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Abstract: Effective management of Type 1 Diabetes requires anticipating fluctuations in blood 

glucose levels and evaluating potential outcomes of clinical decisions. This project introduces an 

interactive decision-support tool that simulates future glucose trajectories using a rolling ARIMA 

forecasting model applied to synthetically generated data. While ARIMA provides a transparent 

statistical basis for short-term predictions, the primary innovation lies in the tool’s visual interface. 

Using Plotly, glucose forecasts are rendered as branching scenario trees, where each path represents 

a distinct clinical intervention (e.g., meals, exercise). Nodes are color-coded by risk category and 

annotated with intuitive icons and hoverable metrics, enabling clinicians to rapidly assess 

hypothetical outcomes. Designed with interpretability and usability in mind, the tool transforms raw 

time-series predictions into an interactive, clinician-friendly format. Although it does not use real 

CGM data, the visualization framework supports patient-specific modeling and may serve as a 

prototype for future clinical decision-support systems. 

Keywords: interactive visualization; decision support; simulation; diabetes 

 

1. Introduction 

Type 1 Diabetes is a chronic and increasingly prevalent condition that demands continuous 

monitoring and management of rapid fluctuations in blood glucose levels. These fluctuations are 

influenced by a variety of factors, including meals, physical activity, stress, and insulin 

administration [1]. While considerable research has focused on improving the accuracy of glucose 

forecasting models, traditional approaches often deliver raw predictions without translating them 

into actionable insights for clinicians or patients. 

This project addresses that gap by shifting the focus from pure predictive accuracy to interactive 

and interpretable clinical decision support. It introduces a simulation-based tool that combines a 

rolling ARIMA forecasting model with dynamic, scenario-based visualizations. Using Plotly [2], the 

system renders glucose predictions as an interactive, color-coded tree structure, where each branch 

represents a potential intervention pathway such as meal intake or exercise allowing users to 

intuitively explore future glucose trajectories. 

By transforming synthetic time-series data into an engaging and clinician-friendly format, the 

tool enhances the interpretability of glucose dynamics. It serves not only as a proof-of-concept for 

visual scenario modeling in diabetes care, but also as a foundation for future patient-specific decision 

support systems that prioritize usability, clarity, and real-world clinical relevance. 
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Image [3] explaining basic and general description of the chronic condition via comparison to a healthy 

individual without this condition. 

1.1. Brief Overview of the Project 

This project is an interactive Python-based tool designed to help users visualize how glucose 

levels might change over time under different possible scenarios. Rather than predicting a single 

future, the tool simulates multiple branching outcomes, offering a more intuitive and flexible view of 

glucose dynamics. 

How Does It Work? 

1. Generating Synthetic Data: To begin with, the system creates simulated glucose data that 

resembles real human blood sugar trends. Occasional spikes or dips are introduced to mimic real-

world influences such as stress, meals, or exercise. 

2. Forecasting with ARIMA: The ARIMA (AutoRegressive Integrated Moving Average) model 

analyzes recent synthetic glucose values and predicts future levels based on detected trends. 

Although the visualization could function without this model, ARIMA adds value by producing 

smoother, more realistic forecasts, especially helpful for filtering out extreme noise from the synthetic 

data. ARIMA is also widely used in academic studies for glucose prediction. 

3. Branching Into Possibilities: From the ARIMA-predicted starting value, the system 

constructs separate glucose trajectories, each corresponding to a distinct simulated intervention: a 

meal, exercise, or no intervention. These represent clinically relevant pathways rather than 

probabilistic variations. Each scenario progresses linearly over time at 5-minute intervals to mimic 

the resolution of modern CGM devices. The number of time steps in each path depends on the user’s 

simulation duration (e.g., 15 minutes results in 3 future points). This design emphasizes how different 

actions might affect future glucose values, rather than simulating uncertainty within a single 

scenario. From that ARIMA starting point, the system creates three paths: 

▪         Exercise 

▪        Meal 

▪      No Intervention 

These are not random guesses, but fixed scenarios — each one changes the glucose differently 

based on the event. 
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In the Exercise path, the simulated glucose level decreases steadily over time. This reflects how 

physical activity, such as walking or light aerobic movement, typically causes a gradual drop in blood 

glucose as the body uses it for energy. The decrease is applied in fixed increments at each time step, 

simulating the physiological response to activity. 

In the Meal scenario, the glucose level rises incrementally with each time step. This mimics the 

effect of carbohydrate intake after eating, where glucose is absorbed into the bloodstream, leading to 

a spike. The increase is also applied in fixed amounts, representing a simplified but realistic model 

of post-meal glucose elevation. 

Finally, the No Intervention path assumes the individual takes no action. The glucose trend in 

this scenario continues based on the ARIMA model’s original forecast, with minimal adjustments. 

This serves as the baseline or control, showing what would likely happen if glucose levels were left 

to progress naturally without external influences. 

By comparing these three clearly defined paths, the tool allows users to explore and contrast the 

short-term impacts of common lifestyle decisions in a visually intuitive way. 

4. Color-Coded Risk Zones: Each node in the tree is color-coded based on its glucose value to 

make health risks instantly visible: 

▪     Blue: Low glucose (<70 mg/dL) - Hypoglycemia 

▪     Green: Normal range (70–190 mg/dL) -  Normoglycemia 

▪     Red: High glucose (>190 mg/dL) - Hyperglycemia 

5. Interactive Visualization: Finally, using the Plotly library, the entire scenario tree is rendered 

as an interactive graph. Users, including clinicians, researchers, or students can hover over any node 

to view the predicted glucose value and exact timestamp. 

The truly novel aspect of this project is the interactive, scenario-based visualization that 

simulates multiple futures from a single starting point. It applies the core principles of Ben 

Shneiderman’s Visual Information-Seeking Mantra - overview first, zoom and filter, then 

details-on-demand to a clinical context. While built using synthetic data, the system lays the 

foundation for more advanced applications in patient-specific simulation, education, and 

clinical decision-making. 

1.2. Problem Statement 

Existing approaches to glucose prediction in Type 1 Diabetes often emphasize static, purely 

numerical forecasts without considering the need for user engagement and intuitive interpretation. 

While statistical models like ARIMA offer a transparent framework for prediction, their conventional 

implementations lack interactive visualization, which is crucial for enabling clinicians and patients 

to explore and understand glucose dynamics in real time. 

This project addresses this gap by shifting the focus from mere prediction to creating an 

engaging, interactive tool. By integrating a rolling ARIMA forecasting model with a dynamic, Plotly-

based visualization presented as a color-coded tree the system transforms raw forecast data into an 

accessible and interpretable format. This approach not only enhances the clarity of the predictions 

but also empowers users to derive actionable insights, ultimately supporting more informed 

decision-making in diabetes management aiding one of the leading objectives in the field, to create 

an autonomous artificial pancreas. 
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Image [5] showcasing uses of prediction algorithms and end use in flowchart format. 

1.4. Structure of the Overall Paper 

1. Introduction 

2. Introduction to Glucose Prediction Visualization Problem in Type 1 Diabetes 

3. Introduction to Glucose Prediction Models 

4. Project Logic & Structure 

5. Final Thoughts 

6. References 

2. Introduction to Glucose Prediction Visualization Problem in Type 1 Diabetes 

Predicting blood glucose levels ahead of time has been a long-standing challenge in the 

management of Type 1 Diabetes. This difficulty arises from the complex interplay of factors such as 

meal composition, physical activity, stress, and individual metabolic variations that affect blood 

glucose dynamics. Traditionally, models for glucose prediction have been grouped into three broad 

categories: Physiological-based models, Data-driven models and hybrid models. However, while 

considerable research has focused on improving numerical accuracy, there is an increasing need to 

enhance the clinical interpretability of these predictions as logic would concur the more data the more 

advanced tools required, which my project aims to address. 

Interactive visualizations have emerged as a critical tool to bridge this gap. By transforming raw 

forecasting outputs into intuitive visual formats, these tools enable both clinicians and patients to 

explore trends and identify potential risk zones easily. By conducting this project methods were in 

place to avoid bias as much as possible and therefore analysed critically from others views and were 

can understand some may argue that this literature comparison below should compare tools such as 

line graphs, pie charts, bar charts and so on, however this project is a solution a functional system 

that brings together data generations, forecasting for visual interpretation and interactivity. This is 

not a decorative way of numerical data but a functional visualization to support patient care, which 

the platforms mentioned further share more in common. 

2.1. Dexcom Clarity, Tidepool, and Nightscout Interactive Dashboard 

First a brief introduction to the following platforms from the following research as of date paper 

completion: 

▪ Dexcom Clarity is a proprietary system developed by Dexcom Inc., designed to work 

exclusively with Dexcom CGM devices . It provides users and healthcare providers with 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2025 doi:10.20944/preprints202506.1291.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1291.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 18 

 

detailed trend analysis, daily patterns, and retrospective reports through a sleek and 

clinically validated interface [8]. 

▪ Tidepool is a non-profit, open-source platform that supports data integration from multiple 

diabetes devices. It emphasizes accessibility, multi-device compatibility, and visual clarity, 

offering users various chart types (e.g., stacked bar, pie, and line graphs) to support 

personalized diabetes management [9]. 

▪ Nightscout is an open-source, community-driven project that enables real-time remote 

access to CGM data. Unlike commercial systems, it prioritizes customizability and autonomy 

but lacks built-in predictive analytics and requires technical setup by the user [10]. 

Dexcom Clarity, Tidepool and Nightscout are all established platforms that provide interactive 

dashboards for visualizing continuous glucose monitoring (CGM) data. Here below are extracted key 

points in regard to: 

▪ Data Source Compatibility 

▪ Visualization and Interactivity 

▪ Clinical Interpretability 

▪ System Flexibility and Scalability 

Then compress the research, discuss aspects of each platform and my proposed project all into 

an easy-to-understand table: 

Aspect Dexcom 

Clarity 

  Tidepool            

Nightscout 

Proposed Project 

Differences 

Data Source 

Compatibility 

Limited to 

Dexcom only 

devices 

Supports 

multiple device 

data, but 

integration can 

be challenging 

due to lack of 

access to the 

public of the 

United 

Kingdom as of 

26/03/2025 

Provides real-time 

access from 

connected CGM 

devices. However, 

data is not always 

available due to the 

fact it depends on 

real users using the 

system consistently. 

Also, Nightscout 

does not predict 

glucose data. 

Uses synthetic data 

to simulate realistic 

glucose patterns 

available 24/7. 

Visualization 

and 

Interactivity 

Sleek 

interface 

with detailed 

reports and 

trend graphs 

Provides 

interactive 

features with 

professional 

visualization 

yet presenting 

necessary 

information 

effectively. 

Colour coded 

graphs with “just 

enough design” 

inspired 

architecture. 

However not 

visually appealing. 

Features an 

interactive tree 

visualization and 

not just limited to 

the generic 

dashboard. 
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Image [11] showcasing Tidepool Mobile Application with glucose monitoring and prediction 

implementation. 

Clinical 

Interpretability 

Presents 

trend 

analysis, and 

data can be 

shared to 

caregivers, 

clinicians, 

researchers 

and so on 

Offers deep 

analysis of data 

and presents 

them in 

multiple visual 

formats such as 

line, graphs, pie 

charts, stacked 

bar charts and 

so on. 

Visualizes raw data 

with little to no 

integrated clinical 

context 

Enhances 

interpretability 

containing colour 

coded risk indicators 

to showcase risk 

zones. Suitable for 

all devices that have 

access to open html 

files. 

 

System 

Flexibility and 

Scalability 

Constrained 

as a 

proprietary 

ecosystem 

Moderately 

flexible 

integration 

from Tidepool 

official 

documentation, 

however 

challenges 

include 

accessibility to 

certain regions. 

Open-sources and 

flexible to adapt, 

however has a 

complicated 

codebase and lacks 

predictive glucose 

element. 

Designed with a 

modular 

architecture, 

allowing future 

enhancements, 

scalability and with 

the potential for 

implementation of 

real-world patient 

data. 
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Image [12] Dexcom Clarity Mobile Application with glucose monitoring sensor. 

 

Image [13] showcasing uses of prediction algorithms and end use in flowchart format. 

In summary, the literature review shows that established platforms like Dexcom Clarity, 

Tidepool, and Nightscout focus primarily on real-time data dashboards and integration of patient 

data, with a strong emphasis on trend analysis and raw data visualization. In contrast, this project 

adopts a fundamentally different approach by using synthetically generated glucose data, ensuring 

both reproducibility and ethical compliance. Key distinctions include: 

▪ Data Source and Implementation – Whereas existing solutions rely on real patient data, our 

project exclusively employs synthetic data. This not only solves ethical issues in regard to 
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privacy concerns but also allows for controlled experimentation. Furthermore, the project is 

developed in Python, a language not commonly used in commercial CGM applications - 

demonstrating the versatility and accessibility of open-source tools. 

▪ Visualization Approach – Unlike traditional dashboards, the project introduces an 

innovative interactive tree visualization. By generating an HTML Plotly file, the tool provides 

a dynamic, offline-accessible visual that is suitable for multiple devices. This method bridges 

the gap between complex statistical forecasting and clinical interpretability, offering an 

intuitive means to explore glucose dynamics. 

▪ Methodological Focus – The project leverages a statistical-based ARIMA model for 

prediction, moving away from the predominant reliance on machine learning models. This 

choice addresses the "black box" issue common in AI approaches, thereby enhancing the 

transparency and interpretability of the forecasting process. This focus is especially crucial 

in clinical settings where understanding the underlying data patterns is essential. 

Overall, this project fills a gap by providing a novel visualization method tailored to a broad 

audience- including clinicians, students, patients, and researchers as mentioned in my project 

specification. As discussed later in the paper, future enhancements could further extend their 

functionality and impact, potentially broadening its applicability to real-world scenarios with this 

project laying the fundamental groundwork. 

2.2. Decision Choice on Dataset Reliability 

Initially the first thought was to find a suitable dataset to showcase interactive simulation, which 

was the OhioT1DM dataset [14]. However, upon entering the website there was a list of requirements 

to fulfil to request the dataset with every criterion being met. As can be seen below: 
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Image [14] showcasing forum requirements to access the OhioT1DM Dataset. 

After further research it was discovered that the OhiotT1DM has missing values and is sited in 

multiple studies, screenshots can be seen below: 

 

Image [15] showcasing Subject ID 567 with no record of any meal during the last 10 days of monitoring. 
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Image [16] verifying the data has outliers and missing values and needs to be preprocessed before use. 

Because of the reasons stated above, the thoughted decision to use continuous synthetic glucose 

data instead was opted. It kept the project ethical, reliable, and fully within control. The advantage 

of opting for this alternate approach also means that there would not be a need to clean up the data 

by using preprocessing/data manipulation techniques to force the data to fit for the model. 

In summary, while the current implementation of this project using synthetic data minimizes 

many legal and ethical risks, future developments and potential real-world applications will 

necessitate careful consideration of data protection, transparency, and the broader societal impact of 

automated health prediction tools to make this framework clinically accepted. 

3. Introduction to Glucose Prediction Models 

As previously stated, – “Traditionally, models for glucose prediction have been grouped into 

three broad categories: Physiological-based models, Data-driven models and hybrid models. All have 

been talked extensively down below: 

3.1. Physiological-Based Models also Sometimes Referred to as Mathematical-Based Models 

These models use explicit mathematical representations of human glucose–insulin dynamics, 

typically based on differential equations derived from physiology. Notable examples include the 

Bergman minimal model and more complex simulations like the UVA/Padova metabolic simulator 

[6]. Physiological models that are used in Type 1 Diabetes typically aim to capture how insulin is 

absorbed, how it acts on lowering glucose, and how glucose is produced or used by the body’s tissues. 

For instance, they may include compartments to represent glucose absorption from meals and insulin 

kinetics. The advantage of physiological models is that they are grounded in medical knowledge and 

often interpretable in terms of biological processes. However, they require many parameters to be 

specified (such as insulin sensitivity, carbohydrate absorption rates, etc.) [6]. 

These parameters vary from person to person and can be hard to estimate accurately. 

Consequently, pure physiological models sometimes struggle to be personalized unless extensive 

individual calibration is done. Moreover, due to the complexity of human metabolism, purely 

equation-based models might not account for all factors (stress, illness, hormone fluctuations) 

affecting glucose, limiting their predictive accuracy when used alone. 
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3.2. Data-Driven Models 

In contrast to physiological approaches, data-driven models learn patterns directly from 

historical data. They do not require explicit knowledge of the biological system, instead inferring the 

relationships empirically and thus are not limited to the medical field and are implemented in stock 

markets, sales, business planning etc. Data-driven methods can be further divided into statistical 

(shallow) models and machine learning (deep) models. [6] 

Statistical Models: These include classical time-series forecasting techniques such as linear 

regression, Autoregressive Moving Average (ARMA), and Autoregressive Integrated Moving 

Average (ARIMA) models. They rely on past glucose values (and potentially other exogenous inputs) 

to forecast future values. For example, an ARIMA model might extrapolate the recent trend and 

seasonality in a patient’s glucose readings to predict the next value. Such models are usually simpler 

and more interpretable – one can often examine model coefficients to understand the influence of 

past observations on the forecast. ARIMA has been used in glucose prediction research as a baseline 

algorithm . However, statistical models generally assume linear relationships. They may perform 

adequately for short-term predictions during steady glucose trends but can miss nonlinear patterns 

during rapid changes. In fact, earlier studies showed that purely autoregressive models (assuming 

linear dynamics) have limited accuracy when glucose levels change sharply due to meals, exercise, 

or other factors. 

In one study, title “Neural Network Incorporating Meal Information Improves Accuracy of 

Short-Time Prediction of Glucose Concentration” noted that a linear AR model’s accuracy drops 

when glucose dynamics become highly nonlinear (e.g., after food intake or insulin dosing), 

motivating the use of more complex models that can capture such effects such as Machine Learning 

approaches. 

Machine Learning Models: These include more advanced data-driven approaches, particularly 

those using modern ML and deep learning. Researchers have applied neural networks including 

recurrent neural networks like LSTM, Transformers and other techniques to glucose forecasting [18]. 

Such models can automatically learn complex nonlinear relationships from data. For instance, neural 

networks can potentially recognize patterns in glucose changes corresponding to mealtimes, exercise, 

or insulin injections if given enough data. Over the last decade, numerous studies have reported that 

ML models often outperform traditional statistical models in predictive accuracy.[18] 

For example, in one comparative study all tested neural network models yielded lower 

prediction error metrics than even the best conventional machine learning models (like Random 

Forests or Support Vector Regression). Additionally, data-driven models, especially deep learning, 

typically require large amounts of training data and careful tuning to generalize well without 

overfitting. Each patient’s glucose response is unique, so a model trained on population data might 

not capture an individual’s patterns unless it is personalized or fine-tuned, which can be resource 

intensive. 

3.3. Hybrid Models 

To leverage the strengths of both approaches, some researchers have developed hybrid models 

that combine physiological and data-driven components. A hybrid model might use a physiological 

model to simulate the general trend or provide synthetic data and then use a machine learning model 

to adjust or refine the prediction. For example, one could use a physiological model to estimate the 

effect of a meal on glucose, and feed that as an input feature into a neural network that also considers 

recent CGM readings. 

A study released in 2012 followed this strategy by integrating a meal absorption model with a 

neural network predictor, achieving better accuracy than the neural network alone when meal 

information was considered. The challenge with hybrid models is that they may become quite 

complex and still require tuning of physiological parameters, which could reduce interpretability (the 

model’s logic may not be as straightforward as a standalone statistical model). In addition, 
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developing and validating such models can be time-consuming since they combine two modelling 

paradigms. 

3.4. ARIMA-Based Rolling Prediction Framework 

For our predictive modelling, ARIMA (Autoregressive Integrated Moving Average) model was 

employed. ARIMA is a classical statistical model for analyzing and forecasting time series data and 

stands for: 

▪ Auto Regressive (AR) → Uses past values to predict the future. 

▪ Integrated (I) → Makes the data stable (stationary). 

▪ Moving Average (MA) → Uses past prediction errors to improve future predictions. 

To do this it has three parameters where: 

▪ p is how many past values to use (memory of past readings). 

▪ d is how many times subtract past values to make the data stable. 

▪ q is How much past error to consider (to correct mistakes). 

Model specification: In this study, after some preliminary experimentation, it was decided to fix 

the ARIMA model with parameters (p=1, d=1, q=0) for all patients. 

The selected configuration was for several reasons: 

▪ it is a model less prone to overfitting, 

▪ It captures the intuition that the change in glucose from one time step to the next 

▪ it requires a minimal amount of data to train (only a few past points to estimate the next 

prediction) 

Keeping the model identical for each patient also ensures consistency in evaluation. 

This model is also used in this field and can be found in various studies [21–23] 

“The Box-Jenkins Model is a mathematical model designed to forecast data ranges based on inputs from a 

specified time series… 

…Autoregressive integrated moving average (ARIMA) models are a form of Box-Jenkins model. The terms 

ARIMA and Box-Jenkins are sometimes used interchangeably… 

…The Box-Jenkins Model forecasts data using three principles: autoregression, differencing, and moving 

average. These three principles are known as p, d, and q, respectively. Each principle is used in the Box-Jenkins 

analysis; together, they are collectively shown as ARIMA (p, d, q).” 

Text snippet here is necessary to understand references as Box-Jenkins Model is mentioned and 

may cause some confusion. [24] 

4. Project Logic & Structure 

This section goes into a brief discussion with the actual codebase that leads to the creation of the 

visual example described. 

4.1. Codebase 

Assuming that dependencies and IDE are installed correctly and knowledge to some degree is 

present in programming and this can run on your local machine with the following commands: 

▪ git clone https://github.com/AbdulRaheemNazir/glucose-visual-scenario-tree.git 

▪ cd glucose-visual-scenario-tree 
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Once the code has been successfully added, run main.py and you should see an input to add 

your initial glucose level currently. Then once entered you should be prompted to receive a final 

input requesting the numbers to simulate.  

In the example below a glucose level of 70 mg/dL and 30 minutes duration for the simulations 

have been inputted. 

 

Once both inputs have been filled with appropriate data a .html file will be generated in the 

same directory and the code is executed and can be opened. The complete final output can be seen 

below: 

  

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2025 doi:10.20944/preprints202506.1291.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1291.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 18 

 

 

Hoverable elements can be seen notifying the user of the system glucose level and time from 

potential action if chosen. Also, a legend (also referred to as a key) can be seen with key information 

for the user to understand what is being viewed. 

The rule-based algorithms implemented mimic real life scenario trends, for example exercising 

leading to lower glucose whereas eating a meal increases glucose levels. 

So, what is understood from these graphs? 

▪ Which intervention keeps glucose within target the longest 

▪ How quickly glucose may rise post-meal 

▪ Which scenarios require caution (red-heavy branches) 

▪ The urgency of glucose correction or insulin dosing 

However, as this is synthetic data and not actual patient data the validity of this for clinical 

reliability cannot be outright proven without further work as discussed later on in the paper. 

However, the possibilities that have now been introduced increases clinical understanding of trends 

and medical futures from a singular visualization are boundless to the creativity of experts as further 

discussed later. 

4.2. Pseudocode Diagram 

Detailed pseudocode diagram of the entire codebase functionality 
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5. Final Thoughts 

Here in this section describes possible future work building from this paper and the overall 

conclusion in terms of the novelty and clinical applications of this paper. 

5.1. Possible Future Work 

While the current system offers a novel and accessible framework for visualizing glucose 

trajectories using synthetic data and ARIMA-based forecasting, several future directions can enhance 

its clinical impact and usability. First, integrating real continuous glucose monitoring (CGM) data 

would enable personalized, patient-specific simulations and move the tool closer to real-world 

deployment. Visualization could be further improved by incorporating a probability estimation 

system, where each branching path is weighted based on likelihood, offering clinicians not just 

possible futures but probable ones. Additionally, replacing or augmenting ARIMA with more 

advanced models such as LSTM or ensemble learning could improve prediction accuracy, especially 

for nonlinear glucose behavior. Enhancing the user interface to support manual event logging-such 

as meals, insulin doses, or physical activity-would make the system more interactive and reflective 

of real-life use. Expanding the tree to support chained or compound interventions would allow users 

to simulate more complex scenarios over longer timelines. Finally, packaging the system into a 

clinician-facing dashboard with report generation features, customizable risk thresholds, and 

annotation tools would help position it as a viable tool for diabetes education, monitoring, or decision 
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support. A future clinical validation study could assess its effectiveness in supporting real-time 

interpretation and planning in diabetes care. 

5.2. Conclusions 

This project presents a novel approach to glucose forecasting by shifting the focus from purely 

predictive accuracy to clinical interpretability through interactive visualization. By integrating a 

rolling ARIMA model with a custom-built scenario tree rendered using Plotly, the tool allows users 

to simulate multiple glucose trajectories stemming from common interventions such as meals or 

exercise. Each branch of the tree represents a distinct possibility, empowering clinicians and users to 

intuitively explore potential futures rather than relying on a single deterministic outcome. 

Unlike traditional platforms that prioritize raw CGM data presentation, this tool demonstrates 

how synthetic time-series data can be transformed into a dynamic and informative structure. The 

visualization’s color-coded, hover-enabled interface highlights risk zones and reflects real-time 

decision-making processes. While the tool is currently powered by synthetic data, its modular design 

allows for future integration of real CGM streams, enabling personalized simulations tailored to 

individual patients. 

In summary, the system not only provides an accessible prototype for clinical education and 

decision support but also lays the groundwork for future applications in personalized medicine. Its 

transparent forecasting method, combined with engaging user experience, positions it as a 

meaningful contribution to the advancement of interpretable AI in healthcare. 

6. Additional Information 

Additional content that is not linked to the main manuscript of the papers, however, provides 

additional insights. 

6.1. Glossary 

Here is a Glossary section containing essential terms to understand the project. 
ARIMA (Autoregressive Integrated Moving Average): A statistical time-series forecasting 

model that combines autoregression (AR), differencing (I), and moving average (MA) components. 

Used in this project to predict future glucose levels based on past data trends. 

CGM (Continuous Glucose Monitoring): Technology used to automatically track glucose levels 

throughout the day and night. 

Time Series Data: A sequence of data points indexed in time order. In this project, it refers to 

continuous glucose monitoring (CGM) values over time and are used synchronously. 

Synthetic Data: Artificially generated data that simulates real-world glucose trends without 

using actual patient data. Ensures privacy and ethical compliance. 

Plotly: An open-source graphing library used to create interactive, browser-based data 

visualizations. 

Type 1 Diabetes (T1D): A chronic autoimmune condition where the pancreas produces little or 

no insulin, leading to high blood glucose levels. 

Glucose Forecasting: The process of predicting future blood glucose levels using past data, 

statistical models, or machine learning techniques. 

Rolling Forecast: A forecasting method where predictions are continuously updated as new 

data becomes available. Used in this project to simulate real-time prediction adjustments. 

LSTM (Long Short-Term Memory):A type of recurrent neural network capable of learning 

order dependence in sequence prediction problems. However, understanding that this is a type of 

neural network is the minimal information to understand the following report. 

Ben Shneiderman's Visual Information-Seeking Mantra [25]: This is designed to be a guiding 

principle for designing effective information visualizations. His guide to achieve this was to ensure 

the visualization had an: 
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1. First, 

2. Zoom and filter, 

3. Then details on demand 
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