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Abstract: We employed molecular dynamics computer simulations to examine the effect of a second 

alkyl group in cations of imidazolium‐based ionic liquids on the properties of a fully hydrated POPC 

membrane. Keeping a fixed hexadecyl group in the cations, a second methyl, butyl, and octyl group 

were considered. In any case, the cations inserted rapidly into the bilayer maintaing the membrane’s 

structure. Radial distribution  functions  indicate  that an  increased second alkyl chain  in the cation 

favors configuration with deeper insertion. The presence of the cations preserves the hydration of the 

polar region of the bilayer without promoting water penetration into the lipophilic region. 

Keywords:  ionic  liquids; phospholipid bilayer; bilayer  structure; molecular dynamics  simulation; 

imidazolium‐based ionic liquids; Dialkyl imidazolium 

 

1. Introduction 

Ionic liquids (ILs) are widely recognized as ionic compounds that remain liquid at relatively low 

temperatures below 100°C [1–4]. In addition to their characteristic thermal stability and low volatility, 

these compounds permit to tune their physicochemical properties by structural modifications in both, 

cations  and  anions,  as well  as  by  combining  diverse  cations  and  anions  [5–21].  This  structural 

adaptability has facilitated the development of ILs for more sophisticated applications [22]. Whereas 

early‐generation  ILs  were  primarily  employed  for  industrial  purposes,  nowadays,  ILs  are 

increasingly been explored for biological applications [22]. Thefore, it becomes necessary to address 

significant challenges related with their potentially toxic interactions with living organisms [23,24]. 

The  growing  interest  in  biological  applications  of  ILs  has  emerged  in  part  as  a  response  to 

environmental  concerns  associated  with  the  ecotoxicity  of  certain  IL  classes  [23,24].  Particular 

attention has been given to the cytotoxicity of imidazolium‐based ILs, which stems from their strong 

interactions with phospholipid membranes in cellular structures [25–27]. 

The  cytotoxic  effects  of  imidazolium  ILs  appear  directly  correlated  with  their membrane‐

disrupting capabilities. Experimental studies have demonstrated that these cations intercalate into 

lipid  bilayers,  inducing  perturbations  that  range  from moderate  fluidity  alterations  to  complete 

membrane  disintegration,  depending  on  their  specific  molecular  architecture  [25–30].  A 

comprehensive  understanding  of  these  interaction mechanisms  is  essential  for  developing  safe 

pharmaceutical  and medical  applications  of  ILs  [28,29]. Cytotoxicity  assessments  across  various 

biological systems, including antifungal and bactericidal tests as well as mammalian cell exposure 

studies, have revealed that both, cation‐anion combinations and alkyl chain lengths, play crucial roles 

in determining  toxicity profiles  [1,31,32]. These observed structure‐activity relationships highlight 

the need for more detailed mechanistic studies on IL‐membrane interactions. 
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Recent advances  in computational chemistry have provided valuable theoretical  insights  into 

the interactions between imidazolium ILs and phospholipid bilayers [33–35]. Current computational 

models primarily focus on two aspects: the structural modifications induced in the bilayer and the 

molecular  mechanisms  governing  cation  insertion  and  stabilization  within  membranes.  The 

stabilization of incorporated cations appears to involve both electrostatic interactions with phosphate 

groups  and  hydrophobic  effects mediated  by  alkyl  side  chains  [33–35]. However,  these  studies 

describe in general dialkylated cations with a fixed methyl group [36]. Dialkyl‐substituted variants 

remain relatively unexplored. The presence of two longer alkyl chains may significantly alter both, 

the insertion dynamics and the membrane perturbation patterns, due to additional steric constraints 

in the polar headgroup region. 

Herein, we employ atomistic molecular dynamics simulations to systematically investigate the 

interaction of 1‐hexadecyl‐3‐nalkyl‐imidazolium cations (where n represents the number saturated 

carbons  in  the  second  alkyl  chain)  with  1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine  (POPC) 

bilayers,  focusing  particularly  on  the  structural  perturbations  induced  in  the membrane.  These 

simulations  provide  atomic‐level  insights  into  IL‐membrane  interactions,  serving  as  a  tool  for 

elucidating the fundamental molecular mechanisms underlying in IL cytotoxicity. 

2. Materials and Methods 

We  performed  molecular  dynamics  simulations  on  systems  containing  a  hydrated  POPC 

phospholipid  bilayer  composed  of  128  lipids  (64  per  leaflet)  incorporating  1‐hexadecyl‐3‐nalkyl‐

imidazolium cations using the GROMACS software package [37]. Each simulated system contained 

the solvated bilayer along with four ion pairs, with the cationic component consisting of [C₁₆MIM] 

(1‐hexadecyl‐3‐methylimidazolium),  [C₁₆BMIM]  (1‐hexadecyl‐3‐butylimidazolium),  or  [C₁₆OMIM] 

(1‐hexadecyl‐3‐octylimidazolium),  and  the  chloride  (Cl⁻)  anion.  The molecular  structures  of  the 

utilized  cations  are  presented  in  Figure  1.  The  pre‐equilibrated  POPC  bilayer  system  has  been 

obtained from the Slipids database [38], with the ionic liquid structures and force fields generated 

following  the  AMBER  protocol  methodology  [39,40].  This  approach  ensured  proper  system 

preparation while maintaining consistency with established computational chemistry standards for 

membrane simulations. 

 

Figure 1. Structural representations of: (a) C16MIM cation, (b) C16BIM cation, (c) C16OIM cation and (d) 

POPC. 

The simulations were conducted in the isothermal‐isobaric (NPT) ensemble. Temperature was 

maintained at 303 K using the velocity‐rescaling algorithm [41]. The pressure was regulated at 1 bar 

by  the  Berendsen  barostat  [42]  operating  in  semi‐isotropic  mode.  Three‐dimensional  periodic 
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boundary conditions were implemented with a 1.4 nm cutoff radius for intermolecular interactions. 

Long‐range electrostatic interactions were calculated using the Particle Mesh Ewald (PME) method 

[43] with an identical 1.4 nm cutoff distance. The LINCS algorithm [44] was employed to maintain all 

chemical bond constraints throughout the simulations. 

The AMBER force field was selected for molecular representations in the simulations with water 

molecules modeled described by the TIP3P potential [45]. Ionic pairs were randomly inserted into 

the hydrated bilayer simulation boxes. Prior  to production  runs, all systems underwent potential 

energy minimization  using  the  steepest  descent  algorithm  [46].  Subsequently,  simulations were 

carried out for 100 ns of production time with four cations and chlorides  inserted into the bilayer 

systems. A  reference  system  consisting  solely  of  a  hydrated  phospholipid  bilayer without  ionic 

liquids was  subjected  to  identical  simulation protocols  and  analysis procedures  for  comparative 

purposes. 

3. Results and Discussions 

Along the simulations of the bilayer systems containing Ils, we observed in any case the insertion 

of  the  cations  from  the water phase  into  the phospholipid bilayer. Afterwards, we  extended  the 

simulations  up  to  100  ns monitoring  the  convergence  of  the  area  per  phospholipid  (APL)  and 

interactions energies between cations and bilayer molecules. The final 10 ns of each trajectory have 

been utilized to compute the results presented in the following. A snapshot of the final configuration 

for each system is presented in Figure 2. 

 

Figure 2. Cations inserted into the bilayer at the end of the simulation. a) C16MIM, b) C16BIM and c) C16OIM. 

Water and anions were removed from the representation for better visualization of the system of interest. 

At a glance, we observe the configurations of cations inserted into the bilayer. The [C₁₆OMIM] 

cation  inserts both alkyl chains  into  the hydrophobic environment of  the bilayer. The  [C₁₆BMIM] 

cation, containing the shorter butyl chain (4 carbons), can not fully insert the second substituent into 

the hydrophobic domain,  leaving  it  closer  to  the polar headgroups at  the membrane  surface. As 

exptected, [C₁₆MIM] directs only the long alkyl chain towards the membrane’s center. 

Radial pair distribution functions (RDFs) for distances between the center of the imidazolium 

ring and three distinct atoms of POPC’s polar head group have been computed. We have chosen the 

nitrogen atom of the choline group (N), the phosphorous (P), and the innermost oxygen (O) of the 

glycerol  backbone  to monitor  changes  in  the  coordination  of  the  imidazolium  ring within  the 

membrane’s polar region. The RDFs are illustrated in Figure 3. 
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In general, peak positions of these RDFs are maintained. Both, the imidazolium ring and choline 

group contain positive charge distributions. Thus, not surprisingly, the RDF with choline’s nitrogen 

presents maximum  amplitudes at  larger distances  than  the other RDFs and appear only  slightly 

affected by the second alkyl substitution in the cations. The [C₁₆MIM] cation presents the most intense 

peak with the negatively charged phosphate group. Increasing the second alkyl chain, the amplitude 

of this peak is decreased accompanied by larger amplitudes in the RDF with the oxygen of POPC’s 

glycerol unit. This observation indicates that longer second alkyl chains favor a deaper insertion of 

the cation into the membrane. 

 

Figure 3. RDFs between cation rings and atoms of the head group of POPC’s phospholipids. a) C16MI cation, b) 

C16BIM cation and c) C16OIM cation. 

Figure 4 presents RDFs between water molecules and the aforementioned headgroup atoms of 

the bilayer. Comparing these functions demonstrates no significant changes in the hydration patterns 

of  the membrane surface. These  results  indicate  that  the cation  insertion does not promote water 

intrusion  into  the bilayer’s hydrophobic domain, preserving  the membrane’s  fundamental barrier 

properties despite the structural perturbations caused by the ionic liquids. 

 

Figure 4. RDFs between atoms of the polar surface of the bilayer and water molecules. 

The interaction energy between the cations and the phospholipid molecules has been separated 

into contributions stemming from Lennard‐Jones and Coulomb interactions as depicted in Figure 5. 

More negative values in this analysis indicate stronger contributions to the overall interaction energy 

within the system. The total interaction energy is increased by adding more atoms to the cations as 

one might expect. The electrostatic contributions are mostly due to interactions of the cation’s ring 

and the head group atoms of the membrane and are almost the same for the three cations. On the 

other side, increasing the second alkyl chain in the cations comes along with enhanced Lennard‐Jones 
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interactions. A  large  fraction  of  these  van  der Waals  type  interactions  reflects  the  hydrophobic 

interactions between the alkyl chains of the cations and the lipid tails and, therefore, grows strongly 

with larger alkyl groups in the cations. 

 

Figure 5. Average energy contributions of Lennard‐Jones and Coulomb interactions to the potential energy of 

the system over the 100 ns of simulation and their sum. 

In Table 1, we have summarized several structural data for the bilayer in comparison with the 

unperturbed POPC bilayer. We  focused on  the area per phospholipid  (APL) and  the membrane’s 

thickness computed with the APL@Voro post‐processing software [48]. 

Table 1. Structural modifications in the bilayer promoted by the insertion of cations. 

  APL (nm²) 
Δ% vs 

POPC 

Thickness 

(nm) 

Δ% vs 

POPC 
Total area (nm²)  Δ% vs POPC 

POPC  0.66  ‐  3.72  ‐  41.76  ‐ 

POPC + 

C16MIM 
0.68  3.00%  3.69  ‐0.80%  43.62  4.45% 

POPC + 

C16BIM 
0.67  1.50%  3.73  0.26%  43.11  3.23% 

POPC 

+C16OIM 
0.69  4.50%  3.65  ‐1.88%  43.96  5.27% 

The APL and thickness of the unperturbed bilayer are  in agreement with literature data [49]. 

Our POPC membrane  contains  128 phospholipid molecules  and  four  cations which  represents  a 

molar fraction of approximately 0.03. We observed slightly increased APLs due to the presence of the 

cations without a clear tendency. The computed differences in the APLs are smaller than the statistical 

uncertainty  of  the  numerical  values.  This  holds  also  for  the  membrane’s  thickness  exhibiting 

numerical values within the error range for the unperturbed bilayer. As outlined by Figure 2, in the 

case of  the  [C₁₆BMIM] cation, all  the  four cations  inserted  into  the same  leaflet of  the membrane, 

whereas  in  the other  systems, each  leaflet  contains  two  cations  causing  the apparentely different 

trends in the APLs and thicknesses. The membrane structural results obtained for the C16MIM cation 

are  in  good  agreement with  values  reported  in  the  literature  [36]  for  studies  involving  smaller 

monoalkylated cations such as C12MIM, showing that the new data generated for dialkylated cations 

have good reliability. 

In Figure 6, we  illustrate  the deuterium order parameter  for  the unsaturated  (left panel) and 

saturated (right panel) alkyl chains of the POPC molecules calculated with the gmx order module of 

the GROMACS  software.  The  presence  of  the  cations  quite  generally  reduces  slightly  the  order 
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parameter affecting more the carbons close to the membrane’s head group than those close to the 

membrane’s center 

 

Figure 6. Deuterium order parameters for the Sn1 (left panel) and Sn2 (right panel) alkyl chains of POPC. 

4. Conclusions 

Ionic liquids based on the imidazolium cation containing a fixed hexadecyl substituent and a 

substituent ranging from methyl, butyl and octyl with chloride as the counterion were inserted into 

hydrated POPC‐type phospholipid bilayers. MD simulations of 100 nanoseconds were performed to 

evaluate the structural effects on the bilayer promoted by the presence of the cations. The stabilization 

of  the  cations  in  the membrane occurs  through nonpolar  interactions within  the bilayer between 

carbon  chains of  the  cations and  lipids and  through polar  interactions on  the membrane  surface 

between the head groups of the phospholipids and the rings present in the cations. Increasing the 

second alkyl chain  in  the cations  favor configurations with deeper  inserted cations. Four  inserted 

cations do not promote significant changes in the overall structure of the membrane’s (area per lipid 

and thickness), but decrease the deuterium order parameter for POPC chain carbons close to the head 

groups. In any case, the simulated systems describe stable bilayers without changes in the hydration 

patterns. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

IL’s  Ionic liquids 

POPC  1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine 

C16MIM  1‐Hexadecyl‐3 ‐Methylimidazolium 

C16BIM  1‐Hexadecyl‐3 ‐Butylimidazolium 

C168OIM  1‐Hexadecyl‐3‐Octylimidazolium 

MD  Molecular dynamics 

APL  Area per lipid 

RDF  Radial pair distribution functions 

NPT  Isothermal‐isobaric ensemble 

PME  Particle Mesh Ewald 
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