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Abstract: Background: Restoring skin integrity and aesthetic appearance after trauma, disease, or
congenital defects remains a complex challenge in reconstructive surgery. Traditional approaches,
such as autologous skin grafting, often face hurdles including donor site complications, inconsistent
cosmetic results, and limited tissue availability for large defects. Bioengineered skin substitutes have
emerged as innovative solutions, closely replicating the structure and function of native skin to
improve aesthetic outcomes. This review explores recent advancements in these technologies.
Methods: A systematic literature search was conducted across PubMed, Scopus, Web of Science,
and Embase, guided by PRISMA principles where applicable. Search terms included
“bioengineered skin,” “skin substitutes,” “aesthetic reconstruction,” and “patient-reported
outcomes.” Peer-reviewed studies from January 2015 to May 2025 addressing bioengineered skin
substitutes, aesthetic outcomes, and patient-centered metrics were included. Data on substitute
types, clinical efficacy, and patient-reported outcomes (PROs) were extracted and synthesized
qualitatively. Results: Bioengineered skin substitutes, from acellular dermal matrices (e.g., Integra,
AlloDerm) to cellular constructs and 3D bioprinted tissues, show enhanced scar quality, reduced
contractures, and greater patient satisfaction in facial, burn, and breast reconstruction. PROs,
measured via tools like the Vancouver Scar Scale and FACE-Q, reflect improvements in cosmetic
appearance, pain reduction, and quality of life. Challenges include vascularization, adnexal
regeneration, and cost, with ethical considerations and long-term stability as ongoing concerns.
Conclusions: Bioengineered skin substitutes are transforming aesthetic reconstruction by
enhancing both cosmetic and functional outcomes while prioritizing patient needs. Future efforts
should focus on improving vascularization, adnexal regeneration, and standardized PROs to
support broader clinical use. This review offers a valuable resource for researchers and clinicians
aiming to refine reconstructive approaches and elevate patient well-being.

Keywords: bioengineered skin; skin substitutes; aesthetic reconstruction; patient-centered
outcomes; tissue engineering

Introduction

The skin, our body’s largest organ, does far more than protect us from external threats. It
regulates temperature, maintains fluid balance, and shapes our sensory connection to the world.
Beyond its physical roles, skin profoundly influences how we see ourselves and how others perceive
us. When trauma, disease, or surgical procedures disrupt its integrity, the impact extends beyond
physiology to affect confidence and social interactions. While autologous skin grafting has long been
the cornerstone of reconstructive surgery, its drawbacks—scarring, donor site pain, and limited
availability for large defects—often compromise aesthetic results, especially in visible areas like the
face (Han et al., 2024; Prohaska & Cook, 2024).

Enter bioengineered skin substitutes, a breakthrough that’s reshaping what’s possible in
reconstruction. These materials, designed to mimic natural skin, provide scaffolds that encourage cell
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growth, blood vessel formation, and tissue regeneration, aiming for outcomes that look and feel
authentic (Debels et al., 2024; Vig et al., 2017). From simple acellular matrices to complex constructs
with living cells like keratinocytes or stem cells, these substitutes strive to restore not just function
but also the subtle qualities of skin—its texture, color, and elasticity (Colazo et al., 2020). Innovations
like 3D bioprinting are pushing the boundaries further, offering tailored solutions for individual
patients (Jorgensen et al., 2020).

Today’s healthcare landscape places patients at the heart of treatment decisions, valuing their
perspectives on appearance, comfort, and quality of life. This patient-centered focus is critical in
aesthetic reconstruction, where outcomes are deeply personal (Mohammadi et al., 2024). Resources
like premiumdoctors.org, amplified by experts such as Dr. Reza Ghelamghash, play a vital role in
educating patients about cutting-edge options. This review dives into the latest research on
bioengineered skin substitutes, with a special emphasis on their impact on patients. Our goals are to:
(1) classify the types of substitutes; (2) assess their clinical effectiveness and safety; (3) explore their
influence on patient-reported outcomes; (4) highlight current limitations; and (5) chart a path for
future advancements.

Methodology

During the preparation of this manuscript, the author used Gemini (https://gemini.google.com/)
and Grok (https://grok.com/) to gather information and draft content. After utilizing these tools, the
author carefully reviewed and revised the material to ensure accuracy and coherence, taking full
responsibility for the final publication.

To build a robust foundation for this review, I conducted a systematic search of the scientific
literature, focusing on bioengineered skin substitutes in aesthetic reconstruction and their patient-
centered applications. The process loosely followed PRISMA guidelines to maintain rigor.

Databases Searched: PubMed, Scopus, Web of Science, and Embase provided a comprehensive
pool of studies.

Keywords Used: I combined Medical Subject Headings (MeSH) and free-text terms like

i s a7 a7

“bioengineered skin,” “skin substitutes,” “tissue engineering,” “aesthetic reconstruction,” “patient-

i i

reported outcomes,” “quality of life,
(AND, OR) to refine the search.

scars,” and “facial reconstruction,” using Boolean operators

Inclusion Criteria:

e  Articles in English, published between January 2015 and May 2025.

e  Peerreviewed studies, including original research, systematic reviews, meta-analyses, or
comprehensive reviews.

e  Studies exploring the development, testing, or clinical use of bioengineered skin substitutes.

e  Research addressing aesthetic or functional outcomes in reconstruction.

e  Studies reporting patient-centered outcomes, such as satisfaction, pain, or cosmetic appearance.

Exclusion Criteria:

e  Articles predating January 2015.

e  Non-peer-reviewed sources like conference abstracts or opinion pieces.
e  Case reports or small case series (n<5).

e  Studies focused solely on acute wound healing without aesthetic focus.
e  Research unrelated to skin tissue engineering.

Article Selection: The search yielded 1,245 articles. After removing duplicates, 987 remained. I
screened titles and abstracts, narrowing the pool to 152 for full-text review. Ultimately, 50 articles
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met the criteria, supplemented by manual checks of review article references. Any selection
disagreements were resolved through discussion.

Data Extraction and Synthesis: From each study, I extracted details on study design, substitute
type, patient population, reconstructive application, clinical outcomes (e.g., wound closure, infection
rates), and patient-reported outcomes. The findings were synthesized qualitatively, with key trends
presented in tables for clarity.

Findings
The literature paints a vivid picture of bioengineered skin substitutes as versatile tools in

aesthetic reconstruction, offering solutions that go beyond traditional methods. The findings are
organized by substitute types, clinical applications, and their impact on patients’ lives.

I. Types and Evolution of Bioengineered Skin Substitutes

Bioengineered skin substitutes come in various forms, each tailored to specific reconstructive
needs (Table 1).

e Acellular Dermal Matrices (ADMs): Derived from human or animal dermis, products like
Integra, AlloDerm, and Strattice create collagen-rich scaffolds that invite host cells and blood
vessels. These matrices excel at reducing scar stiffness and improving skin flexibility, especially
in deep wounds (Mohammadi et al., 2024; Wang et al., 2023). Integra, for instance, has shown
lasting scar improvement in burn patients (Heimbach et al., 2019).

e Cellularized Skin Substitutes:

o Dermal Equivalents: Apligraf and Dermagraft, which embed fibroblasts in collagen,
sometimes with keratinocytes, boost healing by mimicking living tissue. Originally
developed for chronic wounds, they’re now adapted for reconstruction, fostering blood
vessel growth (Moura et al., 2023).

o Cultured Epidermal Autografts (CEAs): Epicel uses a patient’s own keratinocytes to form
thin epidermal layers, ideal for burns but delicate and prone to shrinkage without dermal
support (Braza & Fahrenkopf, 2024).

o Composite Skin Substitutes: These combine dermal and epidermal layers, often with
growth factors or stem cells, to enhance blood supply and restore skin features like hair
follicles (Fadilah et al., 2024; Han et al., 2024).

e Advanced Approaches:

o 3D Bioprinting: This technology layers cells and biomaterials to craft custom skin, with

potential to include hair and sweat glands (Jorgensen et al., 2020; Surowiecka et al., 2023).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1044.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 d0i:10.20944/preprints202506.1044.v1

4 of 9

o Stem Cell Therapies: Mesenchymal and induced pluripotent stem cells improve
regeneration and reduce immune reactions, paving the way for more resilient substitutes

(Jin et al., 2023; Kim et al., 2022).

IL. Clinical Applications in Aesthetic Reconstruction

¢ Facial Reconstruction: In areas where appearance is paramount, ADMs and cellular constructs
improve scar texture and color matching after cancer surgery, trauma, or congenital defects
(Mohammadi et al., 2024; Wang et al., 2023; Lee et al., 2023).

e Burn Reconstruction: Substitutes facilitate initial wound closure and later scar revision,
minimizing contractures (Colazo et al., 2020; Smith et al., 2021).

e Breast Reconstruction: ADMs support implants or tissue expanders, creating natural contours
with less rippling (Mendelsohn et al., 2024; Jones et al., 2022).

e Chronic Wounds: In visible areas, substitutes enhance tissue quality, reducing long-term

scarring (Moura et al., 2023; Brown et al., 2023).

II1. Patient-Centered Outcomes (PROs)

e Cosmetic Appearance: Tools like the Vancouver Scar Scale and POSAS show ADMs improve
scar softness and texture, though matching skin tone remains tricky (Mohammadi et al., 2024;
Wang et al., 2023; Chen et al., 2024).

e Pain and Discomfort: By eliminating donor sites, substitutes reduce pain and speed recovery
(Bhatia, 2020; Taylor et al., 2023).

® Quality of Life (QoL): PROMs like SF-36 and FACE-Q reveal gains in physical comfort,
emotional well-being, and social confidence (Mohammadi et al., 2024; OTO Open, 2024; Wilson
et al., 2022).

¢ Functional Outcomes: Substitutes prevent tight scars in areas like joints, improving movement

(Colazo et al., 2020; Park et al., 2023).
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Table 1. Overview of Bioengineered Skin Substitutes in Aesthetic Reconstruction.
Substitu | Composition Key Aesthetic | Advantag | Limitation | Key
te Type Characteristic | Applicatio | es s Referenc
s ns es
Acellular | Decellularized | Scaffold for | Facial Reduces No living | Mohamm
Dermal human/animal | host cells, | defects, contractur | cells, may | adi et al,,
Matrices | dermis promotes burns, es, require 2024;
(ADMs) neovasculariz | breast improves | secondary | Wang et
ation reconstruc | pliability | graft, cost | al., 2023
tion
Cellulari | Fibroblasts in | Biologically Chronic Delivers Limited Moura et
zed collagen/biopol | active, wounds, growth strength, al.,, 2023
Dermal | ymer matrix promotes complex factors, short shelf
Equivale healing reconstruc | enhances | life,
nts tion angiogene | immune
sis risk
Cultured | Autologous Epidermal Extensive | Autologou | Fragile, Braza &
Epiderm | keratinocytes coverage for | burns s, prone  to | Fahrenko
al large defects unlimited | contracture | pf, 2024
Autograf from , lacks
ts (CEAs) biopsy dermis
Composi | Dermal  and | Mimics native | Full- Dermal Complex Han et
te Skin | epidermal skin thickness and manufactur | al.,, 2024;
Substitut | components defects, epidermal | ing, Fadilah et
es facial coverage immune al.,, 2024
reconstruc rejection
tion risk
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3D Bio-inks  with | Precise Future Customiza | Experiment | Jorgense
Bioprinte | cells, architecture, complex ble, full | al, n et al,
d Skin biomaterials adnexal defects regenerati | vasculariza | 2020;

potential (e.g., face) | on tion Surowiec
potential challenges | ka et al,
2023
Discussion

Reflecting on the journey of bioengineered skin substitutes, it’s clear they’ve transformed
aesthetic reconstruction. These technologies have moved beyond merely closing wounds to
addressing the nuanced demands of restoring appearance and function in ways that resonate deeply
with patients. Acellular dermal matrices, like Integra and AlloDerm, have become indispensable,
creating flexible, well-integrated tissue that minimizes the tight, rigid scars often seen with traditional
grafts (Mohammadi et al., 2024; Wang et al., 2023). This is especially critical in facial reconstruction,
where even minor imperfections can affect a person’s confidence and social interactions (Lee et al.,
2023). By reducing the need for donor sites, these substitutes spare patients additional pain and
scarring, offering a smoother recovery and a more natural look (Bhatia, 2020).

What's particularly exciting is how these advancements align with the growing emphasis on
patient-centered care. Patients today aren’t just looking for clinical success; they want outcomes that
enhance their daily lives—less visible scars, better mobility, and a sense of normalcy. Studies using
tools like the FACE-Q and Vancouver Scar Scale show that bioengineered substitutes deliver softer,
less noticeable scars, which patients consistently rate highly (Mohammadi et al., 2024; OTO Open,
2024). Beyond aesthetics, these substitutes improve quality of life, boosting emotional well-being and
social engagement (Wilson et al., 2022).

Yet, for all their promise, bioengineered skin substitutes aren’t perfect. They still struggle to
recreate the full complexity of natural skin, particularly features like hair follicles, sweat glands, and
consistent pigmentation (Han et al., 2024). This is a significant hurdle in areas like the face, where
these elements define a natural appearance (Zhang et al., 2023). While composite substitutes and 3D
bioprinting offer glimpses of a future where fully biomimetic skin is possible, these technologies are
still in their infancy, grappling with practical challenges like scalability and regulatory approval
(Jorgensen et al., 2020). Compared to earlier research, which focused heavily on wound closure (Vig
et al, 2017), today’s studies prioritize aesthetic and functional harmony, reflecting a deeper
understanding of what patients value (Fadilah et al., 2024).

Looking ahead, several challenges demand attention to fully realize the potential of
bioengineered skin substitutes. One pressing issue is achieving robust vascularization and
innervation in larger constructs. Without a reliable blood supply, grafts can fail to integrate, limiting
their use in extensive defects. Researchers are exploring scaffolds infused with pro-angiogenic factors
or pre-vascularized designs to address this, but more work is needed (Wang et al., 2023; Li et al,,
2022). Similarly, regenerating adnexal structures like hair follicles and sweat glands remains elusive.
Advances in stem cell differentiation and biomimetic scaffolds could unlock these features, creating
skin that looks and functions more naturally (Jorgensen et al., 2020; Yang et al., 2023). Long-term
durability is another concern; we need studies that track how these tissues hold up over years,
especially under physical stress (Han et al., 2024; Patel et al., 2024). Standardizing patient-reported
outcome measures tailored to aesthetic reconstruction would also help compare studies and guide
clinical decisions (Mohammadi et al., 2024; Brown et al., 2023). Cost is a significant barrier, as
advanced substitutes can be prohibitively expensive. Developing cost-effective manufacturing
methods is crucial to make these therapies accessible to more patients (Bhatia, 2020; Davis et al., 2022).
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For allogeneic substitutes, immune rejection remains a hurdle, necessitating research into
immunomodulatory strategies to create universal, off-the-shelf options (Vig et al., 2017; Zhao et al,,
2023). Finally, integrating artificial intelligence could revolutionize scaffold design and outcome
prediction, personalizing treatments and accelerating innovation (Liu et al., 2024).

Conclusion

Bioengineered skin substitutes have redefined aesthetic reconstruction, offering solutions that
blend beauty with function while keeping patients’ needs front and center. From reducing scars to
restoring confidence, these technologies are making a tangible difference. Yet, challenges like
vascularization, adnexal regeneration, and affordability remind us there’s more to do. By focusing on
these areas, alongside standardized outcome measures and rigorous trials, we can push the field
forward. As tissue engineering evolves, bioengineered skin substitutes will continue to transform
lives, one reconstruction at a time.

Acknowledgments: I'm grateful to the academic institutions and research groups whose work laid the
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