Submitted:
25 June 2025
Posted:
02 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Motivation
1.2. Structure of Paper
2. Witt Algebra in Quantum Mechanics
2.1. Witt-like Operators and Quantum Mechanics Operators
2.2. Witt Algebra and Hamiltonians
3. Properties of Scalar Witt-like Operators
3.1. Custodial Role of Complex Part in Witt Algebra Operators
3.2. Examples
4. Polynomial Witt Algebra
4.1. Witt-like Operators in Braket Notation
4.1.1. Special Cases
4.1.2. Case I:
4.1.3. Case II:
5. Derivation of a Deformed Witt Algebra and Virasoro Algebra
5.1. Determination of
5.2. Case =
5.3. Infinitesimal Distances
6. Implications of Equation (131)
6.1. Case of m=n
7. Conclusions
References
- Veneziano, G. Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories. Nuovo Cimento A (1965-1970) 57, 190–197 (1968). [CrossRef]
- K. Kikkawa, B. Sakita, and M. A. Virasoro, Feynman-Like Diagrams Compatible with Duality. I. Planar Diagrams, Phys. Rev. 184, 1701 - 1969. [CrossRef]
- M. A. Virasoro, Subsidiary Conditions and Ghosts in Dual-Resonance Models, Phys. Rev. D 1, 2933 – 1970. [CrossRef]
- Richard C. Brower, Spectrum -Generating Algebra and No -Ghost Theorem for the Dual Model, Phy. Rev. D, Vol 6, Number 6, 15 September 1972. [CrossRef]
- P. H. Frampton and H.B. Nielsen, Dual-model spectrum analysis using Virasoro algebra representations, Nucl. Phys. B45 (1972) 318-332. [CrossRef]
- G Veneziano, An introduction to dual models of strong interactions and their physical motivations, Physics Reports Volume 9, Issue 4, February 1974, Pages 199-242. [CrossRef]
- P. Van Alstine, Remark on the c-number anomaly in the Virasoro algebra, Phy. Rev. D, Vol 12, Number 12, 15 September 1975. [CrossRef]
- Helmut Strade, Representations of the Witt algebra, Journal of Algebra, Volume 49, Issue 2, 1977, Pages 595-605. [CrossRef]
- Irving Kaplansky, The Virasoro Algebra, Commun. Math. Phys. 86, 49-54 (1982).
- Brown, J.D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity. Commun.Math. Phys. 104, 207–226 (1986). [CrossRef]
- A. N. Redlich, When is the central charge of the Virasoro algebra in string theories in curved space-time not a numerical constant? Phys. Rev. D 33, 1094 – 1986. [CrossRef]
- Ganpathy Murthy, Virasoro algebra in 2+1 dimensions and angular momentum fractionalization, Phys. Rev. Lett. 58, 755 (1987) - 1987. [CrossRef]
- Ratindranath Akhoury and Yasuhiro Okada, string in curved space-time: Virasoro algebra in the classical and quantum theory, Phy. Rev. D, Vol 35, Number 6, 15 March 1987. [CrossRef]
- Yoshihiko Saito, Nonexistence of a ground state and breaking of the no-ghost theorem on a squeezed string, Phy. Rev. D, Vol 36, Number 10, 15 November 1987. [CrossRef]
- Jonathan Bagger, Dennis Nemeschansky, and Shimon Yankielowicz, Virasoro algebras with central charge c>1, Phys. Rev. Lett. 60, 389 (1988) - 1988. [CrossRef]
- B. L. Feigin and D. B. Fuchs, Cohomology ofsomenilpotent subalgebras ofthe Virasoro and Kac-MoodyLie algebras, Volume 5, Issue 2, 1988, Pages 209-235, Journal of Geometry and Physics. [CrossRef]
- N. Sakai and P. Suranyi, Modification of Virasoro Generators by Kac-Moody Generators, Nuclear Physics B318 (1989) 655-668. [CrossRef]
- Franz Embacher, Covariant Virasoro operators and free bosonic string field theory, Phys. Rev. D 39, 1632 – 1989. [CrossRef]
- T. L. Curtright and C.K. Zachos, Deforming maps for quantum algebras, Physics Letters B, Vol 243, Number 3 (1990) 237. [CrossRef]
- Mitsuhiro Kato, Particle theories with minimum observable length and open string theory, Physics Letters B, Vol 245, Number 1, (1990) 245. [CrossRef]
- M. Chaichian D. Ellinas and Z. Popowicz, Quantum conformal algebra with central extension, Physics Letters B, Vol 248, Number 1,2 (1990) 95.
- E. Ragoucy and P. Sorba, New realizations of the super Virasoro algebra at c= 3, Physics Letters B, Vol 256, Number 1, (1991) 30. [CrossRef]
- N. Aizawa and H. Sato, q-deformation of the Virasoro algebra with central extension, Physics Letters B, Vol 256, Number 2, (1991) 185. [CrossRef]
- Ch. Devchand and M.V. Saveliev, Comultiplication for quantum deformations of the centreless Virasoro algebra in the continuum formulation, Physics Letters B, Vol 258, Number 3,4 (1991) 364. [CrossRef]
- Noureddine Mohammedi, General super-Virasoro construction on affine F, Physics Letters B, Vol 260, Number 3,4 (1991) 317. [CrossRef]
- Earl J. Taft, Witt and Virasoro algebras as Lie bialgebras, Journal of Pure and Applied Algebra 87 (1993) 301-312. [CrossRef]
- L. Faddeev and A.Yu. Volkov, Abelian current algebra and the Virasoro algebra on the lattice, Physics Letters B 315 ( 1993 ) 311-318. [CrossRef]
- Ryuji Kemmoku and Satoru Saito, Discretization of Virasoro algebra, Physics Letters B 319 (1993) 471-477. [CrossRef]
- Y. M. Cho, Effective field theory of an internal string, Phys. Rev. D 49, 1007 – 1994. [CrossRef]
- Arlen Anderson, Quantum Backreaction on "Classical" Variables, Phys. Rev. Lett. 74, 621 – 1995. [CrossRef]
- Ralph Blumenhagen and Andreas Wikkirchen, Extension of the N = 2 Virasoro algebra by two primary fields of dimension 2 and 3, Physics Letters B 343 (1995) 168-180. [CrossRef]
- E.H. El Kinani and M. Zakkari, On the q-deformation of certain infinite dimensional Lie algebras, Physics Letters B 357 (1995) iO5-108. [CrossRef]
- John Maddox, Classical and quantum physics mix, News and Views, Nature, Vol 373, 9 February 1995.
- M. Chaichian and E Pregnajder, q-Virasoro algebra, q-conformal dimensions and free q-superstring, Nuclear Physics B 482 (1996) 466-478.
- Sergei Lukyanov, A note on the deformed Virasoro algebra, Physics Letters B 367 (19%) 121-125. [CrossRef]
- Haru-Tada Sato, OPE formulae for deformed super-Virasoro algebras, Nuclear Physics B 471 (1996) 553-569. [CrossRef]
- Michio Jimbo, Michael Lashkevich, Tetsuji Miwa, and Yaroslav Pugai, Lukyanov’s screening operators for the deformed Virasoro algebra, Physics Letters A 229 (1997) 285-292. [CrossRef]
- Ham-Tada Sato, Deformation of super Virasoro algebra in noncommutative quantum superspace, Physics Letters B 415 (1997) 170-174.
- J. Avan, L. Frappat, M. Rossi and P. Sorba, Central extensions of classical and quantum q-Virasoro algebras, Physics Letters A 251 (1999) 13-24. [CrossRef]
- Máximo Bañados , Embeddings of the Virasoro Algebra and Black Hole Entropy, Phys. Rev. Lett. 82, 2030 – 1999. [CrossRef]
- N. Mebarki, A. Boudine, H. Aissaoui, A. Benslama, A. Bouchareb, and A. Maasmi, No-ghost theorem for a q-deformed open bosonic string, Journal of Geometry and Physics 30 (1999) 103-112. [CrossRef]
- Patrick Marcel, Generalizations of the Virasoro algebra and matrix Sturm–Liouville operators, Journal of Geometry and Physics 36 (2000) 211–222. [CrossRef]
- V.P. Akulov, Sultan Catto, Oktay Cebecioglu, and A.Pashnev, Onthe time-dependent oscillator and the nonlinear realizations of the Virasoro group, Physics Letters B 575 (2003) 137–143. [CrossRef]
- E. H. El Kinani, Between Quantum Virasoro Algebra Lc and Generalized Clifford Algebras, math-ph arXiv:math-ph/0310044v1.
- M. Chaichian and P.Presnajder, Discrete-time quantum field theory and the deformed super-Virasoro algebra, Physics Letters A 322 (2004) 156–165. [CrossRef]
- Jonas T. Hartwig, Daniel Larsson and Sergei D. Silvestrov, Deformations of Lie algebras using Sigma-derivations, ournal of Algebra 295 (2006) 314–361. [CrossRef]
- Thomas L. Curtrighta, David B. Fairlieb and Cosmas K. Zachos, Ternary Virasoro–Witt algebra, Physics Letters B 666 (2008) 386–39. [CrossRef]
- Guang Song, Yucai Su and Yuezhu Wu, Quantization of generalized Virasoro-like algebras, Linear Algebra and its Applications 428 (2008) 2888–2899. [CrossRef]
- Barton Zwiebach, A First Course in String Theory, Section 12.4, Second Edition, 2009, Cambridge University Press.
- T.Kojimaa and J.Shiraishi, The integrals of motion for the elliptic deformation of the Virasoro and WN algebra, Nonlinear Analysis 71 (2009) e1915-e1921. [CrossRef]
- M. Rasettia and C.Marletto, A novel realization of the Virasoro algebra in number state space, Physics Letters A 373 (2009) 2901–2904. [CrossRef]
- Jeremie Unterberger, On vertex algebra representations of the Schrödinger–Virasoro Lie algebra, Nuclear Physics B 823 [PM] (2009) 320–371. [CrossRef]
- Luc Haine and Didier Vanderstichelen, A centerless representation of the Virasoro algebra associated with the unitary circular ensemble, Journal of Computational and Applied Mathematics 236 (2011) 19–2. [CrossRef]
- Shintarou Yanagida, Whittaker vectors of the Virasoro algebra in terms of Jack symmetric polynomial, Journal of Algebra 333 (2011) 273–294. [CrossRef]
- Azat M. Gainutdinov, Jesper Lykke Jacobsen, Hubert Saleur and Romain Vasseur, Aphysical approach to the classification of indecomposable Virasoro representations from the blob algebra, Nuclear Physics B 873 [PM] (2013) 614–681. [CrossRef]
- Yoshifumi Hyakutake, Super Virasoro algebra from supergravity, Phys. Rev. D 87, 045028 - 2013. [CrossRef]
- Biswajit Paul, Gauge symmetry and Virasoro algebra in quantum charged rigid membrane: A first order formalism, Phys. Rev. D 87, 045003 – 2013. [CrossRef]
- Itzhak Bars and Dmitry Rychkov, Is string interaction the origin of quantum mechanics? Physics Letters B 739 (2014) 451–456. [CrossRef]
- Bibhas Ranjan Majhi, Conformal transformation, near horizon symmetry, Virasoro algebra, and entropy, Phys. Rev. D 90, 044020 – 2014. [CrossRef]
- Hongyan Guo, Haisheng Li, Shaobin Tana and Qing Wang, q-Virasoro algebra and vertex algebras, Journal of Pure and Applied Algebra 219 (2015) 1258–1277. [CrossRef]
- Hyakutake, Y. Super Virasoro Algebras From Chiral Supergravity. Universe 2015, 1, 292-306. [CrossRef]
- XuGao, Ming Liu, Chengming Bai and Naihuan Jing, Rota–Baxter operators on Witt and Virasoro algebras, Journal of Geometry and Physics 108 (2016) 1–20. [CrossRef]
- Arjun Bagchi, Aritra Banerjee, and Pulastya Parekh, Tensionless Path from Closed to Open Strings, Phys. Rev. Lett. 123, 111601 - 2019. [CrossRef]
- Hongyan Guo, Haisheng Li, Shaobin Tan and Qing Wang, q-Virasoro algebra and affine Kac-Moody Lie algebras, Journal of Algebra 534 (2019) 168–189. [CrossRef]
- Yaohui Xue and Kaiming Zhao, Representations of the fermion-Virasoro algebras, math arXiv:2306.15250v1.
- Chen, X. Quantization of the Rank Two Heisenberg–Virasoro Algebra. Axioms 2024, 13, 446. [CrossRef]
- Guo, X.; Kaygorodov, I.; Tang, L. Maps on the Mirror Heisenberg–Virasoro Algebra. Mathematics 2024, 12, 802. [CrossRef]
- Ivan Kaygorodov, Abror Khudoyberdiyev and Zarina Shermatova, Transposed Poisson structures on Virasoro-type algebras, math arXiv:2406.15532v1. [CrossRef]
- Isaac H. Kim, Xiang Li, Ting-Chun Lin, John McGreevy and Bowen Shi, Chiral Virasoro algebra from a single wavefunction, Annals of Physics 471 (2024) 169849. [CrossRef]
- Nieto-Chaupis, H. Canonical Commutation Relation Derived from Witt Algebra. Mathematics 2025, 13, 1910. [CrossRef]
- ikhail I. Dyakonov, Optical orientation of spins in semiconductors, Editor(s): Tapash Chakraborty, Encyclopedia of Condensed Matter Physics (Second Edition), Academic Press, 2024, Pages 223-232.
- C. Cohen-Tannoudji, B. Diu and F. Laloe, “Quantum Mechanics,” John Wiley and Sons, New York, 1977, p.18.
- J. J. Sakurai, San Fu Tuan. Modern Quantum Mechanics, Chap-II, Revised Edition. Pearson Education, 1994, p.196. [CrossRef]
- John Maddox, Classical and quantum physics mix, News and Views, Nature, Vol 373, 9 February 1995. [CrossRef]
- Goldstin H. Classical Mechanics, Third Edition, Addison Wesley 2002, p.2.
- Astapenko, V.; Bergaliyev, T. Comparison of Harmonic Oscillator Model in Classical and Quantum Theories of Light-Matter Interaction. Foundations 2023, 3, 549-559. [CrossRef]
- Kim, T., Dolgy, D.V., Kim, D.S. et al. A note on degenerate generalized Laguerre polynomials and Lah numbers. Adv Differ Equ 2021, 421 (2021). [CrossRef]
- A.T. Filippov, A.P. Isaev, and A.B. Kurdikov, Para-Grassmann extensions of the Virasoro algebra, International Journal of Modern Physics AVol. 08, No. 28, pp. 4973-5003 (1993). [CrossRef]
- Shinsei Ryu and Junggi Yoon, Unitarity of Symplectic Fermions in Vacua with Negative Central Charge, Phys. Rev. Lett. 130, 241602 –2023.
- Horst G. Kausch, Curiosities at c=-2 arXiv:hep-th/9510149.
- Horst G. Kausch, Symplectic fermions, Nucl. Phys. B583, 513 (2000).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).