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Abstract: Effective management of Type 1 Diabetes requires anticipating fluctuations in blood
glucose levels and evaluating potential outcomes of clinical decisions. This project introduces an
interactive decision-support tool that simulates future glucose trajectories using a rolling ARIMA
forecasting model applied to synthetically generated data. While ARIMA provides a transparent
statistical basis for short-term predictions, the primary innovation lies in the tool’s visual interface.
Using Plotly, glucose forecasts are rendered as branching scenario trees, where each path represents
a distinct clinical intervention (e.g., meals, exercise). Nodes are color-coded by risk category and
annotated with intuitive icons and hoverable metrics, enabling clinicians to rapidly assess
hypothetical outcomes. Designed with interpretability and usability in mind, the tool transforms raw
time-series predictions into an interactive, clinician-friendly format. Although it does not use real
CGM data, the visualization framework supports patient-specific modeling and may serve as a
prototype for future clinical decision-support systems.

Keywords: interactive visualization; decision support; simulation; diabetes

1. Introduction

Type 1 Diabetes is a chronic and increasingly prevalent condition that demands continuous
monitoring and management of rapid fluctuations in blood glucose levels. These fluctuations are
influenced by a variety of factors, including meals, physical activity, stress, and insulin
administration [1]. While considerable research has focused on improving the accuracy of glucose
forecasting models, traditional approaches often deliver raw predictions without translating them
into actionable insights for clinicians or patients.

This project addresses that gap by shifting the focus from pure predictive accuracy to interactive
and interpretable clinical decision support. It introduces a simulation-based tool that combines a
rolling ARIMA forecasting model with dynamic, scenario-based visualizations. Using Plotly [2], the
system renders glucose predictions as an interactive, color-coded tree structure, where each branch
represents a potential intervention pathway such as meal intake or exercise allowing users to
intuitively explore future glucose trajectories.

By transforming synthetic time-series data into an engaging and clinician-friendly format, the
tool enhances the interpretability of glucose dynamics. It serves not only as a proof-of-concept for
visual scenario modeling in diabetes care, but also as a foundation for future patient-specific decision
support systems that prioritize usability, clarity, and real-world clinical relevance.
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Image [3] explaining basic and general description of the chronic condition via comparison to a healthy

individual without this condition.

1.1. Brief Overview of the Project

This project is an interactive Python-based tool designed to help users visualize how glucose
levels might change over time under different possible scenarios. Rather than predicting a single
future, the tool simulates multiple branching outcomes, offering a more intuitive and flexible view of
glucose dynamics.

How Does It Work?

1. Generating Synthetic Data: To begin with, the system creates simulated glucose data that

resembles real human blood sugar trends. Occasional spikes or dips are introduced to mimic real-
world influences such as stress, meals, or exercise.

2. Forecasting with ARIMA: The ARIMA (AutoRegressive Integrated Moving Average) model
analyzes recent synthetic glucose values and predicts future levels based on detected trends.
Although the visualization could function without this model, ARIMA adds value by producing
smoother, more realistic forecasts, especially helpful for filtering out extreme noise from the synthetic
data. ARIMA is also widely used in academic studies for glucose prediction.

3. Branching Into Possibilities: From the ARIMA-predicted starting value, the system
constructs separate glucose trajectories, each corresponding to a distinct simulated intervention: a
meal, exercise, or no intervention. These represent clinically relevant pathways rather than
probabilistic variations. Each scenario progresses linearly over time at 5-minute intervals to mimic
the resolution of modern CGM devices. The number of time steps in each path depends on the user’s
simulation duration (e.g., 15 minutes results in 3 future points). This design emphasizes how different
actions might affect future glucose values, rather than simulating uncertainty within a single
scenario. From that ARIMA starting point, the system creates three paths:

= $ Exercise
= [ Meal
= # No Intervention

These are not random guesses, but fixed scenarios — each one changes the glucose differently
based on the event.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1291.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 June 2025 d0i:10.20944/preprints202506.1291.v1

3 of 18

In the Exercise path, the simulated glucose level decreases steadily over time. This reflects how
physical activity, such as walking or light aerobic movement, typically causes a gradual drop in blood
glucose as the body uses it for energy. The decrease is applied in fixed increments at each time step,
simulating the physiological response to activity.

In the Meal scenario, the glucose level rises incrementally with each time step. This mimics the
effect of carbohydrate intake after eating, where glucose is absorbed into the bloodstream, leading to
a spike. The increase is also applied in fixed amounts, representing a simplified but realistic model
of post-meal glucose elevation.

Finally, the No Intervention path assumes the individual takes no action. The glucose trend in
this scenario continues based on the ARIMA model’s original forecast, with minimal adjustments.
This serves as the baseline or control, showing what would likely happen if glucose levels were left
to progress naturally without external influences.

By comparing these three clearly defined paths, the tool allows users to explore and contrast the
short-term impacts of common lifestyle decisions in a visually intuitive way.

4. Color-Coded Risk Zones: Each node in the tree is color-coded based on its glucose value to
make health risks instantly visible:

= @ Blue: Low glucose (<70 mg/dL) - Hypoglycemia
= @ Green: Normal range (70-190 mg/dL) - Normoglycemia
= @ Red: High glucose (>190 mg/dL) - Hyperglycemia

5. Interactive Visualization: Finally, using the Plotly library, the entire scenario tree is rendered
as an interactive graph. Users, including clinicians, researchers, or students can hover over any node
to view the predicted glucose value and exact timestamp.

The truly novel aspect of this project is the interactive, scenario-based visualization that
simulates multiple futures from a single starting point. It applies the core principles of Ben
Shneiderman’s Visual Information-Seeking Mantra - overview first, zoom and filter, then
details-on-demand to a clinical context. While built using synthetic data, the system lays the
foundation for more advanced applications in patient-specific simulation, education, and
clinical decision-making.

1.2. Problem Statement

Existing approaches to glucose prediction in Type 1 Diabetes often emphasize static, purely
numerical forecasts without considering the need for user engagement and intuitive interpretation.
While statistical models like ARIMA offer a transparent framework for prediction, their conventional
implementations lack interactive visualization, which is crucial for enabling clinicians and patients
to explore and understand glucose dynamics in real time.

This project addresses this gap by shifting the focus from mere prediction to creating an
engaging, interactive tool. By integrating a rolling ARIMA forecasting model with a dynamic, Plotly-
based visualization presented as a color-coded tree the system transforms raw forecast data into an
accessible and interpretable format. This approach not only enhances the clarity of the predictions
but also empowers users to derive actionable insights, ultimately supporting more informed
decision-making in diabetes management aiding one of the leading objectives in the field, to create
an autonomous artificial pancreas.
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Image [5] showcasing uses of prediction algorithms and end use in flowchart format.

1.4. Structure of the Overall Paper

1. Introduction

2. Introduction to Glucose Prediction Visualization Problem in Type 1 Diabetes
3. Introduction to Glucose Prediction Models

4. Project Logic & Structure

5. Final Thoughts

6. References

2. Introduction to Glucose Prediction Visualization Problem in Type 1 Diabetes

Predicting blood glucose levels ahead of time has been a long-standing challenge in the
management of Type 1 Diabetes. This difficulty arises from the complex interplay of factors such as
meal composition, physical activity, stress, and individual metabolic variations that affect blood
glucose dynamics. Traditionally, models for glucose prediction have been grouped into three broad
categories: Physiological-based models, Data-driven models and hybrid models. However, while
considerable research has focused on improving numerical accuracy, there is an increasing need to
enhance the clinical interpretability of these predictions as logic would concur the more data the more
advanced tools required, which my project aims to address.

Interactive visualizations have emerged as a critical tool to bridge this gap. By transforming raw
forecasting outputs into intuitive visual formats, these tools enable both clinicians and patients to
explore trends and identify potential risk zones easily. By conducting this project methods were in
place to avoid bias as much as possible and therefore analysed critically from others views and were
can understand some may argue that this literature comparison below should compare tools such as
line graphs, pie charts, bar charts and so on, however this project is a solution a functional system
that brings together data generations, forecasting for visual interpretation and interactivity. This is
not a decorative way of numerical data but a functional visualization to support patient care, which
the platforms mentioned further share more in common.

2.1. Dexcom Clarity, Tidepool, and Nightscout Interactive Dashboard

First a brief introduction to the following platforms from the following research as of date paper
completion:

* Dexcom Clarity is a proprietary system developed by Dexcom Inc., designed to work

exclusively with Dexcom CGM devices . It provides users and healthcare providers with
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detailed trend analysis, daily patterns, and retrospective reports through a sleek and
clinically validated interface [8].

= Tidepool is a non-profit, open-source platform that supports data integration from multiple
diabetes devices. It emphasizes accessibility, multi-device compatibility, and visual clarity,
offering users various chart types (e.g., stacked bar, pie, and line graphs) to support
personalized diabetes management [9].

* Nightscout is an open-source, community-driven project that enables real-time remote
access to CGM data. Unlike commercial systems, it prioritizes customizability and autonomy
but lacks built-in predictive analytics and requires technical setup by the user [10].

Dexcom Clarity, Tidepool and Nightscout are all established platforms that provide interactive

dashboards for visualizing continuous glucose monitoring (CGM) data. Here below are extracted key
points in regard to:

= Data Source Compatibility

= Visualization and Interactivity

= Clinical Interpretability

=  System Flexibility and Scalability

Then compress the research, discuss aspects of each platform and my proposed project all into
an easy-to-understand table:

Aspect Dexcom Tidepool Proposed Project
Clarity Nightscout Differences
Data Source Limited to Supports Provides real-time Uses synthetic data
Compatibility = Dexcom only multiple device access from to simulate realistic
devices data, but connected CGM glucose patterns
integration can devices. However, available 24/7.
be challenging data is not always
due to lack of available due to the
access to the fact it depends on
public of the real users using the
United system consistently.

Kingdom as of Also, Nightscout
26/03/2025 does not predict

glucose data.

Visualization Sleek Provides Colour coded Features an
and interface interactive graphs with “just interactive tree
Interactivity with detailed  features with enough design” visualization and
reports and professional inspired not just limited to
trend graphs  visualization architecture. the generic
yet presenting However not dashboard.
necessary visually appealing.
information
effectively.
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Clinical Presents Offers deep Visualizes raw data Enhances
Interpretability trend analysis of data with little to no interpretability
analysis,and  and presents integrated clinical containing colour
data can be them in context coded risk indicators
shared to multiple visual to showcase risk
caregivers, formats such as zones. Suitable for
clinicians,  line, graphs, pie all devices that have
researchers charts, stacked access to open html
and so on bar charts and files.
so on.
System Constrained Moderately Open-sources and Designed with a
Flexibility and asa flexible flexible to adapt, modular
Scalability proprietary integration however has a architecture,
ecosystem from Tidepool complicated allowing future
official codebase and lacks enhancements,
documentation,  predictive glucose scalability and with
however element. the potential for
challenges implementation of
include real-world patient

accessibility to

certain regions.

data.

9:51

Pre-meal preset

Glucose prediction

13 6 QO —Q

until 10:51 PM

¥ Pre-meal Preset

Cancel

Meal Bolus

Active Carbs 0 Active Insulin

Glucose

Glucose

Pre-Meal

80—-90 mg/dL

Active Insulin

Image [11] showcasing Tidepool Mobile Application with glucose monitoring and prediction

implementation.
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Image [13] showcasing uses of prediction algorithms and end use in flowchart format.

In summary, the literature review shows that established platforms like Dexcom Clarity,
Tidepool, and Nightscout focus primarily on real-time data dashboards and integration of patient
data, with a strong emphasis on trend analysis and raw data visualization. In contrast, this project
adopts a fundamentally different approach by using synthetically generated glucose data, ensuring
both reproducibility and ethical compliance. Key distinctions include:

* Data Source and Implementation — Whereas existing solutions rely on real patient data, our

project exclusively employs synthetic data. This not only solves ethical issues in regard to

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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privacy concerns but also allows for controlled experimentation. Furthermore, the project is
developed in Python, a language not commonly used in commercial CGM applications -
demonstrating the versatility and accessibility of open-source tools.
* Visualization Approach - Unlike traditional dashboards, the project introduces an
innovative interactive tree visualization. By generating an HTML Plotly file, the tool provides
a dynamic, offline-accessible visual that is suitable for multiple devices. This method bridges
the gap between complex statistical forecasting and clinical interpretability, offering an
intuitive means to explore glucose dynamics.
= Methodological Focus — The project leverages a statistical-based ARIMA model for
prediction, moving away from the predominant reliance on machine learning models. This
choice addresses the "black box" issue common in Al approaches, thereby enhancing the
transparency and interpretability of the forecasting process. This focus is especially crucial
in clinical settings where understanding the underlying data patterns is essential.
Overall, this project fills a gap by providing a novel visualization method tailored to a broad
audience- including clinicians, students, patients, and researchers as mentioned in my project
specification. As discussed later in the paper, future enhancements could further extend their

functionality and impact, potentially broadening its applicability to real-world scenarios with this
project laying the fundamental groundwork.

2.2. Decision Choice on Dataset Reliability

Initially the first thought was to find a suitable dataset to showcase interactive simulation, which
was the OhioT1DM dataset [14]. However, upon entering the website there was a list of requirements
to fulfil to request the dataset with every criterion being met. As can be seen below:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Thank you for your interest in receiving the OhioT1DM

Dataset.
Please complete the following form to request a Data Use Agreement. The dataset is

only available to established principal investigators affiliated with Institutions that
are engaged in research. Correctly completed surveys will expedite the agreement
process. Incomplete or incorrectly submitted surveys may not receive a timely
response.

e Researcher must be an employee of the institution and not a student.
Supervising advisors should request the dataset on behalf of advisees.

¢ The Institutional Contact must be a legal signatory for the institution. The
instituional Contact must review and sign the agreement on behalf of the
Researcher before the data can be released. The Institutional Contact's
information must be provided and may not match that of the Researcher.

e Ohio University will provide the agreement to the Institutional Contact only for
review and execution.

e Electronic copies of the executed agreement will be sent to both the researcher
and institutional contact.

¢ Responses with personal email accounts (gmail, yahoo, qq, etc.) will not be
processed.

¢ Responses in non-romanized characters will not be processed.

Image [14] showcasing forum requirements to access the OhioT1DM Dataset.

After further research it was discovered that the OhiotT1DM has missing values and is sited in
multiple studies, screenshots can be seen below:

Since self-reported mealtime is crucial information for the real-time validation purposes
of this work, Subject ID 567, which did not record any meal during the last 10 days of
monitoring, was discarded.

Each subject comprising the OhioT1DM dataset was split into a training set (about
82% of the entire monitoring period) consisting of the initial 6 weeks of monitoring and a

Image [15] showcasing Subject ID 567 with no record of any meal during the last 10 days of monitoring.
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3.1.1. Missing data filling

Here we use the OhioT1DM Dataset [36] including the training set and test set data of 12
T1D patients. The information in the dataset is from a CSII-CGM therapy and a fitness tracker
band. Because the data has outliers and missing etc., it needs to be preprocessed. The
outliers in CGM use Gaussian process regression to detect and correct. The basal insulin dose
has daily periodicity, so the data of the previous day is applied for filling. The first-order
Taylor series extrapolation method and historical average are used for filling when the
consecutive missing values are less than 12. The missing CGM in the training dataset is not
filled to avoid introducing additional noise [37]. The training set is used to mine the
hypoglycemia sequential pattern library and the test set verifies the performance of the

hypoglycemia early alarm method.

Image [16] verifying the data has outliers and missing values and needs to be preprocessed before use.

Because of the reasons stated above, the thoughted decision to use continuous synthetic glucose
data instead was opted. It kept the project ethical, reliable, and fully within control. The advantage
of opting for this alternate approach also means that there would not be a need to clean up the data
by using preprocessing/data manipulation techniques to force the data to fit for the model.

In summary, while the current implementation of this project using synthetic data minimizes
many legal and ethical risks, future developments and potential real-world applications will
necessitate careful consideration of data protection, transparency, and the broader societal impact of
automated health prediction tools to make this framework clinically accepted.

3. Introduction to Glucose Prediction Models

As previously stated, — “Traditionally, models for glucose prediction have been grouped into
three broad categories: Physiological-based models, Data-driven models and hybrid models. All have
been talked extensively down below:

3.1. Physiological-Based Models also Sometimes Referred to as Mathematical-Based Models

These models use explicit mathematical representations of human glucose-insulin dynamics,
typically based on differential equations derived from physiology. Notable examples include the
Bergman minimal model and more complex simulations like the UVA/Padova metabolic simulator
[6]. Physiological models that are used in Type 1 Diabetes typically aim to capture how insulin is
absorbed, how it acts on lowering glucose, and how glucose is produced or used by the body’s tissues.
For instance, they may include compartments to represent glucose absorption from meals and insulin
kinetics. The advantage of physiological models is that they are grounded in medical knowledge and
often interpretable in terms of biological processes. However, they require many parameters to be
specified (such as insulin sensitivity, carbohydrate absorption rates, etc.) [6].

These parameters vary from person to person and can be hard to estimate accurately.
Consequently, pure physiological models sometimes struggle to be personalized unless extensive
individual calibration is done. Moreover, due to the complexity of human metabolism, purely
equation-based models might not account for all factors (stress, illness, hormone fluctuations)
affecting glucose, limiting their predictive accuracy when used alone.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.2. Data-Driven Models

In contrast to physiological approaches, data-driven models learn patterns directly from
historical data. They do not require explicit knowledge of the biological system, instead inferring the
relationships empirically and thus are not limited to the medical field and are implemented in stock
markets, sales, business planning etc. Data-driven methods can be further divided into statistical
(shallow) models and machine learning (deep) models. [6]

Statistical Models: These include classical time-series forecasting techniques such as linear
regression, Autoregressive Moving Average (ARMA), and Autoregressive Integrated Moving
Average (ARIMA) models. They rely on past glucose values (and potentially other exogenous inputs)
to forecast future values. For example, an ARIMA model might extrapolate the recent trend and
seasonality in a patient’s glucose readings to predict the next value. Such models are usually simpler
and more interpretable — one can often examine model coefficients to understand the influence of
past observations on the forecast. ARIMA has been used in glucose prediction research as a baseline
algorithm . However, statistical models generally assume linear relationships. They may perform
adequately for short-term predictions during steady glucose trends but can miss nonlinear patterns
during rapid changes. In fact, earlier studies showed that purely autoregressive models (assuming
linear dynamics) have limited accuracy when glucose levels change sharply due to meals, exercise,
or other factors.

In one study, title “Neural Network Incorporating Meal Information Improves Accuracy of
Short-Time Prediction of Glucose Concentration” noted that a linear AR model’s accuracy drops
when glucose dynamics become highly nonlinear (e.g., after food intake or insulin dosing),
motivating the use of more complex models that can capture such effects such as Machine Learning
approaches.

Machine Learning Models: These include more advanced data-driven approaches, particularly
those using modern ML and deep learning. Researchers have applied neural networks including
recurrent neural networks like LSTM, Transformers and other techniques to glucose forecasting [18].
Such models can automatically learn complex nonlinear relationships from data. For instance, neural
networks can potentially recognize patterns in glucose changes corresponding to mealtimes, exercise,
or insulin injections if given enough data. Over the last decade, numerous studies have reported that
ML models often outperform traditional statistical models in predictive accuracy.[18]

For example, in one comparative study all tested neural network models yielded lower
prediction error metrics than even the best conventional machine learning models (like Random
Forests or Support Vector Regression). Additionally, data-driven models, especially deep learning,
typically require large amounts of training data and careful tuning to generalize well without
overfitting. Each patient’s glucose response is unique, so a model trained on population data might
not capture an individual’s patterns unless it is personalized or fine-tuned, which can be resource
intensive.

3.3. Hybrid Models

To leverage the strengths of both approaches, some researchers have developed hybrid models
that combine physiological and data-driven components. A hybrid model might use a physiological
model to simulate the general trend or provide synthetic data and then use a machine learning model
to adjust or refine the prediction. For example, one could use a physiological model to estimate the
effect of a meal on glucose, and feed that as an input feature into a neural network that also considers
recent CGM readings.

A study released in 2012 followed this strategy by integrating a meal absorption model with a
neural network predictor, achieving better accuracy than the neural network alone when meal
information was considered. The challenge with hybrid models is that they may become quite
complex and still require tuning of physiological parameters, which could reduce interpretability (the
model’s logic may not be as straightforward as a standalone statistical model). In addition,
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developing and validating such models can be time-consuming since they combine two modelling
paradigms.

3.4. ARIMA-Based Rolling Prediction Framework

For our predictive modelling, ARIMA (Autoregressive Integrated Moving Average) model was
employed. ARIMA is a classical statistical model for analyzing and forecasting time series data and
stands for:

* Auto Regressive (AR) - Uses past values to predict the future.

* Integrated (I) > Makes the data stable (stationary).

* Moving Average (MA) > Uses past prediction errors to improve future predictions.

To do this it has three parameters where:

* pis how many past values to use (memory of past readings).

* dis how many times subtract past values to make the data stable.

* qis How much past error to consider (to correct mistakes).

Model specification: In this study, after some preliminary experimentation, it was decided to fix

the ARIMA model with parameters (p=1, d=1, g=0) for all patients.
The selected configuration was for several reasons:

* itis a model less prone to overfitting,

* It captures the intuition that the change in glucose from one time step to the next

* it requires a minimal amount of data to train (only a few past points to estimate the next
prediction)

Keeping the model identical for each patient also ensures consistency in evaluation.
This model is also used in this field and can be found in various studies [21-23]

“The Box-Jenkins Model is a mathematical model designed to forecast data ranges based on inputs from a
specified time series...

...Autoregressive integrated moving average (ARIMA) models are a form of Box-Jenkins model. The terms
ARIMA and Box-Jenkins are sometimes used interchangeably...

...The Box-Jenkins Model forecasts data using three principles: autoregression, differencing, and moving

average. These three principles are known as p, d, and g, respectively. Each principle is used in the Box-Jenkins

analysis; together, they are collectively shown as ARIMA (p, d, q).”

Text snippet here is necessary to understand references as Box-Jenkins Model is mentioned and

may cause some confusion. [24]

4. Project Logic & Structure

This section goes into a brief discussion with the actual codebase that leads to the creation of the
visual example described.
4.1. Codebase

Assuming that dependencies and IDE are installed correctly and knowledge to some degree is
present in programming and this can run on your local machine with the following commands:

= git clone https://github.com/AbdulRaheemNazir/glucose-visual-scenario-tree.git

* cd glucose-visual-scenario-tree
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Once the code has been successfully added, run main.py and you should see an input to add
your initial glucose level currently. Then once entered you should be prompted to receive a final
input requesting the numbers to simulate.

In the example below a glucose level of 70 mg/dL and 30 minutes duration for the simulations
have been inputted.

Enter your baseline glucose level (e.g., 100): 70

Enter number of minutes to simulate (must be multiple of 5): 3@
™ Final styled tree saved to: glucose_tree_interactive.html

Once both inputs have been filled with appropriate data a .html file will be generated in the
same directory and the code is executed and can be opened. The complete final output can be seen
below:

Glucose Scenario Tree — Clinician View

% Exerdse at T+10 b

% Exerdise at T+10
Exerdise at T+10
[e]

Exercise at T+10
®

™ Meal 3t T+5

Exercise at T+18 Meal ot T+5
¥ No Intervantion

(>190 mg/dL)
(<70 mg/dL)

* Exercise | &

O = Meal

= Exercise
= Baseline
Glucose Trajectory
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Glucose Scenario Tree — Clinician View

% Exercise at T+10
(]

¥ Exerdise at T+10 @ Meal 3t T+5
[} ®

* Exercise at T+10 W Meal At T+5
@ (2]

#* Exerdise at T+10 ® Meal At T+5
] ®

* Exercise at T+10 W Meal At T+5
@ @

@

% Exercise at T+10 ' Meal at T+5
@

% No Intervention
@

% Exercise at T+18 Meal at T+5
@ @ ¥ No Interverition
@

Hoverable elements can be seen notifying the user of the system glucose level and time from
potential action if chosen. Also, a legend (also referred to as a key) can be seen with key information
for the user to understand what is being viewed.

The rule-based algorithms implemented mimic real life scenario trends, for example exercising
leading to lower glucose whereas eating a meal increases glucose levels.

So, what is understood from these graphs?

*  Which intervention keeps glucose within target the longest

* How quickly glucose may rise post-meal

*  Which scenarios require caution (red-heavy branches)

*  The urgency of glucose correction or insulin dosing

However, as this is synthetic data and not actual patient data the validity of this for clinical
reliability cannot be outright proven without further work as discussed later on in the paper.
However, the possibilities that have now been introduced increases clinical understanding of trends

and medical futures from a singular visualization are boundless to the creativity of experts as further
discussed later.

4.2. Pseudocode Diagram

Detailed pseudocode diagram of the entire codebase functionality
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(e.g. Meal, Exercise)
‘ Generate Base Glucose Data

/

‘ Simulate Future Scenarios

using ARIMA

generate_synthetic_glucose data()
— Creates realistic glucose patterns

‘ Adjust Predictions for Events

apply_event_effects()

Combine All Predictions
— Applies meal/exercise effects

into DataFrame

A

‘ Create Interactive Tree Visualization

generate_interactive_glucose tree()
— Builds and Styles Tree

Color Code Nodes
(Red, Green, Blue)

End: Tree Saved

Render with Plotly
— Hover, Save Output

5. Final Thoughts

Here in this section describes possible future work building from this paper and the overall
conclusion in terms of the novelty and clinical applications of this paper.

5.1. Possible Future Work

While the current system offers a novel and accessible framework for visualizing glucose
trajectories using synthetic data and ARIMA-based forecasting, several future directions can enhance
its clinical impact and usability. First, integrating real continuous glucose monitoring (CGM) data
would enable personalized, patient-specific simulations and move the tool closer to real-world
deployment. Visualization could be further improved by incorporating a probability estimation
system, where each branching path is weighted based on likelihood, offering clinicians not just
possible futures but probable ones. Additionally, replacing or augmenting ARIMA with more
advanced models such as LSTM or ensemble learning could improve prediction accuracy, especially
for nonlinear glucose behavior. Enhancing the user interface to support manual event logging-such
as meals, insulin doses, or physical activity-would make the system more interactive and reflective
of real-life use. Expanding the tree to support chained or compound interventions would allow users
to simulate more complex scenarios over longer timelines. Finally, packaging the system into a
clinician-facing dashboard with report generation features, customizable risk thresholds, and
annotation tools would help position it as a viable tool for diabetes education, monitoring, or decision
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support. A future clinical validation study could assess its effectiveness in supporting real-time
interpretation and planning in diabetes care.

5.2. Conclusions

This project presents a novel approach to glucose forecasting by shifting the focus from purely
predictive accuracy to clinical interpretability through interactive visualization. By integrating a
rolling ARIMA model with a custom-built scenario tree rendered using Plotly, the tool allows users
to simulate multiple glucose trajectories stemming from common interventions such as meals or
exercise. Each branch of the tree represents a distinct possibility, empowering clinicians and users to
intuitively explore potential futures rather than relying on a single deterministic outcome.

Unlike traditional platforms that prioritize raw CGM data presentation, this tool demonstrates
how synthetic time-series data can be transformed into a dynamic and informative structure. The
visualization’s color-coded, hover-enabled interface highlights risk zones and reflects real-time
decision-making processes. While the tool is currently powered by synthetic data, its modular design
allows for future integration of real CGM streams, enabling personalized simulations tailored to
individual patients.

In summary, the system not only provides an accessible prototype for clinical education and
decision support but also lays the groundwork for future applications in personalized medicine. Its
transparent forecasting method, combined with engaging user experience, positions it as a
meaningful contribution to the advancement of interpretable Al in healthcare.

6. Additional Information

Additional content that is not linked to the main manuscript of the papers, however, provides
additional insights.

6.1. Glossary

Here is a Glossary section containing essential terms to understand the project.

ARIMA (Autoregressive Integrated Moving Average): A statistical time-series forecasting
model that combines autoregression (AR), differencing (I), and moving average (MA) components.
Used in this project to predict future glucose levels based on past data trends.

CGM (Continuous Glucose Monitoring): Technology used to automatically track glucose levels
throughout the day and night.

Time Series Data: A sequence of data points indexed in time order. In this project, it refers to
continuous glucose monitoring (CGM) values over time and are used synchronously.

Synthetic Data: Artificially generated data that simulates real-world glucose trends without
using actual patient data. Ensures privacy and ethical compliance.

Plotly: An open-source graphing library used to create interactive, browser-based data
visualizations.

Type 1 Diabetes (T1D): A chronic autoimmune condition where the pancreas produces little or
no insulin, leading to high blood glucose levels.

Glucose Forecasting: The process of predicting future blood glucose levels using past data,
statistical models, or machine learning techniques.

Rolling Forecast: A forecasting method where predictions are continuously updated as new
data becomes available. Used in this project to simulate real-time prediction adjustments.

LSTM (Long Short-Term Memory):A type of recurrent neural network capable of learning
order dependence in sequence prediction problems. However, understanding that this is a type of
neural network is the minimal information to understand the following report.

Ben Shneiderman's Visual Information-Seeking Mantra [25]: This is designed to be a guiding
principle for designing effective information visualizations. His guide to achieve this was to ensure
the visualization had an:
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1. First,
2. Zoom and filter,
3. Then details on demand
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