Submitted:
16 June 2025
Posted:
17 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Noninvasive Diagnosis of Tumors and the Associated Challenges
2.1. DNA Methylation Screening from Liquid Biopsy as a Promising Biomarker for Early Tumor Diagnosis and Prognosis
2.1.1. Acute Myeloid Leukemia
2.1.2. Lymphoma and Acute Lymphoblastic Leukemia
2.1.3. Central Nervous System Tumors
2.2. Exosomes and Circulating RNA as Biomarkers for Early Tumor Detection and Prognosis
2.2.1. Acute Myeloid Leukemia
2.2.2. Acute Lymphoblastic Leukemia
2.2.3. Central Nervous System Tumors
3. Prospect and Future Direction
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Watanabe, Y.; Maekawa, M. Methylation of DNA in Cancer. In Advances in Clinical Chemistry; Elsevier, 2010; Volume 52, pp. 145–167. ISBN 978-0-12-380948-3. [Google Scholar]
- Ibrahim, J.; Peeters, M.; Van Camp, G.; Op De Beeck, K. Methylation Biomarkers for Early Cancer Detection and Diagnosis: Current and Future Perspectives. European Journal of Cancer 2023, 178, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Shi, W.; Wang, J.; Guan, C.; Dong, Q.; Sheng, J.; Zou, X.; Xu, Z.; Ge, Y.; Yang, C.; et al. Research Progress and Applications of Epigenetic Biomarkers in Cancer. Front. Pharmacol. 2024, 15, 1308309. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, K.; Snuderl, M. DNA Methylation as a Diagnostic Tool. Acta Neuropathol Commun 2022, 10, 71. [Google Scholar] [CrossRef]
- Nejati-Koshki, K.; Roberts, C.-T.; Babaei, G.; Rastegar, M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers 2023, 15, 2683. [Google Scholar] [CrossRef]
- Bie, F.; Wang, Z.; Li, Y.; Guo, W.; Hong, Y.; Han, T.; Lv, F.; Yang, S.; Li, S.; Li, X.; et al. Multimodal Analysis of Cell-Free DNA Whole-Methylome Sequencing for Cancer Detection and Localization. Nat Commun 2023, 14, 6042. [Google Scholar] [CrossRef]
- Bruhm, D.C.; Vulpescu, N.A.; Foda, Z.H.; Phallen, J.; Scharpf, R.B.; Velculescu, V.E. Genomic and Fragmentomic Landscapes of Cell-Free DNA for Early Cancer Detection. Nat Rev Cancer 2025, 1–18. [Google Scholar] [CrossRef]
- Jonas, S.; Izaurralde, E. Towards a Molecular Understanding of microRNA-Mediated Gene Silencing. Nat Rev Genet 2015, 16, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis. Cell Res 2015, 25, 981–984. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Chen, B.; Zhao, J.; Yu, S.; Tang, Y.; Zheng, Q.; Li, Y.; Wang, P.; He, X.; et al. exoRBase: A Database of circRNA, lncRNA and mRNA in Human Blood Exosomes. Nucleic Acids Res 2018, 46, D106–D112. [Google Scholar] [CrossRef]
- Therkelsen, K.E.; Omuro, A. Advances in Primary Central Nervous System Lymphoma. Curr Neurol Neurosci Rep 2024, 25, 5. [Google Scholar] [CrossRef]
- Reifenberger, G.; Wirsching, H.-G.; Knobbe-Thomsen, C.B.; Weller, M. Advances in the Molecular Genetics of Gliomas — Implications for Classification and Therapy. Nat Rev Clin Oncol 2017, 14, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA Methylation-Based Classification of Central Nervous System Tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tang, H.; Hu, N.; Li, T. Methylomics and Cancer: The Current State of Methylation Profiling and Marker Development for Clinical Care. Cancer Cell Int 2023, 23, 242. [Google Scholar] [CrossRef] [PubMed]
- Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem Cells, Cancer, and Cancer Stem Cells. Nature 2001, 414, 105–111. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N Engl J Med 2013, 368, 2059–2074. [CrossRef]
- Assi, S.A.; Imperato, M.R.; Coleman, D.J.L.; Pickin, A.; Potluri, S.; Ptasinska, A.; Chin, P.S.; Blair, H.; Cauchy, P.; James, S.R.; et al. Subtype-Specific Regulatory Network Rewiring in Acute Myeloid Leukemia. Nat Genet 2019, 51, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Krivtsov, A.V.; Twomey, D.; Feng, Z.; Stubbs, M.C.; Wang, Y.; Faber, J.; Levine, J.E.; Wang, J.; Hahn, W.C.; Gilliland, D.G.; et al. Transformation from Committed Progenitor to Leukaemia Stem Cell Initiated by MLL–AF9. Nature 2006, 442, 818–822. [Google Scholar] [CrossRef]
- Metzeler, K.H.; Herold, T.; Rothenberg-Thurley, M.; Amler, S.; Sauerland, M.C.; Görlich, D.; Schneider, S.; Konstandin, N.P.; Dufour, A.; Bräundl, K.; et al. Spectrum and Prognostic Relevance of Driver Gene Mutations in Acute Myeloid Leukemia. Blood 2016, 128, 686–698. [Google Scholar] [CrossRef]
- Jan, M.; Snyder, T.M.; Corces-Zimmerman, M.R.; Vyas, P.; Weissman, I.L.; Quake, S.R.; Majeti, R. Clonal Evolution of Preleukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia. Sci Transl Med 2012, 4, 149ra118. [Google Scholar] [CrossRef]
- Ahn, J.-S.; Kim, H.-J.; Kim, Y.-K.; Lee, S.-S.; Ahn, S.-Y.; Jung, S.-H.; Yang, D.-H.; Lee, J.-J.; Park, H.J.; Lee, J.-Y.; et al. Assessment of a New Genomic Classification System in Acute Myeloid Leukemia with a Normal Karyotype. Oncotarget 2017, 9, 4961–4968. [Google Scholar] [CrossRef]
- Ahmed, N.; Cavattoni, I.; Villiers, W.; Cugno, C.; Deola, S.; Mifsud, B. Multi-Omic Analysis of Longitudinal Acute Myeloid Leukemia Patient Samples Reveals Potential Prognostic Markers Linked to Disease Progression. Front Genet 2024, 15, 1442539. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Koo, B.; Kim, S.; Byun, J.; Hong, J.; Shin, D.-Y.; Sun, C.-H.; Kim, J.; Song, J.-J.; Jaiswal, S.; et al. Increased Local DNA Methylation Disorder in AMLs with DNMT3A-Destabilizing Variants and Its Clinical Implication. Nat Commun 2025, 16, 560. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.-A.; Tien, H.-F. Mutations in Epigenetic Modifiers in Acute Myeloid Leukemia and Their Clinical Utility. Expert Review of Hematology 2016, 9, 447–469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-Q.; Liang, Y.-C.; Wang, J.-X.; Zhang, J.; La, T.; Li, Q.-Z. Unlocking the Potential: A Novel Prognostic Index Signature for Acute Myeloid Leukemia. Computers in Biology and Medicine 2024, 173, 108396. [Google Scholar] [CrossRef]
- Gao, H.; He, X.; Li, Q.; Wang, Y.; Tian, Y.; Chen, X.; Wang, J.; Guo, Y.; Wang, W.; Li, X. Genome-Wide DNA Methylome Analysis Reveals Methylation Subtypes with Different Clinical Outcomes for Acute Myeloid Leukemia Patients. Cancer Medicine 2020, 9, 6296–6305. [Google Scholar] [CrossRef]
- Cardoso, C.; Pestana, D.; Gokuladhas, S.; Marreiros, A.D.; O’Sullivan, J.M.; Binnie, A.; TFernandes, M.; Castelo-Branco, P. Identification of Novel DNA Methylation Prognostic Biomarkers for AML With Normal Cytogenetics. JCO Clin Cancer Inform 2024, e2300265. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Wang, L.; Li, Y.; Xu, L.; Cai, D.; Zhou, J.; Yu, L. DNA Methylation Landscape Reveals GNAS as a Decitabine-Responsive Marker in Patients with Acute Myeloid Leukemia. Neoplasia 2024, 49, 100965. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Chu, M.; Wang, C.; Zhang, H.; Luan, J.; Zhang, Y.; Li, Q.; Xiao, T.; Zhu, C.; Li, X.; et al. Digital PCR-Based GRHL2 Methylation Testing in Acute Myeloid Leukemia: Diagnosis, Prognosis and Monitoring. Epigenomics 2024, 16, 233–247. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.; Zhang, X.; Xu, Z.; Qiao, L.; Wang, Y.; Zhao, Y.; Qian, J.; Zhou, J. Identification of HOXA9 Methylation as an Epigenetic Biomarker Predicting Prognosis and Guiding Treatment Choice in Acute Myeloid Leukemia. BMC Cancer 2025, 25, 215. [Google Scholar] [CrossRef]
- Xu, Y.; Li, D.; Wang, N.; Ge, B.; Meng, C.; Zhao, M.; Lin, Z.; Li, M.; Yuan, Y.; Cai, Y.; et al. miR-182 Promoter Hypermethylation Predicts the Better Outcome of AML Patients Treated with AZA + VEN in a Real-World Setting. Clin Epigenetics 2025, 17, 18. [Google Scholar] [CrossRef]
- Schmutz, M.; Zucknick, M.; Schlenk, R.F.; Mertens, D.; Benner, A.; Weichenhan, D.; Mücke, O.; Döhner, K.; Plass, C.; Bullinger, L.; et al. Predictive Value of DNA Methylation Patterns in AML Patients Treated with an Azacytidine Containing Induction Regimen. Clinical Epigenetics 2023, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Yuan, C.; Ji, C.; Hao, H.; Lu, F. DNA Methylation-Based Subtypes of Acute Myeloid Leukemia with Distinct Prognosis and Clinical Features. Clin Exp Med 2023, 23, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Yuan, C.; Hao, H. Identifying Key Genes and Functionally Enriched Pathways in Acute Myeloid Leukemia by Weighted Gene Co-Expression Network Analysis. J Appl Genet 2024. [Google Scholar] [CrossRef]
- Guo, Y.; Jian, J.; Tang, X.; Zhao, L.; Liu, B. Comprehensive Analysis of DNA Methylation and Gene Expression to Identify Tumor Suppressor Genes Reactivated by MLN4924 in Acute Myeloid Leukemia. Anticancer Drugs 2025, 36, 199–207. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Zhang, G.; Hou, J.; Liu, K.; Wei, S.; Li, Y.; Zhou, C.; Lin, D.; Wang, M.; et al. Classification of Acute Myeloid Leukemia Based on Multi-Omics and Prognosis Prediction Value. Molecular Oncology 2025, 19, 1836–1854. [Google Scholar] [CrossRef]
- Wu, D.; Qiu, H.; Xu, J.; Lin, J.; Qian, J. Hypomethylation of GCNT2 Isoform A Correlates with Transcriptional Expression and Is Associated with Poor Survival in Acute Myeloid Leukemia. Front. Immunol. 2025, 16, 1490330. [Google Scholar] [CrossRef]
- Dong, Y.; Liao, H.; Huang, F.; Bao, Y.; Guo, W.; Tan, Z. Machine Learning Approaches Reveal Methylation Signatures Associated with Pediatric Acute Myeloid Leukemia Recurrence. Sci Rep 2025, 15, 15815. [Google Scholar] [CrossRef] [PubMed]
- A Predictive Model for Aggressive Non-Hodgkin’s Lymphoma. New England Journal of Medicine 1993, 329, 987–994. [CrossRef]
- Alexander, T.B.; Mullighan, C.G. Molecular Biology of Childhood Leukemia. Annual Review of Cancer Biology 2021, 5, 95–117. [Google Scholar] [CrossRef]
- Hetzel, S.; Mattei, A.L.; Kretzmer, H.; Qu, C.; Chen, X.; Fan, Y.; Wu, G.; Roberts, K.G.; Luger, S.; Litzow, M.; et al. Acute Lymphoblastic Leukemia Displays a Distinct Highly Methylated Genome. Nat Cancer 2022, 3, 768–782. [Google Scholar] [CrossRef]
- Milani, L.; Lundmark, A.; Kiialainen, A.; Nordlund, J.; Flaegstad, T.; Forestier, E.; Heyman, M.; Jonmundsson, G.; Kanerva, J.; Schmiegelow, K.; et al. DNA Methylation for Subtype Classification and Prediction of Treatment Outcome in Patients with Childhood Acute Lymphoblastic Leukemia. Blood 2010, 115, 1214–1225. [Google Scholar] [CrossRef] [PubMed]
- Latiri, M.; Belhocine, M.; Smith, C.; Garnier, N.; Balducci, E.; Pinton, A.; Andrieu, G.P.; Bruneau, J.; Spicuglia, S.; Jamain, S.; et al. DNA Methylation as a New Tool for the Differential Diagnosis between T-LBL and Lymphocyte-Rich Thymoma. J Pathol 2024, 264, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Witzig, T.E.; Taylor, W.R.; Mahoney, D.W.; Bamlet, W.R.; Foote, P.H.; Burger, K.N.; Doering, K.A.; Devens, M.E.; Arndt, J.R.; O’Connell, M.C.; et al. Blood Plasma Methylated DNA Markers in the Detection of Lymphoma: Discovery, Validation, and Clinical Pilot. American Journal of Hematology 2025, 100, 218–228. [Google Scholar] [CrossRef]
- Roman-Gomez, J.; Jimenez-Velasco, A.; Agirre, X.; Castillejo, J.A.; Navarro, G.; Calasanz, M.J.; Garate, L.; San Jose-Eneriz, E.; Cordeu, L.; Prosper, F.; et al. CpG Island Methylator Phenotype Redefines the Prognostic Effect of t(12;21) in Childhood Acute Lymphoblastic Leukemia. Clinical Cancer Research 2006, 12, 4845–4850. [Google Scholar] [CrossRef]
- Schäfer Hackenhaar, F.; Refhagen, N.; Hagleitner, M.M.; van Leeuwen, F.N.; Marquart, H.V.; Madsen, H.O.; Landfors, M.; Osterman, P.; Schmiegelow, K.; Flaegstad, T.; et al. CpG Island Methylator Phenotype Classification Improves Risk Assessment in Pediatric T-Cell Acute Lymphoblastic Leukemia. Blood 2025, 145, 2161–2178. [Google Scholar] [CrossRef]
- Mulet-Lazaro, R.; van Herk, S.; Nuetzel, M.; Sijs-Szabo, A.; Díaz, N.; Kelly, K.; Erpelinck-Verschueren, C.; Schwarzfischer-Pfeilschifter, L.; Stanewsky, H.; Ackermann, U.; et al. Epigenetic Alterations Affecting Hematopoietic Regulatory Networks as Drivers of Mixed Myeloid/Lymphoid Leukemia. Nat Commun 2024, 15, 5693. [Google Scholar] [CrossRef]
- Ghantous, A.; Nusslé, S.G.; Nassar, F.J.; Spitz, N.; Novoloaca, A.; Krali, O.; Nickels, E.; Cahais, V.; Cuenin, C.; Roy, R.; et al. Epigenome-Wide Analysis across the Development Span of Pediatric Acute Lymphoblastic Leukemia: Backtracking to Birth. Molecular Cancer 2024, 23, 238. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhou, Q.; Sun, Y.; Lai, F.; Wang, Z.; Hao, Z.; Li, G. MethMarkerDB: A Comprehensive Cancer DNA Methylation Biomarker Database. Nucleic Acids Research 2024, 52, D1380–D1392. [Google Scholar] [CrossRef]
- Berzero, G.; Pieri, V.; Palazzo, L.; Finocchiaro, G.; Filippi, M. Liquid Biopsy in Brain Tumors: Moving on, Slowly. Current Opinion in Oncology 2024, 36, 521. [Google Scholar] [CrossRef]
- Zuccato, J.A.; Patil, V.; Mansouri, S.; Voisin, M.; Chakravarthy, A.; Shen, S.Y.; Nassiri, F.; Mikolajewicz, N.; Trifoi, M.; Skakodub, A.; et al. Cerebrospinal Fluid Methylome-Based Liquid Biopsies for Accurate Malignant Brain Neoplasm Classification. Neuro Oncol 2023, 25, 1452–1460. [Google Scholar] [CrossRef]
- Downs, B.M.; Ding, W.; Cope, L.M.; Umbricht, C.B.; Li, W.; He, H.; Ke, X.; Holdhoff, M.; Bettegowda, C.; Tao, W.; et al. Methylated Markers Accurately Distinguish Primary Central Nervous System Lymphomas (PCNSL) from Other CNS Tumors. Clinical Epigenetics 2021, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Jaunmuktane, Z.; Capper, D.; Jones, D.T.W.; Schrimpf, D.; Sill, M.; Dutt, M.; Suraweera, N.; Pfister, S.M.; von Deimling, A.; Brandner, S. Methylation Array Profiling of Adult Brain Tumours: Diagnostic Outcomes in a Large, Single Centre. Acta Neuropathol Commun 2019, 7, 24. [Google Scholar] [CrossRef]
- Zuccato, J.A.; Mamatjan, Y.; Nassiri, F.; Ajisebutu, A.; Liu, J.C.; Muazzam, A.; Singh, O.; Zhang, W.; Voisin, M.; Mirhadi, S.; et al. Prediction of Brain Metastasis Development with DNA Methylation Signatures. Nat Med 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.-H.G.; Al-Adli, N.N.; Young, J.S.; Gupta, R.; Morshed, R.A.; Wu, J.; Ravindranathan, A.; Shai, A.; Oberheim Bush, N.A.; Taylor, J.W.; et al. Longitudinal Multimodal Profiling of IDH-Wildtype Glioblastoma Reveals the Molecular Evolution and Cellular Phenotypes Underlying Prognostically Different Treatment Responses. Neuro Oncol 2024, 27, 89–105. [Google Scholar] [CrossRef]
- Herrgott, G.A.; Snyder, J.M.; She, R.; Malta, T.M.; Sabedot, T.S.; Lee, I.Y.; Pawloski, J.; Podolsky-Gondim, G.G.; Asmaro, K.P.; Zhang, J.; et al. Detection of Diagnostic and Prognostic Methylation-Based Signatures in Liquid Biopsy Specimens from Patients with Meningiomas. Nat Commun 2023, 14, 5669. [Google Scholar] [CrossRef]
- Hinz, F.; Friedel, D.; Korshunov, A.; Ippen, F.M.; Bogumil, H.; Banan, R.; Brandner, S.; Hasselblatt, M.; Boldt, H.B.; Dirse, V.; et al. IDH-Mutant Astrocytomas with Primitive Neuronal Component Have a Distinct Methylation Profile and a Higher Risk of Leptomeningeal Spread. Acta Neuropathol 2025, 149, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, H. Multi-Omics Analysis Identifies Novels Genes Involved in Glioma Prognosis. Sci Rep 2025, 15, 5806. [Google Scholar] [CrossRef]
- García-Heredia, A.; Guerra-Núñez, L.; Martín-Climent, P.; Rojas, E.; López-Domínguez, R.; Alcántara-Domínguez, C.; Alenda, C.; Valor, L.M. Transcriptomics and Epigenomics Datasets of Primary Brain Cancers in Formalin-Fixed Paraffin Embedded Format. Sci Data 2025, 12, 273. [Google Scholar] [CrossRef]
- Mair, M.J.; Leibetseder, A.; Heller, G.; Tomasich, E.; Müller, L.; Busse, I.; Wöhrer, A.; Kiesel, B.; Widhalm, G.; Eckert, F.; et al. Clinical Characteristics, Molecular Reclassification Trajectories and DNA Methylation Patterns of Long- and Short-Term Survivors of WHO Grade II and III Glioma. J Neurol 2025, 272, 210. [Google Scholar] [CrossRef]
- Sarker, A.; Aziz, M.A.; Hossen, M.B.; Mollah, M.M.H.; Al-Amin; Mollah, M.N.H. Discovery of Key Molecular Signatures for Diagnosis and Therapies of Glioblastoma by Combining Supervised and Unsupervised Learning Approaches. Sci Rep 2024, 14, 27545. [Google Scholar] [CrossRef]
- Braicu, C.; Tomuleasa, C.; Monroig, P.; Cucuianu, A.; Berindan-Neagoe, I.; Calin, G.A. Exosomes as Divine Messengers: Are They the Hermes of Modern Molecular Oncology? Cell Death Differ 2015, 22, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine 2020, 15, 6917–6934. [Google Scholar] [CrossRef] [PubMed]
- Goenka, A.; Tiek, D.M.; Song, X.; Iglesia, R.P.; Lu, M.; Hu, B.; Cheng, S.-Y. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022, 10, 2031. [Google Scholar] [CrossRef]
- Zhou, Q.; Shaya, M.; Kugeluke, Y.; Fu, Q.; Li, S.; Dilimulati, Y. A Circular RNA Derived from GLIS3 Accelerates the Proliferation of Glioblastoma Cells through Competitively Binding with miR-449c-5p to Upregulate CAPG and GLIS3. BMC Neurosci 2022, 23, 53. [Google Scholar] [CrossRef]
- Bronisz, A.; Rooj, A.K.; Krawczyński, K.; Peruzzi, P.; Salińska, E.; Nakano, I.; Purow, B.; Chiocca, E.A.; Godlewski, J. The Nuclear DICER-Circular RNA Complex Drives the Deregulation of the Glioblastoma Cell microRNAome. Sci Adv 2020, 6, eabc0221. [Google Scholar] [CrossRef]
- Gao, X.; Xia, X.; Li, F.; Zhang, M.; Zhou, H.; Wu, X.; Zhong, J.; Zhao, Z.; Zhao, K.; Liu, D.; et al. Circular RNA-Encoded Oncogenic E-Cadherin Variant Promotes Glioblastoma Tumorigenicity through Activation of EGFR-STAT3 Signalling. Nat Cell Biol 2021, 23, 278–291. [Google Scholar] [CrossRef]
- Merulla, A.E.; Stella, M.; Barbagallo, C.; Battaglia, R.; Caponnetto, A.; Broggi, G.; Altieri, R.; Certo, F.; Caltabiano, R.; Ragusa, M.; et al. circSMARCA5 Is an Upstream Regulator of the Expression of miR-126-3p, miR-515-5p, and Their mRNA Targets, Insulin-like Growth Factor Binding Protein 2 (IGFBP2) and NRAS Proto-Oncogene, GTPase (NRAS) in Glioblastoma. IJMS 2022, 23, 13676. [Google Scholar] [CrossRef] [PubMed]
- Beylerli, O.; Encarnacion Ramirez, M.d.J.; Shumadalova, A.; Ilyasova, T.; Zemlyanskiy, M.; Beilerli, A.; Montemurro, N. Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors. Diagnostics 2023, 13, 2888. [Google Scholar] [CrossRef]
- Reddy, K.B. MicroRNA (miRNA) in Cancer. Cancer Cell Int 2015, 15, 38. [Google Scholar] [CrossRef]
- Gao, N.; Li, Y.; Li, J.; Gao, Z.; Yang, Z.; Li, Y.; Liu, H.; Fan, T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef]
- Deng, W.; Chao, R.; Zhu, S. Emerging Roles of circRNAs in Leukemia and the Clinical Prospects: An Update. Immun Inflamm Dis 2022, 11, e725. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat Rev Genet 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Bhat, A.A.; Younes, S.N.; Raza, S.S.; Zarif, L.; Nisar, S.; Ahmed, I.; Mir, R.; Kumar, S.; Sharawat, S.K.; Hashem, S.; et al. Role of Non-Coding RNA Networks in Leukemia Progression, Metastasis and Drug Resistance. Mol Cancer 2020, 19, 57. [Google Scholar] [CrossRef]
- Hornick, N.I.; Huan, J.; Doron, B.; Goloviznina, N.A.; Lapidus, J.; Chang, B.H.; Kurre, P. Serum Exosome MicroRNA as a Minimally-Invasive Early Biomarker of AML. Sci Rep 2015, 5, 11295. [Google Scholar] [CrossRef]
- Lajevardi, M.S.; Ashrafpour, M.; Mubarak, S.M.H.; Rafieyan, B.; Kiani, A.; Noori, E.; Roayaei Ardakani, M.; Montazeri, M.; Kouhi Esfahani, N.; Asadimanesh, N.; et al. Dual Roles of Extracellular Vesicles in Acute Lymphoblastic Leukemia: Implications for Disease Progression and Theranostic Strategies. Med Oncol 2024, 42, 11. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Mohamed, R.H.; Sayed, A.A.; Ahmed, S.; Yassin, D.A.; El-Sayed, W.M. miR-370 Is Better than miR-375 as a Non-Invasive Diagnostic Biomarker for Pediatric Acute Myeloid Leukemia Patients. Cancer Biomarkers 2022, 34, 403–411. [Google Scholar] [CrossRef]
- Xia, L.; Guo, H.; Wu, X.; Xu, Y.; Zhao, P.; Yan, B.; Zeng, Y.; He, Y.; Chen, D.; Gale, R.P.; et al. Human Circulating Small Non-Coding RNA Signature as a Non-Invasive Biomarker in Clinical Diagnosis of Acute Myeloid Leukaemia. Theranostics 2023, 13, 1289–1301. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Y.; Meng, C.; Lin, Z.; Zhao, M.; Shi, L.; Li, M.; Ye, D.; Cai, Y.; He, X.; et al. Low Expression of miR-182 Caused by DNA Hypermethylation Accelerates Acute Lymphocyte Leukemia Development by Targeting PBX3 and BCL2: miR-182 Promoter Methylation Is a Predictive Marker for Hypomethylation Agents + BCL2 Inhibitor Venetoclax. Clinical Epigenetics 2024, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Xiong, F.; He, X.; Yuan, Y.; Li, D.; Ye, D.; Shi, L.; Lin, Z.; Zhao, M.; Feng, S.; et al. DNA Hypermethylation-Induced miR-182 Silence Targets BCL2 and HOXA9 to Facilitate the Self-Renewal of Leukemia Stem Cell, Accelerate Acute Myeloid Leukemia Progression, and Determine the Sensitivity of BCL2 Inhibitor Venetoclax. Theranostics 2023, 13, 77–94. [Google Scholar] [CrossRef]
- Izadifard, M.; Ahmadvand, M.; Chahardouli, B.; Vaezi, M.; Janbabai, G.; Seghatoleslami, G.; Bahrami, M.; Yaghmaie, M.; Barkhordar, M. Plasma-Circulating miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, and miR-548a-3p as Noninvasive Biomarkers of Immune Reconstitution Post-Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia Patients. Transplant Immunology 2025, 91, 102240. [Google Scholar] [CrossRef]
- Wei, S.; Wang, K. Long Noncoding RNAs: Pivotal Regulators in Acute Myeloid Leukemia. Experimental Hematology & Oncology 2016, 5, 30. [Google Scholar] [CrossRef]
- Atnaf, A.; Akelew, Y.; Abebaw, D.; Muche, Y.; Getachew, M.; Mengist, H.M.; Tsegaye, A. The Role of Long Noncoding RNAs in the Diagnosis, Prognosis and Therapeutic Biomarkers of Acute Myeloid Leukemia. Ann Hematol 2024, 103, 4931–4942. [Google Scholar] [CrossRef]
- Solomon, Y.; Berhan, A.; Almaw, A.; Ersino, T.; Damtie, S.; Kiros, T.; Fentie, A.; Chanie, E.S.; Dessie, A.M.; Alemayehu, E. Long Non-Coding RNA as Potential Diagnostic Markers for Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Cancer Medicine 2024, 13, e7376. [Google Scholar] [CrossRef]
- Sun, T.; Dong, L.; Guo, Y.; Zhao, H.; Wang, M. Revealing Key lncRNAs in Cytogenetically Normal Acute Myeloid Leukemia by Reconstruction of the lncRNA–miRNA–mRNA Network. Sci Rep 2022, 12, 4973. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.A.A.A.M.; Osman, A.A.; Hassan, M.F.A.F.; Ibrahim, S.A.M.; El-Sakhawy, Y.N. HOTAIR Expression and Prognostic Impact in Acute Myeloid Leukemia Patients. Egyptian Journal of Medical Human Genetics 2021, 22, 36. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Guo, H.-H.; Li, H.-X.; Liang, Y.; Tang, C.; Chen, N.-N. Identification of the 7-lncRNA Signature as a Prognostic Biomarker for Acute Myeloid Leukemia. Dis Markers 2021, 2021, 8223216. [Google Scholar] [CrossRef]
- Ren, Z.; Vanhooren, J.; Derpoorter, C.; De Moerloose, B.; Lammens, T. A 69 Long Noncoding RNA Signature Predicts Relapse and Acts as Independent Prognostic Factor in Pediatric AML. Blood Adv 2024, 8, 3299–3310. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xie, Y.; Wu, X.; Hu, W.; Chen, X.; Wu, K.; Wang, H.; Zhao, S.; Shi, Q.; Wang, X.; et al. circRNAs as Prognostic Markers in Pediatric Acute Myeloid Leukemia. Cancer Letters 2024, 591, 216880. [Google Scholar] [CrossRef]
- Shahid, S.; Shahid, W.; Shaheen, J.; Akhtar, M.W.; Sadaf, S. Circulating miR-146a Expression as a Non-Invasive Predictive Biomarker for Acute Lymphoblastic Leukemia. Sci Rep 2021, 11, 22783. [Google Scholar] [CrossRef]
- Rzepiel, A.; Horváth, A.; Kutszegi, N.; Gézsi, A.; Sági, J.C.; Almási, L.; Egyed, B.; Lőrincz, P.; Visnovitz, T.; Kovács, G.T.; et al. MiR-128-3p as Blood Based Liquid Biopsy Biomarker in Childhood Acute Lymphoblastic Leukemia. Mol Cell Probes 2023, 67, 101893. [Google Scholar] [CrossRef]
- Yan, W.; Song, L.; Wang, H.; Yang, W.; Hu, L.; Yang, Y. Extracellular Vesicles Carrying miRNA-181b-5p Affects the Malignant Progression of Acute Lymphoblastic Leukemia. Journal of Translational Medicine 2021, 19, 511. [Google Scholar] [CrossRef] [PubMed]
- Saffari, N.; Rahgozar, S.; Faraji, E.; Sahin, F. Plasma-Derived Exosomal miR-326, a Prognostic Biomarker and Novel Candidate for Treatment of Drug Resistant Pediatric Acute Lymphoblastic Leukemia. Sci Rep 2024, 14, 691. [Google Scholar] [CrossRef]
- Tsotridou, E.; Georgiou, E.; Tragiannidis, A.; Avgeros, C.; Tzimagiorgis, G.; Lambrou, M.; Papakonstantinou, E.; Galli-Tsinopoulou, A.; Hatzipantelis, E. miRNAs as Predictive Biomarkers of Response to Treatment in Pediatric Patients with Acute Lymphoblastic Leukemia. Oncol Lett 2023, 27, 71. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, L.; Xie, Q.; Zhang, L.; Huang, S.; Hong, M.; Li, J.; Huang, Z.; Zhang, H. LncRNAs Serve as Novel Biomarkers for Diagnosis and Prognosis of Childhood ALL. Biomarker Research 2021, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Palcau, A.C.; Canu, V.; Donzelli, S.; Strano, S.; Pulito, C.; Blandino, G. CircPVT1: A Pivotal Circular Node Intersecting Long Non-Coding-PVT1 and c-MYC Oncogenic Signals. Molecular Cancer 2022, 21, 33. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, H. Biogenesis, Cellular Effects, and Biomarker Value of circHIPK3. Cancer Cell International 2021, 21, 256. [Google Scholar] [CrossRef]
- Feng, H.; Li, F.; Tang, P. Circ_0000745 Regulates NOTCH1-Mediated Cell Proliferation and Apoptosis in Pediatric T-Cell Acute Lymphoblastic Leukemia through Adsorbing miR-193b-3p. Hematology 2021, 26, 885–895. [Google Scholar] [CrossRef]
- Buratin, A.; Paganin, M.; Gaffo, E.; Dal Molin, A.; Roels, J.; Germano, G.; Siddi, M.T.; Serafin, V.; De Decker, M.; Gachet, S.; et al. Large-Scale Circular RNA Deregulation in T-ALL: Unlocking Unique Ectopic Expression of Molecular Subtypes. Blood Advances 2020, 4, 5902–5914. [Google Scholar] [CrossRef]
- Filomena, A.; Giovanni, S.; Ginevra, S.; Santiago, N.; Di Fasano Miriam, S.; Peppino, M.; Alessandra, C.; Antonia, D.M.; Giuliana, B.; Rosanna, P.; et al. Identification of a Circular RNA Isoform of WASHC2A as a Prognostic Factor for High-Risk Paediatric B-ALL Patients. Biomedicine & Pharmacotherapy 2024, 177, 116903. [Google Scholar] [CrossRef]
- Gutierrez-Camino, A.; Caron, M.; Richer, C.; Fuchs, C.; Illarregi, U.; Poncelet, L.; St-Onge, P.; Bataille, A.R.; Tremblay-Dauphinais, P.; Lopez-Lopez, E.; et al. CircRNAome of Childhood Acute Lymphoblastic Leukemia: Deciphering Subtype-Specific Expression Profiles and Involvement in TCF3::PBX1 ALL. IJMS 2024, 25, 1477. [Google Scholar] [CrossRef]
- Hasani, F.; Masrour, M.; Jazi, K.; Ahmadi, P.; Hosseini, S.S.; Lu, V.M.; Alborzi, A. MicroRNA as a Potential Diagnostic and Prognostic Biomarker in Brain Gliomas: A Systematic Review and Meta-Analysis. Front. Neurol. 2024, 15, 1357321. [Google Scholar] [CrossRef] [PubMed]
- Katsushima, K.; Joshi, K.; Perera, R.J. Diagnostic and Therapeutic Potential of Circular RNA in Brain Tumors. Neuro-Oncology Advances 2023, 5, vdad063. [Google Scholar] [CrossRef] [PubMed]
- Baraniskin, A.; Kuhnhenn, J.; Schlegel, U.; Maghnouj, A.; Zöllner, H.; Schmiegel, W.; Hahn, S.; Schroers, R. Identification of microRNAs in the Cerebrospinal Fluid as Biomarker for the Diagnosis of Glioma. Neuro Oncol 2012, 14, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Baraniskin, A.; Chomiak, M.; Ahle, G.; Gress, T.; Buchholz, M.; Turewicz, M.; Eisenacher, M.; Margold, M.; Schlegel, U.; Schmiegel, W.; et al. MicroRNA-30c as a Novel Diagnostic Biomarker for Primary and Secondary B-Cell Lymphoma of the CNS. J Neurooncol 2018, 137, 463–468. [Google Scholar] [CrossRef]
- Sromek, M.; Rymkiewicz, G.; Paziewska, A.; Szafron, L.M.; Kulecka, M.; Zajdel, M.; Kulinczak, M.; Dabrowska, M.; Balabas, A.; Bystydzienski, Z.; et al. A Set of 17 microRNAs Common for Brain and Cerebrospinal Fluid Differentiates Primary Central Nervous System Lymphoma from Non-Malignant Brain Tumors. Biomolecules 2021, 11, 1395. [Google Scholar] [CrossRef]
- Ghasemi, E.; Mondanizadeh, M.; Almasi-Hashiani, A.; Mahboobi, E. The Significance of miR-124 in the Diagnosis and Prognosis of Glioma: A Systematic Review. PLOS ONE 2024, 19, e0312250. [Google Scholar] [CrossRef]
- Mafi, A.; Rahmati, A.; Babaei Aghdam, Z.; Salami, R.; Salami, M.; Vakili, O.; Aghadavod, E. Recent Insights into the microRNA-Dependent Modulation of Gliomas from Pathogenesis to Diagnosis and Treatment. Cell Mol Biol Lett 2022, 27, 65. [Google Scholar] [CrossRef]
- Ali, E.; Ahmed, M.A.; Shawki, M.A.; El Arab, L.R.E.; Khalifa, M.K.; Swellam, M. Expression of Some Circulating microRNAs as Predictive Biomarkers for Prognosis and Treatment Response in Glioblastoma. Sci Rep 2025, 15, 1933. [Google Scholar] [CrossRef]
- Bustos, M.A.; Rahimzadeh, N.; Ryu, S.; Gross, R.; Tran, L.T.; Renteria-Lopez, V.M.; Ramos, R.I.; Eisenberg, A.; Hothi, P.; Kesari, S.; et al. Cell-Free Plasma microRNAs That Identify Patients with Glioblastoma. Lab Invest 2022, 102, 711–721. [Google Scholar] [CrossRef]
- Pei, D.; Zhang, D.; Guo, Y.; Chang, H.; Cui, H. Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy. International Journal of Molecular Sciences 2025, 26, 694. [Google Scholar] [CrossRef]
- Wu, Y.; Li, F.; Yang, C.; Zhang, X.; Xue, Z.; Sun, Y.; Lin, X.; Liu, X.; Zhao, Z.; Huang, B.; et al. Super-Enhancer-Driven SLCO4A1-AS1 Is a New Biomarker and a Promising Therapeutic Target in Glioblastoma. Sci Rep 2025, 15, 954. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Mu, G.; Li, F.; Sun, Y.; Lin, X.; Liu, X.; Zhao, Z.; Han, M.; Wang, D.; Huang, B.; et al. ZNF503-AS2 Is a Promising Therapeutic Target and Is Associated with the Immune Microenvironment in Glioma. PLOS ONE 2024, 19, e0314618. [Google Scholar] [CrossRef] [PubMed]
- Amer, R.G.; Ezz El Arab, L.R.; Abd El Ghany, D.; Saad, A.S.; Bahie-Eldin, N.; Swellam, M. Prognostic Utility of lncRNAs (LINC00565 and LINC00641) as Molecular Markers in Glioblastoma Multiforme (GBM). J Neurooncol 2022, 158, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, X.; Xie, P.; Zhang, W. Liquid Biopsy: An Arsenal for Tumour Screening and Early Diagnosis. Cancer Treatment Reviews 2024, 129, 102774. [Google Scholar] [CrossRef]
- Jin, P.; Huang, Y.; Zhu, P.; Zou, Y.; Shao, T.; Wang, O. CircRNA circHIPK3 Serves as a Prognostic Marker to Promote Glioma Progression by Regulating miR-654/IGF2BP3 Signaling. Biochemical and Biophysical Research Communications 2018, 503, 1570–1574. [Google Scholar] [CrossRef]
- Stella, M.; Falzone, L.; Caponnetto, A.; Gattuso, G.; Barbagallo, C.; Battaglia, R.; Mirabella, F.; Broggi, G.; Altieri, R.; Certo, F.; et al. Serum Extracellular Vesicle-Derived circHIPK3 and circSMARCA5 Are Two Novel Diagnostic Biomarkers for Glioblastoma Multiforme. Pharmaceuticals 2021, 14, 618. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. JNCI: Journal of the National Cancer Institute 2018, 110, 304–315. [Google Scholar] [CrossRef]
- Heitzer, E.; Ulz, P.; Geigl, J.B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clin Chem 2015, 61, 112–123. [Google Scholar] [CrossRef]
- Rimelen, V.; Ahle, G.; Pencreach, E.; Zinniger, N.; Debliquis, A.; Zalmaï, L.; Harzallah, I.; Hurstel, R.; Alamome, I.; Lamy, F.; et al. Tumor Cell-Free DNA Detection in CSF for Primary CNS Lymphoma Diagnosis. acta neuropathol commun 2019, 7, 43. [Google Scholar] [CrossRef]
- Bonzheim, I.; Giese, S.; Deuter, C.; Süsskind, D.; Zierhut, M.; Waizel, M.; Szurman, P.; Federmann, B.; Schmidt, J.; Quintanilla-Martinez, L.; et al. High Frequency of MYD88 Mutations in Vitreoretinal B-Cell Lymphoma: A Valuable Tool to Improve Diagnostic Yield of Vitreous Aspirates. Blood 2015, 126, 76–79. [Google Scholar] [CrossRef]
- Bunda, S.; Zuccato, J.A.; Voisin, M.R.; Wang, J.Z.; Nassiri, F.; Patil, V.; Mansouri, S.; Zadeh, G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int J Mol Sci 2021, 22, 4548. [Google Scholar] [CrossRef]
- Pilotto Heming, C.; Aran, V. The Potential of Circulating Cell-Free RNA in CNS Tumor Diagnosis and Monitoring: A Liquid Biopsy Approach. Crit Rev Oncol Hematol 2024, 204, 104504. [Google Scholar] [CrossRef] [PubMed]
- Gorse, M.; Bianchi, C.; Proudhon, C. Épigénétique et cancer: La méthylation dans tous ses états. Med Sci (Paris) 2024, 40, 925–934. [Google Scholar] [CrossRef]
- Drexler, R.; Brembach, F.; Sauvigny, J.; Ricklefs, F.L.; Eckhardt, A.; Bode, H.; Gempt, J.; Lamszus, K.; Westphal, M.; Schüller, U.; et al. Unclassifiable CNS Tumors in DNA Methylation-Based Classification: Clinical Challenges and Prognostic Impact. Acta Neuropathologica Communications 2024, 12, 9. [Google Scholar] [CrossRef]
- Gibson, D.; Ravi, A.; Rodriguez, E.; Chang, S.; Oberheim Bush, N.; Taylor, J.; Clarke, J.; Solomon, D.; Scheffler, A.; Witte, J.; et al. Quantitative Analysis of MGMT Promoter Methylation in Glioblastoma Suggests Nonlinear Prognostic Effect. Neuro-Oncology Advances 2023, 5, vdad115. [Google Scholar] [CrossRef]
- Haider, S.; Tyekucheva, S.; Prandi, D.; Fox, N.S.; Ahn, J.; Xu, A.W.; Pantazi, A.; Park, P.J.; Laird, P.W.; Sander, C.; et al. Systematic Assessment of Tumor Purity and Its Clinical Implications. JCO Precis Oncol 2020, 4, PO.20.00016. [Google Scholar] [CrossRef]


| Biomarker | Origins | diseases | Hypo/Hyper | Ref. |
|---|---|---|---|---|
| IDH1, IDH2, TET2, DNAMT3A, ASXL1, MLL and EZH2 |
cells | AML | Hypo | [24] |
| LDH2 and SPATS2L | bone marrow | AML | Hypo | [25] |
| 9 specific DNA sites (key genes:UBE4A, MTMR1, ST6GALNAC1, CDK14, CA6, PDCD6IP, LCN6, FHL2, ITIH4) |
blood |
AML | Hypo | [27] |
| GNAS | bone marrow | AML | Hyper | [28] |
| GRHL2 | blood | AML | Hyper | [29] |
| HOX9A | bone marrow | AML | Hypo | [30] |
| miR-182 promoter | bone marrow | AML | Hyper | [31] |
| WTN10A and GATA-3 | bone marrow | AML | Hyper | [32] |
| 12 key biomarkers Hypo: HOXB-AS3, HOXB3, MEG8 Hyper: SLC9C2, CPNE8, S1PR5, MIR196B |
bone marrow | AML | Hypo /hyper | [34] |
| TRIM58 | cells | AML | Hyper | [35] |
| GCNT2 | Bone marrow | AML | hypo | [37] |
| SCL45A4,S100PBP,TSPAN9,PT | Bone marrow | AML | hyper | [38] |
| 6 promoters DMRs (ZIC1, TSHZ2, CDC42BPB, RBM24, C10orf53, MACROD2) | tissue | T-LBL/Thymomas | Hyper | [43] |
| DKK3, sFRP2, PTEN and P73 | bone marrow | childhood ALL | Hyper | [45] |
| CDKN2A, CDKN2B, PTEN, SHOX2, WT1, RASSF1A, TLX3 | bone marrow | ALL | Hyper | [46] |
| CDKN2A, PTEN, SPI1, RUNX1, LEF1, CEBPA | blood, bone marrow | ALL | Hyper | [47] |
| VTRNA2-1 | blood | Pre-B ALL | Hyper | [48] |
| several biomarkers | CSF | CNS | hyper | [51] |
| SCG3, NCOR2, KCNH7, DOCK1 cg05491001,cg25567674,ZFPM2,GRIK1 |
tissue, plasma | PCNLS | hyper | [52] |
| HOXA9 and GABRG3 | plasma | brain tumor | hyper | [53] |
| 347 critical CpG sites (key genes: MGMT,TERT, CDKN2A, PTEN,NF1..) | tissue | GBM | 110 hyper 153 hypo |
[55] |
| ASPM, CCNB2, CDK1, AURKA, TOP2A, CHEK1, CDCA8, MCM10, RAD51AP1 | tissue | GBM | hypo | [61] |
| Biomarker | Type | Origin | diseases | Hypo/Hyper | Ref. |
|---|---|---|---|---|---|
| miR-155,miR-150 | miRNA | serum, EVs | AML | up | [75,76] |
| miR-370 | miRNA | blood | AML | down | [77] |
| miR-181a, miR-155 | miRNA | serum, bone marrow | AML | up | [78] |
| miR-182 | miRNA | cell lines | AML | down | [79,80] |
| miR-548a, miR-6511b, miR-455,miR-5787,miR-638,miR-3613 |
miRNA | plasma | AML | up down |
[81] |
| HOTAIR, MALAT1A | lncRNA | bone marrow | AML | up | [82,83,86] |
| MEG3 | lncRNA | cells, bone marrow | AML | down | [82,83,86] |
| LINC00152 | lncRNA | cell lines, bone marrow | AML | up | [82,83,86] |
| XIST,TUG1,GABPB1-AS1 | lncRNA | cell lines | CN-AML | up | [85] |
| LINC00461, RP11-309M23.1, AC016735.2, RP11-61I13.3, KIAA0087, RORB-AS1, and AC012354.6 | lncRNA | bone marrow | AML | up | [87] |
| 69-lncRNA | lncRNA | bone marrow | AML | up | [88] |
| circRUNX1, cirWHSC, circFLT3 | circRNAs | bone marrow | AML | up | [89] |
| miR-146a | miRNA | plasma | ALL | up | [90] |
| miR-128-3p | miRNA | blood | ALL | up | [91] |
| miRNAs-181b-5p | miRNA | blood | ALL | up | [92] |
| miR-326 | miRNA | exosome | ALL | up | [93]. |
| miR-125b-5p, miR-150-5p, miR99a-5p | miRNA | Bone marrow | ALL | down | [94] |
| TCONS_00026679, uc002ubt.1, ENST00000411904, ENST00000547644 | IncRNA | Bone marrow | ALL | down | [95] |
| circPVT1,circHIPK3 | circRNA | Cells lines | ALL | up | [96,97] |
| circ-0000745 | circRNA | bone marrow, cell lines | ALL | up | [98] |
| circWASHC2A | circRNA | bone marrow | ALL | up | [100] |
| circANSK1B, CircBARD1,cirMAN1A2 | circRNA | Bone marrow | ALL | up | [101] |
| miR-10b, miR-130a,miR-210 | miRNA | serum | glioma | up | [102] |
| miR-21, mi-R19 and miR-92a | miRNA | CSF | PCNSL | up | [104] |
| miR-30c | miRNA | CSF | SCNLS | up | [105] |
| miR-16-5p, miR-21-5p, miR-92a-3p, miR-423-5p | miRNA | CSF | PCNSL | up | [106] |
| miR-124 | miRNA | serum, plasma, tissue | glioma | down | [107] |
| miR-21,miR-221 | miRNA | CSF, serum | glioma | up | [108] |
| miR-29a, miR-106a,miR-200 | miRNA | blood | GBM | up | [109] |
| miR-16-5p, miR-34a-5p, miR-205-5p, miR-124-3p and miR-147a | miRNA | CSF | GBM | down | [61] |
| miR-3180-3p, miR-5739 | miRNA | plasma | GBM | up | [110] |
| HOTAIR, MALAT1, TUG1,NEAT1 | lncRNA | CSF, serum | glioma, GBM | up | [111] |
| SLCO4A1-AS1 | lncRNA | tissue | GBM | up | [112] |
| ZNF503-AS2 | lncRNA | tissue | GBM | up | [113] |
| LINC00565, LINC00641 | lncRNA | blood | GBM | up | [114] |
| CircHIPK3 | cirRNA | tissue, cells | Glioma | up | [115,116] |
| CircHIPK3, circSMARC5 | cirRNA | serum | GBM | up | [68,117] |
| CircFBXW7 | cirRNA | tissue | Glioma | down | [115,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
