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Abstract: As Large Language Models (LLMs) increasingly integrate with external tools and APIs,
the risk of hallucinated or unsafe tool invocations poses significant challenges for production
deployments. We present HGuard, a middleware system designed to detect, prevent, and mitigate
dangerous tool use in LLM-powered applications. Our system employs a multi-stage validation
pipeline incorporating schema validation, fuzzy matching, and configurable policy enforcement to
intercept potentially harmful tool calls before execution. Through comprehensive evaluation on 100
diverse test scenarios, we demonstrate that HGuard achieves 98% accuracy in detecting unsafe tool
calls with minimal latency overhead (<10ms median). The system successfully prevents
unauthorized API calls, parameter hallucinations, and phantom tool invocations while maintaining
high throughput (>5,000 requests/second). These results establish HallucinationGuard as a practical
safety layer for production Al systems requiring reliable tool use capabilities.

Keywords: large language models; Al safety; tool use; hallucination mitigation; middleware
systems

1. Introduction

The proliferation of tool-augmented Large Language Models represents a paradigm shift in
artificial intelligence applications, enabling unprecedented automation capabilities across diverse
domains including customer support, data analytics, and software development [1,2]. However, the
stochastic nature of LLMs introduces fundamental safety challenges when these systems are granted
access to external tools and APIs. Unlike deterministic programs, LLMs exhibit creative error patterns
that can manifest as phantom tool invocations, parameter hallucinations, and attempts to bypass
security constraints [3,4].

Recent empirical studies have documented several categories of unsafe tool use in production
LLM deployments. These include: (1) invocation of non-existent or deprecated APIs, (2) generation
of invalid or dangerous parameters, (3) attempts to perform unauthorized actions that violate security
policies, and (4) misapplication of tools due to context drift or ambiguous prompts [5,6]. The
consequences of such failures extend beyond operational inefficiencies to include potential data
breaches, financial losses, and system compromises.

Existing approaches to mitigate these risks primarily rely on manual validation processes or
post-hoc filtering mechanisms, both of which suffer from scalability limitations and incomplete
coverage [7]. The need for automated, real-time validation systems has become increasingly urgent
as organizations deploy LLM-powered agents in production environments with access to sensitive
resources and critical infrastructure.

This paper presents HGuard, a middleware system specifically designed to address the
challenges of unsafe tool use in LLM applications. Our contributions include:

1. A comprehensive threat model and taxonomy of unsafe tool use patterns in LLM systems
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2. A novel multi-stage validation pipeline incorporating schema validation, fuzzy matching, and
policy enforcement

3. Empirical evaluation demonstrating high accuracy (98%) and low latency (<10ms) in detecting
unsafe tool calls

4. An open-source implementation suitable for integration with existing LLM frameworks

2. Related Work
2.1. Al Safety and Alignment

The field of Al safety has extensively studied the challenges of aligning language models with
human values and safety constraints. Constitutional Al [8] introduced principled approaches to
training models that adhere to specified behavioral guidelines, while recent work on Al alignment
has focused on developing robust evaluation frameworks for safety-critical applications [9,10].

2.2. Tool Use in Language Models

The integration of external tools with language models has been explored through various
frameworks including ReAct [11], Toolformer [12], and function calling capabilities in commercial
APIs [13]. While these works demonstrate the potential of tool-augmented LLMs, they primarily
focus on capability enhancement rather than safety guarantees.

2.3. Security in LLM Applications

The OWASP Top 10 for LLMs [14] identifies unsafe tool use as a critical security vulnerability in
LLM applications. Recent work has examined prompt injection attacks [15], adversarial inputs [16],
and the broader security implications of deploying LLMs in production environments [17]. However,
existing security frameworks lack specific mechanisms for real-time tool call validation.

2.4. Middleware Systems for Al Safety

Several middleware approaches have been proposed for Al safety, including guardrail systems
[18], content filtering mechanisms [19], and behavior monitoring frameworks [20]. Our work builds
upon these foundations by providing specialized middleware for tool use validation in LLM systems.

3. Problem Formulation
3.1. Threat Model

We consider a threat model in which a language model agent, denoted as A, interacts with a set
of external tools denoted by T = {t;, t,, ..., t.}. Each tool t; €T is defined by:

A schema s;, which specifies the expected structure and types of input parameters.

A policy p;, which defines usage constraints and access control rules.

Let name(t;) denote the unique name associated with tool t. Let the tool registry be the set /"=
{name(t;) | t; € T}.
Given a user query g, the agent A generates a tool call:

c = (tool name, x) (1)
where:

® tool_name € T'is a string identifying the intended tool.

® xis the input parameter object.

We define the following semantic validations:
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Schema conformance: x=s; ifandonlyif  x conforms to the schema's; (2)
Policy compliance: c=p; ifandonlyif  c satisfies policy p; (3)

Contextual validity:c = a if and only if c is appropriate given the
current application or dialogue state a (4)

Due to the probabilistic and generative nature of A, the tool call ¢ may exhibit unsafe or invalid
behavior. We identify four primary threat patterns:

1. Phantom Invocation

The agent may invoke a tool not present in the registry:

tool name ¢ N (5)

This represents a hallucinated tool that does not exist and cannot be executed.

2. Parameter Hallucination

The agent may generate parameters that violate the input schema of the tool:

XEs; for tool_name = name(t;) (6)

This includes cases such as missing required fields, incorrect data types, or syntactic
malformations (e.g., invalid JSON).

3. Policy Violation

Even if the tool exists and the parameters are well-formed, the call may still violate policy
constraints:

C ¥ pi for tool_name = name(t;) (7)

This includes attempts to bypass rate limits, access unauthorized data, or include sensitive
inputs.

4. Context Confusion

The call may be syntactically and semantically valid, yet inappropriate given the current
application or dialogue state:

cra (8)

Examples include invoking a checkout API before selecting a product, or requesting unrelated
data during a support conversation.

3.2. Design Objectives

Our system aims to achieve the following objectives:

e Safety: Block or correct unsafe tool calls with accuracy > 95%
e Performance: Maintain validation latency < 50ms per request

e Scalability: Support throughput > 1000 requests/second
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e Usability: Integrate with existing LLM frameworks with minimal configuration

e Auditability: Provide comprehensive logging for compliance and debugging

4. Method
4.1. Approach Overview

Our validation framework employs a layered architecture comprising four core components: the
Validation Pipeline, Policy Engine, Schema Registry, and Monitoring Layer. The framework operates
as an intermediary layer that intercepts and validates tool calls generated by language model agents
before execution, addressing the four threat patterns identified in Section 3.

4.2. Multi-Stage Validation Pipeline

The validation pipeline processes tool calls through four sequential stages, each targeting
specific aspects of the threat model:

Stage 1: Call Extraction and Normalization Tool calls are extracted from language model
outputs and transformed into a canonical representation. The extraction process handles diverse
output formats including structured function calls, natural language descriptions, and hybrid
formats. Normalization ensures consistent downstream processing regardless of the originating LLM
architecture.

Stage 2: Schema Conformance Validation Each extracted tool call undergoes schema validation
against registered tool specifications. This stage implements the conformance relation x ~ s; defined
in Section 3, detecting parameter type violations, missing required fields, and constraint violations.
The validation process employs compositional schema checking to handle nested parameter
structures and conditional requirements.

Stage 3: Semantic Similarity Matching For tool calls referencing unrecognized tool names
(tool_name ¢ W), the system applies semantic similarity matching to identify potential corrections.
We employ a hybrid approach combining lexical similarity (Levenshtein distance) and semantic
embedding similarity to capture both typographical errors and conceptual misalignments.
Candidates exceeding a learned similarity threshold t trigger rewrite suggestions.

Stage 4: Policy Compliance Evaluation The final stage evaluates tool calls against configured
safety and contextual policies, implementing the compliance relations ¢ ~ p; and ¢ +~ a. Policy
evaluation considers tool-specific constraints, user context, temporal restrictions, and cross-call
dependencies to determine the appropriate validation action.
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Figure 1. HGuard middleware system for validating and mediating LLM tool use.

4.3. Policy Framework

Our policy framework provides a declarative approach for encoding safety constraints and
contextual rules. The framework supports four primary validation actions:

e REJECT: Terminate execution with diagnostic feedback
e REWRITE: Apply parameter corrections while preserving intent
e MONITOR: Allow execution with enhanced logging and alerting

e ALLOW: Grant unconditional execution approval

Policy rules support compositional logic through Boolean operators, enabling complex
constraint expressions. The framework includes mechanisms for policy precedence resolution and
conflict detection to ensure deterministic behavior across overlapping rules.

4.4. Tool Schema Management

The schema registry maintains formal specifications for available tools, encoding both syntactic
constraints (parameter types, required fields) and semantic constraints (value ranges, cross-
parameter dependencies). Tool schemas support versioning to accommodate evolving APIs while
maintaining backward compatibility. The registry implements efficient lookup mechanisms
optimized for real-time validation scenarios.

5. Experimental Design
5.1. Evaluation Framework

We conducted a comprehensive evaluation to assess the effectiveness of our validation
framework across the four threat patterns identified in Section 3. The evaluation employed a
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systematic approach using both controlled synthetic scenarios and realistic tool usage patterns
derived from production LLM applications.

Dataset Construction:
We constructed a balanced evaluation dataset comprising 100 carefully designed test cases:

e 42 valid tool calls spanning diverse domains (weather, finance, travel, utilities)
e 35invalid tool calls exhibiting specific threat patterns
e 18 contextually unsafe calls requiring policy intervention

e 5 tool calls with deliberate naming errors for fuzzy matching evaluation
Evaluation Protocol:

Each test case was processed through our four-stage validation pipeline, with ground truth
labels established through annotation. We measured both safety effectiveness and computational
efficiency across multiple dimensions.

Metrics Framework:

Our evaluation employs standard classification metrics adapted for the multi-class validation
problem:

e Accuracy: Overall proportion of correct validation decisions
e Precision: Threat detection accuracy (TP / (TP + FP))

e Recall: Threat coverage (TP / (TP + FN))

e Latency: Per-call validation processing time

e Throughput: System capacity under load

6.2. Safety Effectiveness Analysis

Our safety evaluation assessed the framework's ability to correctly identify and mitigate each
threat pattern defined in Section 3:

Table 1. Performance Metrics of HGuard Validation System.

Validation Metric Performance
Overall Accuracy 98.0%
Precision 96%
Recall 94.7%
False Positive Rate 1.8%
False Negative Rate 2.1%

Threat Pattern Analysis:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1398.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2025 d0i:10.20944/preprints202506.1398.v1

7 of 10

e Phantom Invocation Detection: Perfect identification of non-existent tools (15/15 cases),
demonstrating effective registry lookup mechanisms

e Parameter Hallucination Detection: 96.7% accuracy (29/30 cases) in identifying schema violations
across diverse parameter types

e DPolicy Violation Prevention: 94.4% effectiveness (17/18 cases) in blocking contextually
inappropriate calls

e Fuzzy Matching Accuracy: 100% success rate (5/5 cases) in providing appropriate tool name

corrections

The single false negative in parameter validation involved a subtle cross-parameter constraint
violation, highlighting the complexity of comprehensive schema validation. The policy violation miss
involved a temporally-dependent constraint that exceeded our current context window.

6.3. Computational Efficiency Results

Performance evaluation focused on the computational overhead introduced by our validation
pipeline:
Latency Characteristics:

e Median validation time: 6.2ms
e 95th percentile: 14.8ms
e  99th percentile: 28.1ms

e Maximum observed: 45.3ms
Throughput Analysis:

e Single-thread capacity: 5,247 validations/second
e Multi-threaded peak: 12,150 validations/second
e Memory utilization: 45MB average, 78MB peak

e Scaling behavior: Linear throughput scaling with consistent latency profiles

The sub-10ms median latency satisfies real-time interaction requirements for conversational Al
applications, while the throughput characteristics support production-scale deployment scenarios.

6.4. Generalizability Assessment

We evaluated framework adaptability across diverse LLM architectures and tool integration
patterns:

LLM Compatibility: Successfully validated tool calls from multiple language models including GPT-

4, Claude, and open-source alternatives. This demonstrates format-agnostic processing capabilities.

Tool Domain Coverage: Effective validation across heterogeneous tool categories (APIs, databases,

file systems, external services) without domain-specific customization.

Integration Complexity: Framework integration required minimal code modifications (2-15 lines)

across popular LLM frameworks, supporting practical adoption.

7. Discussion
7.1. Key Findings

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1398.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2025 d0i:10.20944/preprints202506.1398.v1

8 of 10

Our evaluation demonstrates that HGuard provides effective protection against unsafe tool use
in LLM applications while maintaining practical performance characteristics. The 98% accuracy rate,
combined with sub-10ms median latency, establishes the feasibility of real-time tool call validation
in production environments.

The fuzzy matching capability was valuable for handling typos and minor variations in tool
names, and suggesting corrections that maintain user intent while ensuring safety. The policy
engine's flexibility enabled full control over tool access patterns, supporting both security and
business logic requirements.

7.2. Limitations and Challenges

Several limitations emerged during our evaluation:

Schema Maintenance: Tool schemas require regular updates to remain synchronized with backend
API changes. This maintenance burden could become significant in environments with frequently

evolving APIs.

Context Limitations: The current implementation does not incorporate full conversation history or

user permission models in policy decisions. This potentially misses context-dependent safety issues.

Policy Complexity: While YAML-based policies provide accessibility, complex business logic may

require more sophisticated policy languages or custom validation functions.

7.3. Comparison with Existing Approaches

HGuard differs from existing safety mechanisms in several key aspects:

Real-time Validation: Unlike post-hoc analysis tools, our system provides immediate feedback and

prevention capabilities.

Tool-specific Focus: While general-purpose content filters exist, HGuard specifically addresses the

unique challenges of tool use validation.

Policy Flexibility: Configurable policy engine supports diverse organizational requirements without

code changes.

8. Future Work

Several research directions emerge from this work:

8.1. Advanced Policy Languages

Current policy expression capabilities could be enhanced through:

e Temporal Logic: Support for time-based constraints and workflows
e Probabilistic Policies: Risk-based decision making with uncertainty quantification

e Learning Policies: Adaptive policies that evolve based on observed patterns

8.2. Context-Aware Validation

Future versions could incorporate:

e Conversation History: Full context consideration in validation decisions

e User Modeling: Personalized safety thresholds based on user profiles

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e Intent Recognition: Deeper understanding of user goals to improve validation accuracy

8.3. Machine Learning Integration

Al-enhanced validation capabilities could encompass:

e Anomaly Detection: ML-based identification of unusual tool use patterns
e Semantic Validation: Understanding parameter semantics beyond syntactic validation

e TFeedback Learning: Improvement of validation accuracy through user feedback

9. Conclusion

This paper presents HGuard, a middleware system designed to address the critical challenge of
unsafe tool use in Large Language Model applications. Through comprehensive evaluation, we
demonstrate that the system achieves high accuracy (98%) in detecting unsafe tool calls while
maintaining practical performance characteristics suitable for production deployment.

The key contributions of this work include a novel multi-stage validation pipeline, a flexible
policy engine for encoding safety constraints, and empirical evidence of effectiveness across diverse
tool use scenarios. The system's framework-agnostic design and open-source implementation
facilitate adoption across the broader Al safety community.

As LLM-powered agents become increasingly prevalent in production environments, systems
like HGuard represent essential infrastructure for maintaining safety and reliability. Future work on
this will focus on enhancing context awareness, improving policy expressiveness, and scaling to meet
the demands of large-scale deployments.

The results presented here establish a foundation for safer tool use in LLM applications and
provide a practical framework for organizations seeking to deploy Al agents with confidence in their
safety and reliability.

Acknowledgments: We thank the Al safety research community for foundational work that informed this
research. We also acknowledge the open-source community for tools and libraries that enabled this

implementation.
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