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Abstract: As Large Language Models (LLMs) increasingly integrate with external tools and APIs, 
the risk of hallucinated or unsafe tool invocations poses significant challenges for production 
deployments. We present HGuard, a middleware system designed to detect, prevent, and mitigate 
dangerous tool use in LLM-powered applications. Our system employs a multi-stage validation 
pipeline incorporating schema validation, fuzzy matching, and configurable policy enforcement to 
intercept potentially harmful tool calls before execution. Through comprehensive evaluation on 100 
diverse test scenarios, we demonstrate that HGuard achieves 98% accuracy in detecting unsafe tool 
calls with minimal latency overhead (<10ms median). The system successfully prevents 
unauthorized API calls, parameter hallucinations, and phantom tool invocations while maintaining 
high throughput (>5,000 requests/second). These results establish HallucinationGuard as a practical 
safety layer for production AI systems requiring reliable tool use capabilities. 

Keywords: large language models; AI safety; tool use; hallucination mitigation; middleware 
systems 

 

1. Introduction 
The proliferation of tool-augmented Large Language Models represents a paradigm shift in 

artificial intelligence applications, enabling unprecedented automation capabilities across diverse 
domains including customer support, data analytics, and software development [1,2]. However, the 
stochastic nature of LLMs introduces fundamental safety challenges when these systems are granted 
access to external tools and APIs. Unlike deterministic programs, LLMs exhibit creative error patterns 
that can manifest as phantom tool invocations, parameter hallucinations, and attempts to bypass 
security constraints [3,4]. 

Recent empirical studies have documented several categories of unsafe tool use in production 
LLM deployments. These include: (1) invocation of non-existent or deprecated APIs, (2) generation 
of invalid or dangerous parameters, (3) attempts to perform unauthorized actions that violate security 
policies, and (4) misapplication of tools due to context drift or ambiguous prompts [5,6]. The 
consequences of such failures extend beyond operational inefficiencies to include potential data 
breaches, financial losses, and system compromises. 

Existing approaches to mitigate these risks primarily rely on manual validation processes or 
post-hoc filtering mechanisms, both of which suffer from scalability limitations and incomplete 
coverage [7]. The need for automated, real-time validation systems has become increasingly urgent 
as organizations deploy LLM-powered agents in production environments with access to sensitive 
resources and critical infrastructure. 

This paper presents HGuard, a middleware system specifically designed to address the 
challenges of unsafe tool use in LLM applications. Our contributions include: 

1. A comprehensive threat model and taxonomy of unsafe tool use patterns in LLM systems 
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2. A novel multi-stage validation pipeline incorporating schema validation, fuzzy matching, and 
policy enforcement 

3. Empirical evaluation demonstrating high accuracy (98%) and low latency (<10ms) in detecting 
unsafe tool calls 

4. An open-source implementation suitable for integration with existing LLM frameworks 

2. Related Work 
2.1. AI Safety and Alignment 

The field of AI safety has extensively studied the challenges of aligning language models with 
human values and safety constraints. Constitutional AI [8] introduced principled approaches to 
training models that adhere to specified behavioral guidelines, while recent work on AI alignment 
has focused on developing robust evaluation frameworks for safety-critical applications [9,10]. 

2.2. Tool Use in Language Models 

The integration of external tools with language models has been explored through various 
frameworks including ReAct [11], Toolformer [12], and function calling capabilities in commercial 
APIs [13]. While these works demonstrate the potential of tool-augmented LLMs, they primarily 
focus on capability enhancement rather than safety guarantees. 

2.3. Security in LLM Applications 

The OWASP Top 10 for LLMs [14] identifies unsafe tool use as a critical security vulnerability in 
LLM applications. Recent work has examined prompt injection attacks [15], adversarial inputs [16], 
and the broader security implications of deploying LLMs in production environments [17]. However, 
existing security frameworks lack specific mechanisms for real-time tool call validation. 

2.4. Middleware Systems for AI Safety 

Several middleware approaches have been proposed for AI safety, including guardrail systems 
[18], content filtering mechanisms [19], and behavior monitoring frameworks [20]. Our work builds 
upon these foundations by providing specialized middleware for tool use validation in LLM systems. 

3. Problem Formulation 
3.1. Threat Model 

We consider a threat model in which a language model agent, denoted as A, interacts with a set 
of external tools denoted by T = {t₁, t₂, …, tₙ}. Each tool tᵢ ∈ T is defined by: 

● A schema sᵢ, which specifies the expected structure and types of input parameters. 
● A policy pᵢ, which defines usage constraints and access control rules. 

Let name(tᵢ) denote the unique name associated with tool tᵢ. Let the tool registry be the set 𝒩 = 
{name(tᵢ) | tᵢ ∈ T}. 

Given a user query q, the agent A generates a tool call: 
c = (tool_name, x)    (1) 

where: 

● tool_name ∈ 𝕋 is a string identifying the intended tool. 
● x is the input parameter object. 

We define the following semantic validations: 
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Schema conformance: x ⊨ sᵢ   if and only if   x conforms to the schema sᵢ    (2) 

Policy compliance: c ⊨ pᵢ   if and only if   c satisfies policy pᵢ    (3) 

Contextual validity:c ⊨ α    if and only if  c is appropriate given the 

current application or dialogue state α    (4) 

Due to the probabilistic and generative nature of A, the tool call c may exhibit unsafe or invalid 
behavior. We identify four primary threat patterns: 

1. Phantom Invocation 
The agent may invoke a tool not present in the registry: 

tool_name ∉ 𝒩    (5) 

This represents a hallucinated tool that does not exist and cannot be executed. 

2. Parameter Hallucination 

The agent may generate parameters that violate the input schema of the tool: 
x ⊭ sᵢ    for tool_name = name(tᵢ)    (6) 

This includes cases such as missing required fields, incorrect data types, or syntactic 
malformations (e.g., invalid JSON). 

3. Policy Violation 

Even if the tool exists and the parameters are well-formed, the call may still violate policy 
constraints: 

c ⊭ pᵢ    for tool_name = name(tᵢ)    (7) 

This includes attempts to bypass rate limits, access unauthorized data, or include sensitive 
inputs. 

4. Context Confusion 

The call may be syntactically and semantically valid, yet inappropriate given the current 
application or dialogue state: 

c ⊭ α    (8) 

Examples include invoking a checkout API before selecting a product, or requesting unrelated 
data during a support conversation. 

3.2. Design Objectives 

Our system aims to achieve the following objectives: 

● Safety: Block or correct unsafe tool calls with accuracy > 95% 
● Performance: Maintain validation latency < 50ms per request 
● Scalability: Support throughput > 1000 requests/second 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2025 doi:10.20944/preprints202506.1398.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1398.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 10 

 

● Usability: Integrate with existing LLM frameworks with minimal configuration 
● Auditability: Provide comprehensive logging for compliance and debugging 

4. Method 
4.1. Approach Overview  

Our validation framework employs a layered architecture comprising four core components: the 
Validation Pipeline, Policy Engine, Schema Registry, and Monitoring Layer. The framework operates 
as an intermediary layer that intercepts and validates tool calls generated by language model agents 
before execution, addressing the four threat patterns identified in Section 3. 

4.2. Multi-Stage Validation Pipeline  

The validation pipeline processes tool calls through four sequential stages, each targeting 
specific aspects of the threat model: 

Stage 1: Call Extraction and Normalization Tool calls are extracted from language model 
outputs and transformed into a canonical representation. The extraction process handles diverse 
output formats including structured function calls, natural language descriptions, and hybrid 
formats. Normalization ensures consistent downstream processing regardless of the originating LLM 
architecture. 

Stage 2: Schema Conformance Validation Each extracted tool call undergoes schema validation 
against registered tool specifications. This stage implements the conformance relation x ⊨ sᵢ defined 
in Section 3, detecting parameter type violations, missing required fields, and constraint violations. 
The validation process employs compositional schema checking to handle nested parameter 
structures and conditional requirements. 

Stage 3: Semantic Similarity Matching For tool calls referencing unrecognized tool names 
(tool_name ∉ 𝒩), the system applies semantic similarity matching to identify potential corrections. 
We employ a hybrid approach combining lexical similarity (Levenshtein distance) and semantic 
embedding similarity to capture both typographical errors and conceptual misalignments. 
Candidates exceeding a learned similarity threshold τ trigger rewrite suggestions. 

Stage 4: Policy Compliance Evaluation The final stage evaluates tool calls against configured 
safety and contextual policies, implementing the compliance relations c ⊨  pᵢ and c ⊨ α. Policy 
evaluation considers tool-specific constraints, user context, temporal restrictions, and cross-call 
dependencies to determine the appropriate validation action. 
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Figure 1. HGuard middleware system for validating and mediating LLM tool use. 

4.3. Policy Framework  

Our policy framework provides a declarative approach for encoding safety constraints and 
contextual rules. The framework supports four primary validation actions: 

● REJECT: Terminate execution with diagnostic feedback 
● REWRITE: Apply parameter corrections while preserving intent 
● MONITOR: Allow execution with enhanced logging and alerting 
● ALLOW: Grant unconditional execution approval 

Policy rules support compositional logic through Boolean operators, enabling complex 
constraint expressions. The framework includes mechanisms for policy precedence resolution and 
conflict detection to ensure deterministic behavior across overlapping rules. 

4.4. Tool Schema Management  

The schema registry maintains formal specifications for available tools, encoding both syntactic 
constraints (parameter types, required fields) and semantic constraints (value ranges, cross-
parameter dependencies). Tool schemas support versioning to accommodate evolving APIs while 
maintaining backward compatibility. The registry implements efficient lookup mechanisms 
optimized for real-time validation scenarios. 

5. Experimental Design 
5.1. Evaluation Framework  

We conducted a comprehensive evaluation to assess the effectiveness of our validation 
framework across the four threat patterns identified in Section 3. The evaluation employed a 
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systematic approach using both controlled synthetic scenarios and realistic tool usage patterns 
derived from production LLM applications. 

Dataset Construction:  

We constructed a balanced evaluation dataset comprising 100 carefully designed test cases: 

● 42 valid tool calls spanning diverse domains (weather, finance, travel, utilities) 
● 35 invalid tool calls exhibiting specific threat patterns 
● 18 contextually unsafe calls requiring policy intervention 
● 5 tool calls with deliberate naming errors for fuzzy matching evaluation 

Evaluation Protocol:  

Each test case was processed through our four-stage validation pipeline, with ground truth 
labels established through annotation. We measured both safety effectiveness and computational 
efficiency across multiple dimensions. 

Metrics Framework:  

Our evaluation employs standard classification metrics adapted for the multi-class validation 
problem: 

● Accuracy: Overall proportion of correct validation decisions 
● Precision: Threat detection accuracy (TP / (TP + FP)) 
● Recall: Threat coverage (TP / (TP + FN)) 
● Latency: Per-call validation processing time 
● Throughput: System capacity under load 

6.2. Safety Effectiveness Analysis  

Our safety evaluation assessed the frameworkʹs ability to correctly identify and mitigate each 
threat pattern defined in Section 3: 

Table 1. Performance Metrics of HGuard Validation System. 

Validation Metric Performance 

Overall Accuracy 98.0% 

Precision 96% 

Recall 94.7% 

False Positive Rate 1.8% 

False Negative Rate 2.1% 

Threat Pattern Analysis: 
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● Phantom Invocation Detection: Perfect identification of non-existent tools (15/15 cases), 
demonstrating effective registry lookup mechanisms 

● Parameter Hallucination Detection: 96.7% accuracy (29/30 cases) in identifying schema violations 
across diverse parameter types 

● Policy Violation Prevention: 94.4% effectiveness (17/18 cases) in blocking contextually 
inappropriate calls 

● Fuzzy Matching Accuracy: 100% success rate (5/5 cases) in providing appropriate tool name 
corrections 

The single false negative in parameter validation involved a subtle cross-parameter constraint 
violation, highlighting the complexity of comprehensive schema validation. The policy violation miss 
involved a temporally-dependent constraint that exceeded our current context window. 

6.3. Computational Efficiency Results  

Performance evaluation focused on the computational overhead introduced by our validation 
pipeline: 

Latency Characteristics: 

● Median validation time: 6.2ms 
● 95th percentile: 14.8ms 
● 99th percentile: 28.1ms 
● Maximum observed: 45.3ms 

Throughput Analysis: 

● Single-thread capacity: 5,247 validations/second 
● Multi-threaded peak: 12,150 validations/second 
● Memory utilization: 45MB average, 78MB peak 
● Scaling behavior: Linear throughput scaling with consistent latency profiles 

The sub-10ms median latency satisfies real-time interaction requirements for conversational AI 
applications, while the throughput characteristics support production-scale deployment scenarios. 

6.4. Generalizability Assessment  

We evaluated framework adaptability across diverse LLM architectures and tool integration 
patterns: 

LLM Compatibility: Successfully validated tool calls from multiple language models including GPT-
4, Claude, and open-source alternatives. This demonstrates format-agnostic processing capabilities. 

Tool Domain Coverage: Effective validation across heterogeneous tool categories (APIs, databases, 
file systems, external services) without domain-specific customization. 

Integration Complexity: Framework integration required minimal code modifications (2-15 lines) 
across popular LLM frameworks, supporting practical adoption. 

7. Discussion 
7.1. Key Findings 
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Our evaluation demonstrates that HGuard provides effective protection against unsafe tool use 
in LLM applications while maintaining practical performance characteristics. The 98% accuracy rate, 
combined with sub-10ms median latency, establishes the feasibility of real-time tool call validation 
in production environments. 

The fuzzy matching capability was valuable for handling typos and minor variations in tool 
names, and suggesting corrections that maintain user intent while ensuring safety. The policy 
engineʹs flexibility enabled full control over tool access patterns, supporting both security and 
business logic requirements. 

7.2. Limitations and Challenges 

Several limitations emerged during our evaluation: 

Schema Maintenance: Tool schemas require regular updates to remain synchronized with backend 
API changes. This maintenance burden could become significant in environments with frequently 
evolving APIs. 

Context Limitations: The current implementation does not incorporate full conversation history or 
user permission models in policy decisions. This  potentially misses context-dependent safety issues. 

Policy Complexity: While YAML-based policies provide accessibility, complex business logic may 
require more sophisticated policy languages or custom validation functions. 

7.3. Comparison with Existing Approaches 

HGuard differs from existing safety mechanisms in several key aspects: 

Real-time Validation: Unlike post-hoc analysis tools, our system provides immediate feedback and 
prevention capabilities. 

Tool-specific Focus: While general-purpose content filters exist, HGuard specifically addresses the 
unique challenges of tool use validation. 

Policy Flexibility: Configurable policy engine supports diverse organizational requirements without 
code changes. 

8. Future Work 
Several research directions emerge from this work: 

8.1. Advanced Policy Languages 

Current policy expression capabilities could be enhanced through: 

● Temporal Logic: Support for time-based constraints and workflows 
● Probabilistic Policies: Risk-based decision making with uncertainty quantification 
● Learning Policies: Adaptive policies that evolve based on observed patterns 

8.2. Context-Aware Validation 

Future versions could incorporate: 

● Conversation History: Full context consideration in validation decisions 
● User Modeling: Personalized safety thresholds based on user profiles 
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● Intent Recognition: Deeper understanding of user goals to improve validation accuracy 

8.3. Machine Learning Integration 

AI-enhanced validation capabilities could encompass: 

● Anomaly Detection: ML-based identification of unusual tool use patterns 
● Semantic Validation: Understanding parameter semantics beyond syntactic validation 
● Feedback Learning: Improvement of validation accuracy through user feedback 

9. Conclusion 
This paper presents HGuard, a middleware system designed to address the critical challenge of 

unsafe tool use in Large Language Model applications. Through comprehensive evaluation, we 
demonstrate that the system achieves high accuracy (98%) in detecting unsafe tool calls while 
maintaining practical performance characteristics suitable for production deployment. 

The key contributions of this work include a novel multi-stage validation pipeline, a flexible 
policy engine for encoding safety constraints, and empirical evidence of effectiveness across diverse 
tool use scenarios. The systemʹs framework-agnostic design and open-source implementation 
facilitate adoption across the broader AI safety community. 

As LLM-powered agents become increasingly prevalent in production environments, systems 
like HGuard represent essential infrastructure for maintaining safety and reliability. Future work on 
this will focus on enhancing context awareness, improving policy expressiveness, and scaling to meet 
the demands of large-scale deployments. 

The results presented here establish a foundation for safer tool use in LLM applications and 
provide a practical framework for organizations seeking to deploy AI agents with confidence in their 
safety and reliability. 

Acknowledgments: We thank the AI safety research community for foundational work that informed this 
research. We also acknowledge the open-source community for tools and libraries that enabled this 
implementation. 
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