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Abstract: Optimizing glimepiride therapy for type 2 diabetes (T2DM) is challenged by pronounced
inter-individual variability in pharmacokinetics. To address this, we developed a whole-body physio-
logically based pharmacokinetic (PBPK) model as a digital twin of glimepiride. This model enables
systematic evaluation of how patient-specific factors influence glimepiride disposition, supporting
both personalized and stratified treatment approaches. Using curated data from 19 clinical studies,
the digital twin was developed to mechanistically simulate glimepiride’s absorption, distribution,
metabolism, and excretion (ADME). It accounts for key determinants of patient variability, such as
renal and hepatic function, cytochrome P450 2C9 (CYP2C9) genotype, and bodyweight. The model
accurately reproduced observed pharmacokinetics and quantified the impact of these factors on drug
exposure. For instance, increased glimepiride exposure was predicted in individuals with hepatic
dysfunction or specific CYP2C9 variants, highlighting substantial genetic and physiological effects.
This digital twin offers mechanistic insights into pharmacokinetic variability and serves as a robust
in silico platform for exploring individualized dosing scenarios and patient stratification strategies,
laying the foundation for advanced clinical decision support tools to improve T2DM management.
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1. Introduction

The global burden of type 2 diabetes mellitus (T2DM) has reached critical levels, which poses
substantial health and economic challenges [1,2]. However, a major challenge in T2DM management
is optimizing treatment, as standardized drug dosing approaches can lead to inadequate glycemic
control and increase the risk of adverse events like hypoglycemia [3]. To address this, personalized
dosing strategies, integrating patient-specific data, are increasingly recognized as vital for improving
therapeutic effect and safety [4].

Glimepiride, a second-generation sulfonylurea, is widely used in the management of type 2
diabetes mellitus [5,6]. It primarily acts by binding to the sulfonylurea receptor 1 (SUR1) subunit of
ATP-sensitive potassium channels in pancreatic S-cells, which triggers channel closure, membrane
depolarization, and calcium influx, ultimately stimulating insulin secretion and thereby lowering
blood glucose levels [5,7].

Despite its widespread use, glimepiride exhibits notable inter-individual variability in its pharma-
cokinetic (PK) and pharmacodynamic (PD) response [8]. This variability is largely driven by factors
such as genetic polymorphisms in the metabolizing enzyme CYP2C9, as well as common comorbidities
in T2DM including renal and hepatic impairment [6,8,9]. CYP2C9 genetic variants, particularly *2
(Argl144Cys) and *3 (Ile359Leu) alleles, greatly reduce enzymatic activity compared to the wild-type
(*1), with carriers demonstrating up to 2.5-fold increased glimepiride exposure and heightened hy-
poglycemia risk [8,10]. Similarly, renal and hepatic dysfunction can further impact systemic drug
exposure and therapeutic response [11,12]. Consequently, reliably predicting patient response and
selecting optimal, safe glimepiride doses remains a clinical difficulty.

While empirical glimepiride pharmacokinetics models have explored aspects like genetic influ-
ence [8] or drug-effects [13], they are limited in their ability to capture the integrated effects of genetic
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polymorphisms, impaired organ function, and physiological characteristics. This partial integration of
variability factors constrains their utility for patient-specific dosing decisions in clinical practice [14,15].

Physiologically based pharmacokinetic (PBPK) modeling provides a potentially powerful frame-
work to address this challenge [4,15,16]. Unlike traditional empirical pharmacokinetic methods, PBPK
simulates drug absorption, distribution, metabolism and excretion based on drug specific properties
integrated with physiological systems [4,17]. This allows the integration of patient-specific factors (e.g.,
genetics, organ function) to predict individual drug exposure [4,16]. This enables the development of a
digital twin, a validated computational replica designed to mirror the drug’s behavior within specific
patient populations or individuals, facilitating in silico pharmacokinetic prediction and personalized
simulation of dosing outcomes.

This study details the development and evaluation of a whole-body PBPK model serving as
a digital twin for glimepiride. Incorporating key determinants of patient variability, the model
demonstrates strong predictive performance against clinical data from diverse patient groups. This
digital twin serves as a quantitative tool for exploring individual therapeutic scenarios, enabling
patient stratification, and laying the foundation for future clinical decision support tools.

2. Results
2.1. Glimepiride Database

Clinical pharmacokinetic data from 19 studies (Table 1) were systematically curated to develop
the glimepiride digital twin, encompassing diverse patient populations, dosing regimens, and physio-
logical conditions. The workflow for study selection is illustrated in the supplements (Figure S1). Each
study received a unique PK-DB identifier linked to its PubMed ID for traceability, and the curated
dataset was made publicly available to promote transparency and reproducibility.

Table 1. Summary of studies for modeling. Overview of study identifiers, PK-DB IDs, administration routes,
dosing regimens, doses (mg), co-administered drugs (Co-admin.), and participant characteristics, including health
status, renal impairment (Ren. imp.), type 2 diabetes mellitus (T2DM), and the studied genotypes/alleles (Allele).

PK-DB Dose Co- Ren

Study D Route Dosing [mg] admin. Healthy imp. T2DM Allele
oral,
Ahmed2016 REPB00904 transder-  single 1 v
mal
Badian1994 [PRHDB00907 oral, iv single 1 v
Badian1996 (30l pBoogos iv single 15 v
Choi2014 [21PKDB00903 oral single 4 gemi- v
gliptin
FDA [9] PKDB00946 oral, iv single 1,15 v
Helmy2013 [P DB00905 oral single é’ 23,4 v
Kasichayanus. . dapagli-
122011 [23] PKDB00924 oral single 4 flozin v
Kim2017 [24]PKDB00947 oral multiple 4 g);tl:;:a v
Lee2012 [25] PKDB00948 oral single 2 v *1,*3
Lehr1990 [26PKDB00949 oral single 3 v
Liu2010 [27] PKDB00950 oral multiple 2 v
Malerczyk199K[2$00906 oral single 1,2,4,8 v
. single,
Matsuki2007PXIPB00951 oral multiple 2,1+1 v
Niemi2002 [3PKDB00952 oral single 0.5 v *1,%2,%*3
Rosenkranz1P9@ap0Pp54 oral smgl.e, 3,1t08 v v
multiple
Shukla2004 [PHDB00955 oral single 8 v
Suzuki2006 [FRDB00956 oral single 1 v *1,*3
Wang2005 [3PIKDB00957 oral single 4 v *1,*3
Y002011 [8] PKDB00958 oral single 2 v *1,*3

* Metabolite M1 was administered.
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2.2. Computational Model

A whole-body physiologically based pharmacokinetic (PBPK) model was developed to serve
as a digital twin of glimepiride, integrating key determinants of inter-individual pharmacokinetic
variability (Figure 1). The model comprises key organs involved in glimepiride pharmacokinetics:
gastrointestinal tract (dissolution and absorption), liver (CYP2C9-mediated metabolism to metabolites
M1 and M2), and kidneys (metabolite excretion), connected via systemic circulation compartments.
Visualizations of the submodels are provided in the supplements (Figure S2). The digital twin incor-
porates patient-specific factors known to influence glimepiride pharmacokinetics: CYP2C9 genotype
variants (*1, *2, *3) through enzyme activity scaling (feypaco), renal function impairment via glomerular
filtration rate scaling (frenal function), hepatic dysfunction through Child-Turcotte-Pugh score-based
scaling (fqi;ihosis), and anthropometric characteristics including bodyweight. Food effects on absorption
are captured through bioavailability (fapsorption)- This framework enables systematic exploration of
how genetic polymorphisms, organ dysfunction, and physiological characteristics influence drug
exposure, providing a foundation for personalized dosing strategies. Mathematical descriptions of the
model equations and ODEs for all submodels are provided in the supplements (Sections 53.1-S3.3).
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Figure 1. Whole-body PBPK model of glimepiride and key factors influencing its disposition. A) Whole-body
model illustrating glimepiride (GLI) administration (oral and intravenous), its systemic circulation via venous
and arterial blood, and the key organs (liver, kidney, GI tract) involved in GLI metabolism, distribution, and
excretion. B) Intestinal model showing dissolution and absorption of GLI by enterocytes. No enterohepatic
circulation of M1 and M2 is assumed, but reverse transport via enterocytes is included. C) Hepatic model depicting
CYP2C9-mediated metabolism of GLI to M1 and M2. D) Renal model highlighting the elimination of M1 and M2
via urine; unchanged GLI is not excreted renally. E) Key factors influencing glimepiride disposition accounted for
by the model: liver function (cirrhosis), renal impairment, CYP2C9 genotypes, bodyweight, and administered
dose.

2.3. Dose Dependency

The model confirmed dose-proportional pharmacokinetics within the therapeutic dose range (1-8
mg), with Cmax and AUC showing linear increases while Tmax and half-life remained consistent across
doses (Figure 2). Specifically, glimepiride Cpax increased linearily from approximately 100 ng/mL at
1 mg to 700 ng/mL at 8 mg, while AUC increased proportionally from 500 to 4000 ng*hr/mL. Trax
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remained stable at 2.0-2.5 hours and half-life at approximately 4 hours across all doses, confirming
linear pharmacokinetics. Metabolites M1 and M2 demonstrated similar dose-proportional behavior.
Simulations showed good agreement with clinical data from two dose-dependency studies. Compari-
son with Helmy2012 [22] and Malerczyk1994 [28] demonstrated accurate predictions across the dose
range. These findings confirm current dosing approaches and supporting the model’s utility for dose
optimization and reliable dose titration in clinical practice.

2.4. Renal Impairment

The model incorporated four categories of renal function based on glomerular filtration rate
[mL/min/1.73m?]: normal (>90), mild impairment (50-90), moderate impairment (30-49), and se-
vere impairment (<30). Renal dysfunction primarily affected metabolite clearance with unchanged
parent drug exposure (Figure 3). Simulations accurately reproduced clinical observations from
Rosenkranz1996a [12], showing unchanged glimepiride pharmacokinetics from normal function
to severe impairment. In contrast, metabolites M1 and M2 showed progressive accumulation with
worsening renal function, with metabolites AUC increasing and clearance decreasing proportionally.
This effect confirms the unchanged dosing requirements in renal impairment, though M1 accumulation
may be relevant for any residual pharmacological activity.

2.5. Hepatic Impairment

The model incorporated Child-Turcotte-Pugh (CTP) classifications: CTP A (mild cirrhosis, 5-6
points), CTP B (moderate cirrhosis, 7-9 points), and CTP C (severe cirrhosis, 10-15 points). Hepatic
dysfunction demonstrated a strong impact on parent drug exposure (Figure 4). Model predictions
matched limited clinical data, showing progressive increases in glimepiride concentrations with
worsening liver function. Cpax nearly doubled from 75 ng/mL in normal function to 125 ng/mL in
severe cirrhosis, while AUC increased even more substantially by approximately 3.5-fold. Conversely,
metabolite concentrations decreased greatly, reflecting reduced CYP2C9-mediated metabolism due to
liver impairment. Comparison with limited clinical data from Rosenkranz1996 [11] showed reasonable
agreement. These findings strongly support dose reduction recommendations in hepatic impairment.

2.6. Bodyweight Dependency

An inverse relationship between bodyweight and systemic exposure was confirmed through
simulations across a wide weight range (40-170 kg) and compared against clinical studies (Figure 5).
Glimepiride Cpax decreased from 1000 ng/mL at 40 kg to 300 ng/mL at 170 kg, while AUC declined
from 6000 to approximately 2000 ng*hr/mL. Despite these exposure changes, Trmax and half-life
remained stable across the weight range. Model predictions accurately captured observed differences
between normal-weight and morbidly obese patients in Shukla2004 [31], with peak concentrations
of 1.4 ug/mL in normal-weight versus 0.8 ug/mL in obese individuals following an 8 mg dose.
Metabolites showed similar behavior. Additional comparison using AUC data from Gu2010 [33]
further confirmed the model’s accuracy. These findings show exposure differences that may explain
variable glycemic responses in obese patients, suggesting bodyweight may be an underappreciated
factor in dosing practices.

2.7. CYP2C9 Polymorphisms

CYP2C9 genetic polymorphisms showed the most pronounced impact on individual pharmacoki-
netics (Figure 6). The model incorporated allele-specific enzyme activities (*1=100%, *2=68%, *3=23%),
resulting in diplotype activities of 100% (*1/*1), 84% (*1/%*2), 62% (*1/*3), and 23% (*3/*3). Simula-
tions accurately captured substantially increased glimepiride exposure in carriers of reduced-function
alleles with *3/*3 homozygotes showing up to 2.5-fold higher AUC compared to wild-type carriers.
Metabolites displayed inverse patterns, with reduced formation and excretion in poor metabolizers.
Model predictions demonstrated good agreement across five clinical studies (Lee2012 [25], Y002011 [8],
Niemi2002 [30], Suzuki2006 [10], Wang2005 [32]) with doses ranging from 0.5 to 4 mg. A probabilistic
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modeling approach was implemented to capture inter-individual variability within genotypes, provid-
ing more realistic distributions than fixed scaling factors. This approach successfully reproduced the
observed variability in pharmacokinetic parameters across genotypes.

2.8. Populations

Population-level simulations incorporating known genotype frequencies across biogeographical
groups revealed modest differences in average CYP2C9 activity and pharmacokinetic parameters
between populations, despite varying genotype frequencies (Figure 7). The *2 allele showed high-
est frequencies in European (12.7%) and Central/South Asian (11.4%) populations, while the *3
allele was most prevalent in Central/South Asians (11.0%). Mean CYP2C9 activity ranged from
0.88 in Central/South Asian to 0.98 in Oceanian populations. Despite these differences in genetic
makeup, ridgeline plots of AUC distributions showed substantial overlap across all populations. While
Kolmogorov-Smirnov testing identified statistically significant differences between certain population
pairs (e.g., bCentral/South Asian and Oceanian, Near Eastern and Oceanian, European and Oceanian;
all p<0.01), the clinical magnitude remained small with mean differences less than 10%.
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Figure 2. Dose-dependent pharmacokinetics of glimepiride and its metabolites. A) Illustration of the glimepiride
oral dose range (1-8 mg) evaluated in the simulations. B) Simulated (solid lines) versus observed (squares con-
nected by dashed lines) plasma concentration-time profiles of glimepiride from Helmy et al. [22], and glimepiride
plasma concentrations and cumulative M1+M2 urinary excretion from Malerczyk et al. [28] across various oral
doses . Observed data are presented as mean or mean=+SD where available. C) Dose-dependency relationships
for key pharmacokinetic parameters for glimepiride, M1, and M2. Simulation results (solid lines) are compared
with experimental data (squares with error bars, representing mean or mean+SD where available) aggregated
from all 19 clinical studies used in the model development.
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Figure 3. Impact of renal function on the pharmacokinetics of glimepiride and its metabolites. A) Classification
of renal function based on glomerular filtration rate (GFR), illustrating normal function, mild, moderate, and
severe renal impairment. B) Simulated (solid lines) versus observed (squares connected by dashed lines) plasma
concentration-time profiles for glimepiride, M1, and M2, and cumulative M1+M2 urinary excretion, following a 3
mg oral dose in subjects with varying degrees of renal function. Observed data from Rosenkranz et al. [12]. C)
Relationship between creatinine clearance and key pharmacokinetic parameters for glimepiride, M1, and M2,
following a 3 mg oral dose . Simulation results (solid lines) are compared with observed clinical data (symbols;
dashed lines: regression fits where applicable) from Rosenkranz et al. [12].
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Figure 4. Impact of hepatic function (cirrhosis) on the pharmacokinetics of glimepiride and its metabolites. A)
Classification of liver function based on the Child-Turcotte-Pugh (CTP) score, illustrating normal function, mild
cirrhosis (CTP A), moderate cirrhosis (CTP B), and severe cirrhosis (CTP C). B) Simulated plasma concentration-
time profiles for glimepiride, M1, and M2, and cumulative M1+M2 urinary excretion, following a 1 mg oral dose
in subjects with varying degrees of cirrhosis severity (control, mild, moderate, severe). C) Relationship between
cirrhosis severity and key pharmacokinetic parameters for glimepiride, M1, and M2, following a 1 mg oral dose.
Simulation results (solid lines) are compared with observed clinical data (symbols with error bars where available,
representing range/mean=+SD) from Rosenkranz et al. [11].
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Figure 5. Impact of bodyweight on the pharmacokinetics of glimepiride and its metabolites. A) Illustration
of bodyweight categories: underweight, normal weight, overweight, and obese. B) Simulated (solid lines)
versus observed (symbols connected by dashed lines) plasma concentration-time profiles and cumulative urinary
excretion for glimepiride, M1, and M2, following an 8 mg oral dose in normal weight and morbidly obese
individuals. Observed data from Shukla et al. [31]. C) Relationship between bodyweight and key pharmacokinetic
parameters for glimepiride, M1, and M2, following a 8 mg oral dose. Simulation results (solid lines) are compared
with observed clinical data (squares+SD) from Shukla et al. [31] (8 mg PO, normal weight and morbidly obese
groups) and dose-scaled AUC data for glimepiride from Gu et al. [33] (original 2 mg PO scaled to 8 mg).
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Figure 6. Impact of CYP2C9 genetic variants on glimepiride pharmacokinetics. A) Illustration of key CYP2C9
genotypes (*1/*1, *1/*2,*1/*3, *3/*3) and their corresponding enzymatic activities. B) Simulated pharmacokinetic
profiles of glimepiride, M1, M2, and cumulative M1+M2 urinary excretion, following a 4 mg oral dose, based
on fixed enzyme activity values for different CYP2C9 genotypes. C) Comparison of simulated (solid lines,
using fixed CYP2C9 activity values) versus observed (symbols connected by dashed lines) glimepiride plasma
concentrations in individuals with different CYP2C9 genotypes across five clinical studies (Lee2012 [25], Niemi
et al. [30], Suzuki2006 [10], Wang2005 [32], and Yo002011 [8]). D) Boxplots comparing simulated glimepiride
pharmacokinetic parameters derived from the probabilistic sampling approach (colored boxes) with observed
clinical data (grey squares: individual data points; black squares: weighted arithmetic mean) across different
CYP2C9 genotypes. Simulations correspond to a 4 mg oral dose. Observed data was aggregated from the clinical
studies cited in panel C and dose-scaled to 4 mg where necessary.

r(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202506.1264.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2025 d0i:10.20944/preprints202506.1264.v1

12 0f 18

g
g
g
H
Afr.Amer./ American  Central/  EastAsian  European Latino  NearEastern Oceanian Sub-Saharan Afr.Amer./ American  Central/  EastAsian  European Latino  NearEastern Oceanian Sub-Saharan
Afro-Carib. South Asian African Afro-Carib. South Asian African
u 87.1 912 772 915 79.3 86.3 78.2 95.5 726 W*/X 75.9 831 59.6 838 628 743 611 9.2 526
W *1/%2 39 6.1 17.6 0.4 20.2 13.2 203 5.6 19
mx2 22 33 1.4 0.2 127 7.6 13.0 29 13
/%3 24 55 17.0 6.9 12.0 6.9 129 3.0 16
m*3 14 3.0 11.0 38 7.6 4.0 83 16 11
W *3/*3 0.0 0.1 12 0.1 0.6 0.2 0.7 0.0 0.0
M Other 9.3 2.5 0.4 4.5 0.4 21 0.6 0.0 25.0 Other 17.9 52 46 8.8 44 5.4 5.0 0.2 438
Cc
ifiitisiiiiiiiii iiiiiitiii iviiiiiiiiiiiiniiie iiiiviiiiiiiiieieg tiviiiiiiiiieniie iiiiiiiiiinieeeg iiiiiiiiiaeg fiiiiie i
AL phEnEeeTee SRERRRRRTERERRRORTER HRORORIRARERIRIEIET HRERPRIRTARERIRIIIET SRORRRORIRTERIROIIET HORORORIRTERIRIIIET SORERORIRTIRIRIIOET SERRETORIRIETAAO
ittt i FIRTHTTRTORITE, SORRFTFSTOFNAAANANN HPRTRANNINIORORERS SONNRRRRHIRIIIIFIIAN SRRRFFFFFAAANNNIINY RRTTAANINIRTIIIOIGD SORNTORIOST
fifieiiiieie P88 T0TET0TET T TETE ARORRTRPRRRERTRRN $9071000000i00i0iei SRPRPRRRRIRINNIS 10T I000I0I000ivivivio SORORRTRRARANTNGN 10T00000100
UL 1t feiviiieeeREneTREne ARRPERORIERPETIRIOTE PORRRRRARRRIORINEN PRORIOTORRRORRRINET PRORTRRRRIRRTARIEIET RNORORBORRIIIVIINNE FROORIOOOET
Afr. Amer./ Afro- American Central/ East Asian European Latino Near Eastern Oceanian Sub-Saharan
Carib. South Asian African
D
10 :
Mean: 0.90
1.0 : 08
o ;Mean: 0.95 06
06 & EMean: 0.93
02 H
04 .
Ty 0.8 \ ;Wlean: 0.88
%80 705 10 15 20 25
1.0 ;
Mean: 0.92
08 i 25
06
04
02
Genotypes 12 i 1.0 H
.:1;:; 080 o5 10 15 20 25 %5 EM““: 0.89 N ;Mean: 0.98
B oo g
Bl other . iMean: 0.94 06 06
Biogeographical Groups 04 04
[H Afr. American/Afro-Carib. 06
] American 02 0
[] Central/South Asian 04 i
[_| East Asian 080 05 10 15 20 25 og
[] European 02 0O 05 10 15 20 25
|| Latino
[ Near Eastern o i
[] Oceanian 80 o5 1o 15 20 25

[ Sub-Saharan African

Glimepiride M1 M2 Central/South Asian & Oceaniary  glear Easter & Oceanian
guropean & Oceanian

Aican AmeranlAe Carlcen & Mo Rt Soharan Afican
African American/Afro-Caribbeani& Eumpeali
African American/Afro-Caribbean & Central/South Aslarh

o
2
T
> o0
a
L
01
P
¢« o °
o e
BEE A S
0 1000 2000 3000 4000 5000 O 150 300 450 600 0 100 200 300 400 5 B H : H T 2
AUC [ng*hr/ml] AUC [ng*hr/ml] AUC [ng*hr/ml] Difference Gli iride AUC [%]

Figure 7. Global CYP2C9 genetic variability and population-level impact on glimepiride pharmacokinetics. A)
CYP2C9 allele frequencies across biogeographical groups [34], showing the distribution of key alleles. B) CYP2C9
genotype frequencies across biogeographical groups [34], showing the distribution of key genotypes. C) Individual
genetic variability representation within each biogeographical population. D) World map displaying population-
specific CYP2C9 activity distributions derived from allele frequencies, with kernel density estimation (KDE)
curves and mean enzymatic activity values shown for each biogeographical group. E) Ridgeline plots comparing
glimepiride, M1, and M2 AUC distributions across biogeographical populations. F) Statistical comparison of
population pairs showing the relationship between significance and magnitude of pharmacokinetic differences,
with some comparisons showing statistically significant but clinically modest differences in glimepiride AUC.
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3. Methods
3.1. Systematic Literature Research and Data Curation

A systematic literature search was conducted for studies reporting glimepiride pharmacokinetic
data. PubMed was searched using the keywords glimepiride AND pharmacokinetics, and the PKP-
DALI database [35] was queried on 2024-08-30. Inclusion criteria focused on clinical trials involving
healthy volunteers or patients with T2DM, and studies investigating the effects of renal impairment,
hepatic impairment, bodyweight variations, or CYP2C9 genotypes on glimepiride pharmacokinetics.
Studies involving pediatric populations, non-human subjects, or with insufficiently reported pharma-
cokinetic data were excluded. The systematic review also included in vitro studies providing kinetic
parameters (particularly CYP2C9 activity) required for PBPK model development. The literature
review process yielded 19 clinical studies for analysis.

Data from these selected studies were systematically curated and uploaded to the open phar-
macokinetics database PK-DB [36]. Patient-specific information (e.g., age, sex, comorbidities, dosing
regimens, pharmacokinetic profiles) was extracted following established curation protocols [36].
Figure-based pharmacokinetic data were digitized using WebPlotDigitizer [37], while tabular and
textual data were reformatted according to standardized guidelines [36]. Curated data encompassed
cohort characteristics, individual-level data, intervention details, time-course concentration profiles of
glimepiride and its metabolites, and reported pharmacokinetic/pharmacodynamic parameters. This
dataset formed the basis for PBPK model development, calibration, and validation, and is publicly
accessible via PK-DB to ensure transparency and reproducibility.

3.2. Computational Model

The PBPK model and tissue-specific submodels were developed using the Systems Biology
Markup Language (SBML) [38,39]. Programming and visualization of the models were performed
using the sbmlutils [40] and cy3sbml [41] libraries. Numerical solutions for the ordinary differential
equations (ODEs) underlying the model were computed using sbmlsim [42], powered by the high-
performance SBML simulation engine 1ibRoadRunner [43,44].

The developed model comprises a whole-body framework with submodels for the intestine, liver,
and kidney to characterize glimepiride’s ADME processes. Key processes include oral dissolution and
first-order absorption in the intestine, CYP2C9-mediated hepatic metabolism of glimepiride to M1
followed by further metabolism to M2, and renal excretion of M1 and M2. The mathematical descrip-
tions and ODEs for all submodels are provided in Supplementary Equations S1.1-51.3. The model and
all associated materials (simulation scripts, parameters, and documentation) are publicly available in
SBML format under a CC-BY 4.0 license at https://github.com/matthiaskoenig/glimepiride-model,
version 0.6.1 [45].

The model was designed to incorporate several key factors influencing inter-individual phar-
macokinetic variability. Renal impairment was addressed using the parameter frenal_function (1.0
for normal function), with scaling factors for mild (0.6), moderate (0.35), and severe (0.2) impairment
derived from KDIGO guidelines [46] and the approach of Stemmer-Mallol et al. [47]. This parameter
directly scales M1 and M2 metabolite renal excretion rates. Hepatic impairment was implemented
via the fcirrnosis parameter (ranging from 0.0 for normal function to 1.0 for severe impairment), with
values mapped to the Child-Turcotte-Pugh (CTP) classification [48-50]. This parameter modifies the
fraction of functional liver parenchyma and the extent of blood shunting around the liver. Tissue
distribution of glimepiride and its metabolites was described via the parameters ftissueg; (rate
of tissue distribution) and Kpg1i (tissue-plasma partition coefficient), assuming similar distribution
properties for the parent drug and metabolites to reduce model complexity. Bodyweight effects were
incorporated by scaling organ volumes, blood flows, and metabolic rates according to allometric
relationships. CYP2C9 genetic variability was modeled based on allele-specific scaling factors for
the common alleles +1 (wild-type, activity 1.0), 2 (activity 0.68), and =3 (activity 0.23), derived from
in vitro data [51-53]. Genotype-specific activities were calculated as the mean of the two constituent
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allele activities. These genetic factors were implemented via the parameter fcypaco, which modulates
the maximal velocity (Vimax) of glimepiride conversion to M1. The Michaelis constant (GLI2M1xy_g11)
was parameterized using literature values [10,52,54]. For population-level simulations, observed
intrinsic clearance (CLjy) distribution for diclofenac (a CYP2C9 substrate) [55] was characterized using
a lognormal function. This distribution shape was retained for modeling allele-specific effects, with the
scale parameter adjusted to match the mean activity of each allele. Diplotype activities were calculated
as the average contribution of both alleles. Simulations also incorporated published CYP2C9 genotype
frequencies across nine biogeographical populations [34].

3.3. Model Parameterization

Key model parameters related to glimepiride’s absorption, distribution, metabolism, and excretion
were optimized by minimizing a weighted sum of squared residuals between model predictions and a
curated dataset from clinical studies in healthy, fasted subjects. This optimization utilized multiple
(n=100) runs of a local optimization algorithm. The model was optimized using a subset of the curated
clinical data (healthy and fasted), achieving successful convergence and demonstrating good predictive
performance across the datasets (see supplementary Figure S2). The optimized model successfully
captured glimepiride pharmacokinetics with satisfactory goodness-of-fit, though some inter-study
variability was observed, likely reflecting differences in study design and population characteristics.
Final optimized parameters are provided in the supplementary Table S1. Following parameterization,
the model’s predictive performance was evaluated across diverse physiological and pathological
conditions.

3.4. Pharmacokinetic Parameters

Standard pharmacokinetic parameters were calculated from simulated and observed concentration-
time profiles using standard non-compartmental analysis methods. Simulated profiles and derived PK
parameters were then compared against the curated experimental data from all 19 clinical studies.

4. Discussion

In this study, we developed a whole-body PBPK model as a digital twin for glimepiride, mechanis-
tically integrating key patient-specific factors like organ function, bodyweight, and CYP2C9 genetics.
Assessed against diverse clinical data, the model provides a quantitative framework to explore the
drivers of pharmacokinetic variability and support personalized dosing strategies for type 2 diabetes.

The digital twin quantifies the influence of various patient factors, enabling patient stratification.
It provides a quantitative platform that guides the personalization of glimepiride therapy and helps
determine when an adjusted initial dosage is necessary to ensure patient safety.

While our model confirms that glimepiride exposure is unaffected by renal impairment, it high-
lights the clinical significance of metabolite accumulation. The progressive buildup of the active M1
metabolite, which retains partial hypoglycemic activity, suggests a risk of prolonged adverse effects in
patients with severe renal dysfunction. Therefore, although glimepiride dose adjustments may not be
required, enhanced glycemic monitoring is warranted in this population.

In contrast to renal function, hepatic impairment dramatically increased glimepiride exposure by
hindering its CYP2C9-mediated metabolism. Standard doses in patients with moderate to severe cir-
rhosis could lead to a significant risk of hypoglycemia. Current clinical guidelines are qualitative, only
advising caution. Our digital twin provides a quantitative tool that addresses this issue by enabling in
silico evaluation of dose adjustments needed to maintain safety in this vulnerable population.

The model demonstrated an inverse relationship between bodyweight and glimepiride exposure,
showing how systemic drug concentrations change with body size. This understanding supports the
current clinical practice, where this level of variability is effectively managed by titrating the dose
according to a patient’s glycemic response, rather than adhering to a strict weight-based protocol.

CYP2C9 genetic polymorphism substantially influences glimepiride exposure. Individuals with
reduced-function alleles are at a higher risk of experiencing adverse events from a standard dose.
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However, our analysis shows substantial pharmacokinetic variability even within the same genotype
group. This indicates that genotype alone is not a good predictor of patient response. Furthermore,
although genotype effects were evident at the individual level, the model predicted only modest differ-
ences in pharmacokinetics across biogeographical populations. Therefore, ethnicity alone provides
limited value for guiding dosing decisions.

A key strength of this PBPK approach is its ability to integrate multiple patient factors simul-
taneously. Unlike traditional studies that often isolate single variables, our integrated model more
accurately reflects the complex clinical reality where patients present with multiple conditions affect-
ing drug disposition. This framework is especially valuable for evaluating pharmacokinetic risks in
underrepresented populations or complex scenarios where clinical evidence is lacking, providing a
robust platform to support dosing decisions.

The model’s development was constrained by the limited availability of public pharmacokinetic
data, particularly for metabolite disposition. For instance, quantitative data on metabolite elimination
pathways and the specific enzymes responsible for M1-to-M2 conversion are sparse. During optimiza-
tion, certain parameters reached their constraint boundaries, suggesting areas where model structure
could be refined with future data. Despite these limitations, the model provided physiologically
reasonable predictions across diverse clinical conditions, and the curated dataset formed an adequate
basis for characterizing glimepiride’s core pharmacokinetic properties.

In conclusion, this study presents a digital twin of glimepiride which successfully quantifies
the impact of genetics, organ function, and physiology on pharmacokinetic variability. This PBPK
model lays the basis for future clinical decision support tools that can guide personalized initial dosing,
especially for patients with high-risk profiles. Future work should focus on refining the model using
larger population studies and expanding its application to include pharmacodynamics between drug
exposure and glycemic response. As precision medicine advances, such digital twin approaches have
the clear potential to become valuable tools for optimizing drug therapy in complex diseases like type
2 diabetes.

Supplementary Materials: The following supporting information can be downloaded at website of this paper
posted on Preprints.com.
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