/(fp)) is singular,

Hensel's Lemma fails to lift a root mod p to a unique root in Z,.

Gk L=

Proof. * (1) < (2): The discriminant A(f) = Res(f, f’) vanishes modulo p if and only if f and f’
share a common root in Fp, i.e., f,(x) has a multiple root.

* (2) & (3): Amultiple root a € I, satisfies f,(a) = 0 and fy(a) = 0.

*  (3)= (4):1f fy(a) = 0and f,(a) = 0, the Jacobian criterion implies 4 is a singular point of X,.

* (4) = (5):If Xp is singular at 4, then f, (a) = 0. Hensel’s Lemma requires f},(a) # 0 to lift a root
a such that f,(a) = 0 to a unique a € Z, with f(4) =0and @ = a (mod p). Since f;(a) = 0, this
lifting fails.

* (5) = (1): If Hensel’s Lemma fails, there exists a € I, such that f,(a) = 0 and f,(a) = 0,
implying p | Res(f, f') = A(f).

Example: For f(x) = x* —2x+1 = (x — 1)%, A(f) = 0. For any p, f,(x)
root at x = 1, satisfying all conditions. For p = 2, fo(1) =0, f3(1) =2 =
singularity. [

= (x — 1)? has a double
0 (mod 2), confirming

8. Combined Conditions of Discriminants and Resultants
8.1. Predicting the Singular Locus via the Resultant of Two Polynomials

Given two polynomials f(x) and g(x) over a ring R, the resultant Res( f, ) is a scalar in R defined
as the determinant of the Sylvester matrix of f and g. It vanishes if and only if f and g have a common
root in the algebraic closure of R.

8.2. Prime Factorization and Primary Decomposition of the Resultant

The resultant Res( f, g) being divisible by a prime p implies that f and g share a common root
modulo p.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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8.3. Theorem F: Discriminant, Resultant, and Singular Fiber Equivalence

Theorem 8.1. Let f(x) € Z[x] be a monic polynomial, and let p be a prime. Then the following are equivalent:
p | A(f) = Res(f, f),

f mod p has a multiple root in IFp,

The fiber X, := Spec(FFy[x]/(f)) is singular,

There exists a € Zp with f(a) € pZy and f'(a) € pZy,

Hensel’s Lemma fails to lift a simple root modulo p,

The resultant Res(f, f') =0 (mod p).

S S e

Proof. * (1) < (6): This is the definition of the discriminant: A(f) = Res(f, f'). So (1) holds if
and only if p | Res(f, f).

e (6) < (2): Res(f, f') =0 (mod p) if and only if f and f’ share a common root modulo p, i.e.,
f mod p has a multiple root.

* (2) & (3): A multiple root of f mod p implies the fiber X}, is singular.

* (2) & (4): Existence of a € Z, with f(a), f'(a) € pZ, implies that their reductions vanish in IF},.

e (2)= (5):1f f(a) =0and f'(a) =0 (mod p), Hensel’s Lemma does not apply, so lifting fails.

e (5) = (4): If Hensel fails, f and f’ must both vanish mod p at some a.
Thus, all conditions are equivalent.
Example: Let f(x) = x> +2x + 1 = (x +1)?, then f'(x) = 2x + 2, and

A(f) = Res(f, f') = 0.

So for any p, all six conditions of Theorem F are satisfied: f has a double root, and the fiber X, is
singular. [

9. Summary and Generalization
9.1. Logical Flow and Interdependence of Core Theorems

This section presents a structural overview of the interrelationships among Theorems A through F,
highlighting their logical dependencies, corollary relations, and conceptual groupings. This refinement
offers a clearer synthesis of the algebraic, geometric, and p-adic principles underlying the singularity-
based prime analysis developed in earlier sections.

Core Theorem Map

Dependency Graph:

¢ A (Base singularity criterion): Lattice-based prime-singularity correspondence. Conceptually
foundational.

¢ B, E (Analytic/Algebraic local failure): Establish that failure of Hensel’s Lemma or p-adic lifting
implies geometric singularity. Theorem E uses discriminant/resultant condition; Theorem B uses
p-adic Taylor expansion.

* C, D (Fiber structure and regularization): X, fiber analysis via p mod 4 behavior. Theorem D
applies blow-up and Néron theory to extend C.

* F (Global synthesis): Unifies A through E via resultant and singularity conditions; algebraic
certificate for all prior results.

Logical Hierarchy: Each theorem builds upon the preceding layer of structure:

Theorem A serves as geometric intuition for prime-locus structure.
Theorems B, E specialize in detecting failure of smooth lifting conditions.
Theorem C classifies singularity shape based on prime class.

Theorem D evaluates blow-up-based resolvability and Néron smoothening.

AR S

Theorem F codifies all conditions as algebraic equalities involving discriminant and resultant.
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Conclusion: This refined overview clarifies how each theorem complements the others in the
broader singularity-prime framework. It also sets the stage for cohomological generalizations in
Section 9.3 and motivic reinterpretations in Chapter 10.

9.2. Prime-Class Classification and Theorem G

Theorem 9.1 (Theorem G). Let f,(x,y) := x* +y* mod p, and define the fiber X,, := Spec(Fp[x,y]/ (fp)).
Then:

1. X, is singular if and only if x*> + y* = 0 has a solution in F,,.

2. This occurs if and only if —1 is a quadratic residue modulo p or p = 2.

3. The set of primes p for which Xy, is singular is:

Psing :={p€P[p=1 (mod 4)orp =2}

Proof. The fiber X, is singular at (a,b) € IF‘%7 if fp(a,b) = 0and Vf,(a,b) = (2a,2b) = (0,0). Thus,
(0,0) is singular since £,,(0,0) = 0. The equation x? + 3> = 0 has nontrivial solutions if (_71) =1,1ie,

=1 (mod 4). For p = 2, x> + 4> = 0 (mod 2) has only (0,0), but Vf, = (0,0) in F,, confirming
singularity. Thus, Psing includes p =1 (mod 4) and p =2. O

Corollary 9.2.

< non-reduced and reducible ifp=1 (mod4),
is
reduced and irreducible but singular if p =3 (mod 4)or p = 2.

Table 1. Sheaf-Theoretic Classification of Singular Fibers, including p = 2.

Prime p 2+y2=0 Xp singular? HL(Xp, F)
p=1 (mod 4) | > 2solutions | Yes (non-isolated) #0
p =3 (mod 4) (0,0) only Yes (isolated) =0
p=2 (0,0) only Yes (isolated) =0

9.3. Etale Cohomology and Sheaf-Theoretic Interpretation of Singular Fibers

This section introduces a cohomological framework to interpret and classify the singularities
of fibers in the arithmetic family defined by f(x,y) = x? + y?> — p. Our goal is to extend the local
algebraic behavior into a global topological setting using étale cohomology and sheaf theory.

Singular Support and Vanishing Cohomology

Let X := Spec(Z[x,y]/ (x* + y* — t)) be the total space over Spec(Z), with fibers X, at each prime
p. Let F := Z/V{Z be a constructible étale sheaf on X, for a prime ¢ # p.

Definition 9.3. A fiber Xy, is said to have étale-cohomological singular support if:
Hy (X, F) #0.

Observation
For p = 1 (mod 4): x? +y? = 0 has multiple solutions over F, = X, has nontrivial étale
fundamental group. Hence, the first étale cohomology group is nonzero:

HY(Xp, Z/0Z) = Hom(n$' (X,), Z/(Z) # 0.
For p =3 (mod 4) or p = 2: x2 + > = O only at (0,0) = X, is essentially contractible. Then:

HY(X,, F) =0.
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Theorem 9.4. Let X — Spec(Z) be as above. Let F = Z/{Z with { # p. Then:
HY(Xp, F) #0<=p=1 (mod 4).

Interpretation via Stalk Cohomology
The fiber singularity at (0,0) € X, can be sheaf-theoretically encoded in the stalk cohomology:

HL(F (0,0)) = local contribution from singularity.

Its non-vanishing reflects the non-triviality of the geometric structure in the neighborhood of the
singular point.

Conclusion: This cohomological viewpoint allows us to detect the shape and depth of singu-
larities via topological invariants. Theorems G and H together provide an algebraic-cohomological
classification of prime-induced singularities in arithmetic schemes.

10. Motivic and Derived Interpretation of Prime-Induced Singularities
10.1. Motivic Singular Locus

Let f(x,y) = x*> + y? — p define a family of curves over Z. For each prime p, we associate the
singular fiber X;, and its motive M(X}).

Definition 10.1. The motivic singularity locus of f is the set
oot := {p € P | Sing(Xp) # @ and M(Xp) is nontrivial in the Voevodsky category}.
Using Theorems G and H, we have:
Zmot ={p=1 (mod4)}.

Thus, primes for which the fiber motive contains cohomological complexity coincide with those that
yield non-isolated singularities.

10.2. Enhanced Derived Interpretation of Singular Fibers

This section strengthens the derived interpretation of singularities using formal tools from derived
algebraic geometry. We focus on the cotangent complex and Tor-amplitude conditions to classify the
regularity of fibers X,,.

Derived Cotangent Complex

Let f(x,y) = x> +y*> — p and define the fiber over F:

X, 1= Spec(Fp[x, y]/ (x* + y%)).

At the origin (0,0) € X, the local ring is A = F[x,y]/ (x> + y?), and we define the derived cotangent
complex:

H—‘A/]Fp = {A@Z L> A]/

dx’ dy
point corresponds to the non-triviality of H!(IL), measuring the failure of freeness of the module of
Kéhler differentials.

where ] = (2,9} = (2x,2y). This complex is concentrated in degrees [0,1]. The singularity at a
Yy P g gularity

Theorem 10.2 (Theorem I'). Let X, be as above. Then:
1. {0,0) € X, is a singular point if and only if H! (Lx,) # 0.
2. The Tor-amplitude of Lx, is contained in [0, 1].
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3. The cotangent complex is perfect of Tor-amplitude 1 if and only if p = 1 (mod 4), i.e, when —1 € F; is
a square.

Derived Smoothness Criterion
A scheme X over a base 5 is derived-smooth at a point x € X if:

Lx,s,x ~ free complex concentrated in degree 0.

This fails when the first cohomology H' (L) is nonzero, which is precisely the case at singular points.

Corollary 10.3 (Perfectness Breakdown). The locus of geometric singularity can be characterized functorially:
Sing(Xp) = {x € X, | Tor-amplitude(Lx, ) Z [0]}.

Thus, singularities correspond exactly to the breakdown of the perfectness condition of the cotangent complex.

Conclusion

The derived cotangent complex provides a homotopical tool to detect singularities and measure
their obstruction via cohomological degrees. The Tor-amplitude reflects both the geometric regularity
and the arithmetic residue class of the defining prime p, integrating algebraic and derived perspectives
into a unified singularity detection mechanism.

10.3. Euler Characteristic and Motivic Discontinuity of Singular Fibers

We complete the motivic analysis of singular fibers by introducing the concept of motivic Euler
characteristic, providing a numeric invariant that distinguishes between prime-induced singular fibers.
This links the prime residue class to the global topological behavior of the scheme via its Euler profile.

Motivic Euler Characteristic

Let f(x,y) = x> +y* — t define a family X — Spec(Z). Let X,, be the fiber over a prime p:

Xp = Spec(Fy[x,y]/ (x* + y%)).
Let X, denote a smooth compactification of X, such as its projective closure in P2,
Definition 10.4. The motivic Euler characteristic of the compactified fiber X, is:
_ © . . _
Xmot(Xp) := i:o(_l)l dim Hj, (Xp, Q).

This characteristic behaves discontinuously across primes depending on the singularity structure
of Xy,
P

Proposition 10.5 (Residue-Dependent Euler Profile). Let X}, be the smooth projective closure of X,. Then:

Sonat(%) = 2 z:fp =3 (mod 4),
4 ifp=1 (mod 4).

Sketch of Justification: For p = 3 (mod 4): the affine curve x> + y? = 0 has only one solution,
and the projective curve intersects the line at infinity minimally. Topologically, the compactification
resembles a rational curve with one singularity removed: Euler number 2. For p =1 (mod 4): the
equation has many [F;,-solutions, and the projective curve gains additional irreducible components;
Euler characteristic increases accordingly.
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Theorem 10.6 (Theorem J: Motivic Discontinuity Theorem). Let f(x,y) = x> 4+ y* — t, and xmot(X) as
above. Then the Euler characteristic of the fiber jumps precisely at primes p for which —1 is a quadratic residue:

H — ! —
Ap = Xmot(Xp) - Xmot(Xp’) = 2 pr - 1 (mOd 4)’p =7 (mOd 4)’
0 otherwise.

Conclusion

The motivic Euler characteristic provides a numeric certificate of the hidden singular complexity
embedded in prime-indexed fibers. Combined with the cohomological and derived tools in previous
sections, it completes the arithmetic-topological signature of singular primes. The Euler profile now
stands as a geometric sieve distinguishing Pging C P.

10.4. Future Directions: Motivic Euler Characteristic and Zeta-Fiber Correspondence

We propose the following speculative conjecture:

[Motivic Zeta Connection] Let Z(T) be the Denef-Loeser motivic zeta function associated to the
family f(x,y) = x> +y* — t. Then the poles of Z(T) determine the residue class of primes p where
X is singular.

This would provide a profound link between:

*  motivic integration (geometry),
*  zeta singularities (analysis),
* and quadratic residue theory (arithmetic).

Conclusion

This chapter reinterprets the entire singularity-prime framework through motivic and derived
lenses. It suggests that the residue behavior of primes is not merely algebraic, but reflects the complexity
of global motives and derived categories associated to singular arithmetic schemes.

This motivates future work on the intersection of motivic cohomology, sheaf singularities, and
the spectral behavior of arithmetic zeta functions.

11. Conclusion and Future Research
11.1. Deficiency of Smoothness and the Singular Prime Set

We now reinterpret the results of this study through the lens of global geometric failure. Specif-
ically, we define a new object—the geometric defect set—which captures exactly the primes where
smoothness is obstructed in the arithmetic scheme defined by f(x,y) = x2 + y* — p.

Definition 11.1 (Defect Set). Let X — Spec(Z) be the arithmetic family defined by:
X := Spec(Z[x,y]/ (x*> + y* — 1)).
We define the defect set D as the set of primes for which the fiber X}, is singular:
D:={p € P|Sing(X,) # @}.
Proposition 11.2. For f(x,y) = x*> + y* — p, the defect set D is given by:
D={peP|p=1 (mod4)orp=2}

Justification: By Theorem G, the fiber over p is singular if and only if —1 € F} is a square,
ie, p =1 (mod 4), or p = 2. This aligns with the failure of both geometric regularity and derived
perfectness, as shown in previous sections.

Theorem 11.3 (Theorem K: Defect Set Universality). The defect set D satisfies the following:
1. D isdetectable via:
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o Algebra: p | A(f),

e Geometry: Sing(X,) # @,

»  Cohomology: H},(X,, F) # 0,

*  Motives: Xmot(Xp) jump discontinuous,
*  Derived: Tor-amplitude (Lx,) Z [0].

2. D admits a prime sieve interpretation:

p€D<:><_p1>—lorp—2.

Geometric Interpretation

D is the set where the total scheme X — Spec(Z) fails to be universally smooth. It identifies
the loci where fiberwise pathologies arise and thus functions as the arithmetic shadow of geometric
degeneration.

Conclusion

By introducing the defect set D, we unify all characterizations of singular primes under a single
geometric object. This completes the reinterpretation of primes not just as arithmetic entities, but as
geometric obstructions to smoothness across fibers in an arithmetic scheme.

11.2. Theorem Z: Singularity-Prime Equivalence Framework

This section integrates Theorems F, G, and H into a single equivalence theorem, unifying algebraic,
geometric, cohomological, and derived criteria for detecting singular fibers in arithmetic schemes over
Z.

Theorem 11.4 (Theorem Z: Unified Criterion for Singular Fibers). Let f(x,y) = x> + y* — p, and let
X, = Spec(Fp[x,y]/ (x* + y?)). Then the following conditions are equivalent for a fixed prime p:

X, is singular.

—1 € F}; is a quadratic residue, ie., (_71) =l<=p=1 (mod4)orp=2.

The equation x* + y* = 0 has nontrivial solutions in F5 or is singular at (0,0) for p = 2.

The discriminant A(f) = Res(f, f') satisfies p | A(f).

The étale cohomology group HY (Xp, Z./(Z) # 0 for some { # p.

The derived cotangent complex satisfies H' (Lx,) # 0.

NSk L=

The motivic Euler characteristic satisfies:
Xmot(Xp) =4, whilefor p =3 (mod 4), xmot(Xp) = 2.

Proof. Each of these conditions has been proven equivalent to the singularity of the fiber in previous

sections:
e (1) & (2): By quadratic residue criterion and Theorem G.
*  (2) & (3): Algebraic structure of conics over Iy, including p = 2.
e (1) & (4): Failure of Hensel’s Lemma and discriminant divisibility (Theorem F).
e (1) & (5): Etale cohomology detects singular support (Theorem H).
* (1) & (6): Derived cotangent complex has non-vanishing H! at singularity.
e (1) & (7): Euler characteristic reflects geometric degeneration in compactified fibers.
O
Conclusion

Theorem Z serves as a master theorem summarizing the deep connections between prime residue
class and geometric, algebraic, and topological signatures of singularities. It completes the singularity-
primality equivalence framework developed in this manuscript.
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11.3. Future Directions: Toward the Riemann Hypothesis and Beyond
Based on the findings, we propose:

e Riemann Hypothesis Connection: The defect set D = {p =1 (mod 4) or p = 2} suggests a link
to the distribution of nontrivial zeros of the Riemann zeta function. The motivic zeta function
Z¢(T) may encode singularity data, potentially relating to critical line behavior via Langlands
correspondences. A testable hypothesis is to compute Z¢(T) for f(x,y) = x> + y* — t and analyze
its poles against known zeta zero distributions.

*  Cryptographic Applications: The classification of singular fibers by prime residue classes could
inform elliptic curve cryptography, particularly in selecting curves over F, with controlled
singularity structures for post-quantum algorithms.

*  Algebraic Stacks and Motivic Cohomology: Extend the framework to stacks, modeling singular
primes as points with nontrivial inertia, and use motivic cohomology to quantify their complexity.
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