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Abstract: Molecular electronics studies have advanced from early, simple single-molecule experi-
ments at cryogenic temperatures to complex and multifunctional molecules under ambient conditions.
However, room-temperature environments increase the risk of contamination, making it essential to
identify and quantify clean and contaminated rupture traces (i.e., conductance versus relative electrode
displacement) within large datasets. Given the high throughput of measurements, manual analysis be-
comes unfeasible. Clustering algorithms offer an effective solution by enabling automatic classification
and quantification of contamination levels. Despite the rapid development of machine learning, its
application in molecular electronics remains limited. In this work, we present a methodology based
on the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to extract
representative traces from both clean and contaminated regimes, providing a scalable and objective
tool to evaluate environmental contamination in molecular junction experiments.

Keywords: molecular electronics; atomic-sized contacts; conductance trace classification; DBSCAN
clustering; environmental contamination; break-junction technique; room temperature measurements;
trace of conductance; histogram; density plots

1. Introduction

The core idea behind molecular electronics [1-3] is to use the smallest possible components—
individual atoms or molecules—as active elements in electronic devices. A common strategy involves
connecting a single atom or molecule between two electrodes. Break-Junction (B]) techniques offer
an excellent platform to achieve this level of control. The most widely used methods to measure
electronic transport in such junctions are Scanning Tunneling Microscopy Break Junctions (STM-B]) [4]
and Mechanically Controllable Break Junctions (MCB]J) [5-7]. These techniques allow measurements
electrical conductance G the conductance (defined as G = % = ﬁ). Where [ is the current that
follows the junctions and the V;;,5 is the voltage applied to the junction. According to Landauer’s
formalism [8], the conductance of atomic and molecular junctions is quantized and can be expressed
as G = Gg )_; T;, where T; is the transmission probability of the i-th conduction channel, and Gy = 2}%2
is the quantum of conductance [9] . Here, e is the elementary charge, & is Planck’s constant, and the
factor of 2 accounts for spin degeneracy.

In the case of single-atom metallic contacts—such as gold—the transmission probability is typi-
cally close to one, resulting in a conductance near G ~ Gy ~ ﬁ Q1 ~7.75 x 107°S) [10]. However,
when the gold contact is further stretched, the junction breaks and the conductance abruptly drops to
the tunneling regime, where the current decreases exponentially with the distance that separates the
electrodes. When a molecule bridges the electrodes, the transmission is usually significantly reduced
compared to metallic contacts (if the molecule is a poor conductor). The specific value depends on
the molecular structure and its electronic coupling to the electrodes. In general, molecular junctions
exhibit conductance values lower than Gy, often several orders of magnitude smaller [11].
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The field of molecular electronics has undergone remarkable progress in recent decades [1-3],
evolving from early demonstrations of single-molecule junctions at cryogenic temperatures [12-14] to
room-temperature molecular bridges with various functional properties [15-20]. When measuring
electronic transport in atomic-scale contacts under ambient conditions using BJ techniques, one of the
main risks is sample degradation due to environmental exposure. Even brief contact with the laboratory
atmosphere can lead to contamination of the junctions. Contamination that in form unknown molecule
is captured between the leads when they are stretched or compressed.

In parallel with advancements in molecular electronics, the past decade has seen a transformative
rise in machine learning and artificial intelligence. While these tools have revolutionized numerous
scientific fields, their application in molecular electronics started to grow in the last six years [21-25].
Our manuscript also is contributin to bring a new utilities for the molecular electronics using DB-
SCAN][26-28] clustering algorithm. This approach enables the automatic extraction of representative
conductance-versus-displacement that correspond to both clean and contaminated regimes in atomic-
sized gold contacts measured under ambient conditions. By providing a robust statistical framework,
our method allows for the distinction between pure metallic junctions and those compromised by envi-
ronmental contamination, enhancing both the reproducibility and interpretability of room-temperature
molecular electronics experiments.

Given the known challenges of obtaining ultra-clean atomic-scale junctions, one strategy to
mitigate contamination is the in situ cleaning of samples, for example through plasma treatment
protocols. However, such cleaning techniques typically require disassembling the setup and removing
the sample from the experimental chamber, which is not always feasible, especially during high-
throughput or time-sensitive measurements.

In this article, we propose an alternative approach. Rather than physically cleaning the samples,
we leverage a clustering algorithm to automatically classify conductance versus displacement traces—
commonly referred to as conductance traces—according to whether they are clean (i.e., characteristic of
pure metallic junctions) or contaminated (i.e., altered by molecular adsorption or ambient impurities).
Our manuscript presents both the clustering protocol employed and its successful application to
experimental data, clearly revealing the presence of two distinct classes of traces: those corresponding
to clean gold junctions and those affected by contamination. This offers a powerful tool for assessing
the cleanliness of the junctions during measurements, enabling the estimation of the proportion of
clean traces in a dataset. In turn, this allows researchers to define thresholds for initiating sample
cleaning or discarding data segments.

2. Materials and Methods
2.1. Molecular Electronics Based on B] Experiments

To investigate atomic-scale electronic transport under ambient conditions, we employed a me-
chanically controllable break junction (MCB]J) setup (see Figure 1a). This illustration shows a single
molecule captured between two gold electrodes. A bias voltage is applied on the left side, and the
current flows through a molecule trapped between the electrodes. These electrodes are mounted on a
flexible polylactic acid (PLA) substrate. This substrate is bent using a piezoelectric actuator which,
when pushed, causes the gold wire to break, and upon retraction, allows the flexible substrate to relax,
bringing the electrodes back into contact and forming the junction again.

The current flowing through the molecule is extremely small, typically in the nanoampere or sub-
nanoampere range. To accurately detect these low currents, a custom-built logarithmic I/V converter
was used [29], allowing the amplification and recording of conductance signals as low as 104Gy .

The system consists of a notched gold wire (Goodfellow, 0.1 mm diameter) carefully deposited
and glued onto the flexible PLA substrate [30]. This configuration is integrated into a three-point
bending mechanism, where a piezoelectric element provides precise mechanical control of the electrode
separation, enabling the reproducible formation and rupture of atomic-scale junctions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. (a) Illustration and basic circuit of a MCB]J. (b) Input and output sketch of the DBSCAN algorithm.

During the experiments, a constant bias voltage of 100 mV was applied across the junction. The
resulting current was measured using the custom logarithmic I/V converter and recorded with a
data acquisition (DAQ) system. This setup enables the acquisition of conductance traces, defined as
the conductance versus relative electrode displacement—measured in volts or, when calibrated, in
angstroms.

In this study, we focus exclusively on rupture traces. A total of approximately 5024 traces were
acquired and analyzed under ambient conditions.

2.2. Classification Method: Use of the DBSCAN Algorithm

Although there are various approaches to applying clustering techniques to the classification of
conductance traces, in this manuscript, we have chosen to use the DBSCAN algorithm. While the
k-means algorithm may be faster and more computationally efficient, we have preferred to sacrifice
speed in favor of greater classification fidelity. DBSCAN is particularly effective when clusters exhibit
relatively uniform density and there is a clear distinction between dense and sparse regions. Its
operation is based on two key parameters: the neighborhood radius ¢, which defines the maximum

distance between two points to be considered neighbors, and the minimum number of samples

Nf;ir:PleS required for a point to be considered a core point.

In our case, the goal of clustering is not to classify individual points, but rather to identify and
classify segments or ranges within each conductance trace. To this end, each segment is transformed
into a feature vector, so the algorithm operates on these vectors rather than on the entire trace. This is
illustrated in Figure 1b, where the inputs to the algorithm are the conductance ranges to be analyzed

in each individual trace. It is important to note that, under this formulation, the parameters ¢ and

Nsamples
min

original traces.

are applied directly to the feature vector space, not to the individual points contained in the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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As shown in Figure 1b, the left side indicates the inputs: the segmentation range, the number

of variables considered, and the value of NPl

in. - Once a set of trace segments is processed (in our

case, 5024 segments), and specific values of ¢ and le;r: ples are set, the algorithm returns the number of
identified clusters, as well as the number of traces that are not assigned to any cluster (classified as
outliers). One of the main advantages of DBSCAN is precisely its ability to automatically identify these
outliers.

Although DBSCAN does not require prior knowledge of the number of clusters, having this
information can be advantageous. In our case, we already know that the data ideally separates into
two clusters: one corresponding to clean traces and the other to contaminated ones. For a given
segmentation range and specific parameters, we assess whether DBSCAN identifies these two groups.
Any data that does not fit well into either cluster is classified as an outlier. However, the optimal values
of e and Nf;r:ples
Our goal is to distinguish between two types of conductance traces, or two clusters: one corre-

are not known in advance.

sponding to clean traces and the other to contaminated ones. As shown in Figure 1b, the left panel

illustrates the inputs: the segmentation range, the number of variables considered, and the value of
samples
N, min )
samples
Nmin
we propose a systematic methodology to determine the optimal values of € and

. Once a set of trace segments (in our case, 5024) is processed and specific values of € and

are set, DBSCAN returns the number of identified clusters and the outliers. In this work,
Nsamples
min
we construct a meshgrid over the parameter space and run DBSCAN for all combinations of values.

. To do so,

For each parameter pair, we record the number of clusters and outliers. To automate the process, we
developed a Python script that explores the parameter space and generates a 3D map, where the z-axis
indicates the number of clusters and the color scale encodes the number of outliers. This visual tool
provides an intuitive way to select an optimal parameter set for reliable classification. Once this plot is
obtained, we refer to it as the result of a completed iteration.

However, in our protocol we must perform two iterations of DBSCAN in two distinct ranges to
successfully classify the traces. This strategy has allowed us to develop a robust protocol that accurately
distinguishes between ultraclean traces and those contaminated by the environment, even enabling
estimation of the relative percentage of each type. It is worth noting that the complete application of
the protocol takes no more than ten minutes per data set.

3. Results
3.1. Data Raw Atomic-Sized Contacts of Gold at Room Conditions

Figure 2a shows a selection of traces from the same experiment, plotted in logarithmic scale
relative to displacement. It is well known that when an atomic contact is clean, the conductance
drops sharply to the tunneling regime after the final atomic plateau at 1 Gy upon further elongation
[31-33]. In contrast, when a molecule is present between the electrodes, a plateau often appears in the
sub-quantum conductance range due to its low transmission [34]. The traces 1 and 2 of the Figure 2a
drop abruptly from 1 Gy to below 10~* Gy, without exhibiting any intermediate plateaus; these ones
can be classified as clean. In contrast, traces 3 and 4 display conductance plateaus between 0.1 Gy and
10~* Gy, despite the absence of any intentionally deposited molecules. This behavior suggests the
presence of contamination, potentially due to unintentional molecular junctions or residual species
influencing the conductance.

An alternative statistical representation is the density color map, which can be constructed by
aligning all traces with respect to the onset of the last plateau corresponding to the single-atom contact
(in the case of gold 1.0 Gy ). Specifically, each trace is shifted such that the first point at 1.0 Gy is set to
zero displacement. This procedure is applied to all traces, allowing them to share a common reference
point.

Using this alignment method, a density map is generated, as shown in Figure 2b, representing the
full dataset composed of 5024 conductance traces. The map displays the number of events using a
color scale: warm colors (dark red) indicate high occurrence density, while cool colors (blue) denote

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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low density. The plot is constructed with 245 bins along the x-axis and 250 bins along the y-axis and is
subsequently smoothed.
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Figure 2. (a) Representative conductance rupture traces plotted on a logarithmic scale. Traces 3 and 4 show direct
transitions from 1 Gy to below 10~ Gy, while traces 1 and 2 exhibit intermediate plateaus, indicating possible
contamination. (b) Density map of 5024 gold rupture traces recorded at room temperature. The color scale reflects
the number of events, with warm colors indicating high density and cool colors low density.

3.2. Automated Selection of Optimal DBSCAN Parameters for Trace Classification

As explained earlier, DBSCAN depends on two parameters: ¢ and Nrsf;nples. To choose them
automatically, we created a Python script that scans the parameter space. For each pair of values, it
runs DBSCAN and records the number of clusters and outliers. The results are shown in a 3D plot
where the x and y axes represent the parameters, the z-axis shows the number of clusters, and the color
scale indicates the number of outliers. This makes it easy to spot the most suitable region, as shown
both panels Figure 3.

However, as previously noted in the Materials and Methods section, a single DBSCAN iteration
is not sufficient to accurately discriminate between fully clean and contaminated traces. For this
reason, our protocol involves two successive DBSCAN runs, each applied to a different segment
of the conductance traces. In the first iteration, the conductance traces are segmented in the range
[1071,1073]Gp. This segment is used as input for a parameter sweep over ¢ and N;gri;‘ples using
a meshgrid approach. For each parameter pair, we compute the number of clusters and outliers
identified by DBSCAN. The results are visualized in Figure 3a.

From the 3D map, we identify an optimal region where the number of clusters is two and N;gri;‘pl e
is between 4 and 7. Selecting parameters in this region helps the algorithm detect well-defined clusters
associated with clean traces. Table 1 shows a brief summary of the four selected possible DBSCAN
parameter combinations explored. The first column shows the number of the combination. Second
and third columns show the values of ¢ and N;g‘g‘pl «s» Which yield exactly two clusters—matching

the classification objective. The last three columns indicate the number of outliers, clean traces, and
contaminated traces.

Table 1. Summary of the possible DBSCAN parameter combinations explored in the first iteration.

... . . Clean .
Combination ¢ N:al::llples Clusters Outliers Traces Contaminated Traces
1 1.733 7 2 76 4188 760
2 1.733 6 2 71 4188 765
3 4.456 7 2 1 4188 835
4 4.456 6 2 1 4188 835

As shown in Table 1, for ¢ values between approximately 1.5 and 4.5 and Négxiﬂples between 6 and

7, the number of traces classified as clean remains constant at 4188. Within this range, the number
of outliers varies between 1 and 76, while the number of contaminated traces ranges from 760 to 836,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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always over a total of 5024 traces. In this first iteration, we selected combinations 3 and 4, as both yield
the minimum number of outliers (1) and allow the remaining traces to be classified as contaminated
without affecting the number of clean traces. Since both combinations produce equivalent results, we
adopted option 3 (or 4) as the reference for the next iteration. However, as clearly shown in Figure 4a,
a noticeable cloud of counts remains in the region around 10'Gy, indicating that the separation
is not entirely clean. In fact, the data raw density plot in Figure 2b, which includes all unfiltered
traces (including contaminated ones), appears strikingly similar to the distribution obtained after the
first DBSCAN filtering shown in Figure 4a. Therefore, a second iteration is warranted, as previously
outlined in the Materials and Methods section of this manuscript.

In the second iteration, the same procedure is applied to a different segment of the conductance
traces, [10°,1071]Go, over the 4188 clean traces. The results obtained are shown in Figure 3b. This
second analysis serves to refine the classification and helps distinguish really clean traces or traces
with contaminants, completing the overall protocol.

800 (b) 1750
700
1500

goo >0

5”0 1250
500 § 30

420
200 19 1000
300 ° 750
200 500
100 250
0

Figure 3. Three-dimensional plots showing the number of clusters (z-axis) as a function of the DBSCAN parameters

¢and Ngri;‘pl os- The color scale indicates the number of outliers detected. (a) corresponds to the first iteration and

(b) to the second iteration of DBSCAN.

As in the first iteration, we compile a summary table to evaluate different DBSCAN parameter
combinations that result in two clusters. Table 2 presents these combinations. Based on this table, we
observe that for very small values of ¢, the number of outliers increases significantly. Upon inspection,
this behavior appears to misclassify some genuinely clean traces as outliers. On the other hand, when
¢ is too large, the number of outliers drops drastically. However, visual inspection of the supposedly
clean traces reveals the presence of residual sub-plateaus in certain regions, suggesting that some
contaminated traces are being misclassified as clean. Therefore, we select an intermediate value of
£ = 3.5, which results in a reasonable number of outliers and a sufficiently high number of clean traces.
Specifically, out of the initial 4188 clean traces, 3912 are retained after this second filtering step.

Table 2. Summary of the possible DBSCAN parameter combinations explored in the second iteration.

Clean

Combination ¢ Nmin Clusters Outliers Contaminated Traces
samples Traces
1 0.644 6 2 1103 3077 6
2 3.400 7 2 218 3912 56
3 5.000 6 2 91 4087 8

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.3. Clustering Based on DBSCAN to Identify Pure Metallic Atomic-Scale Gold Contacts and Traces
with Contamination

Once the DBSCAN algorithm has been applied to classify the traces as clean or contaminated,
one of the most effective ways to evaluate its performance is to represent both iterations using density
plots. Figure 4 displays the results: panel (a) shows the density plot from the first iteration, while
panel (b) corresponds to the second iteration, in which traces identified as completely clean are shown.

(a) (b)
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Figure 4. Panel (a) shows a density plot constructed from the 4188 clean traces identified in the first iteration
using combination 3—4 from Table 1. Panel (b) displays a density plot based on the 3912 clean traces identified in
the second iteration using combination 2 from Table 2. The number of bins used for the density plots are 250 and
300, respectively.

As can be observed, the contaminated traces shown in Figure 4 panel (a) behave quite differently.
Around 107! Gy, a bluish cloud is clearly visible, indicating contamination. In contrast, the density
plot in panel (b) exhibits very few counts within a noticeable gap between the atomic contact of gold
(~ 1 Gp) and the tunneling regime (which starts around 10~3 Gy and is characterized by its slope on
the logarithmic scale). Although a small number of points remain in this clear gap, the number of
counts in this gap is three orders of magnitude compared to the maximum. These isolated points are
typically attributed to artifacts from the data acquisition system (DAQ).

These qualitative differences between the two density plots confirm that they reflect distinct
physical behaviors. A more detailed discussion supporting the validity of our classification algorithm
is provided in the following section.

4. Discussion

Thanks to the DBSCAN clustering algorithm applied following the protocol described above, we
have been able to classify conductance traces into two well-defined groups: those confidently labeled
as clean—even under ambient conditions—and those interpreted as affected by contamination. This
classification is clearly reflected in the density plots shown in Figure 4. Panel (a) corresponds to the
first iteration, which fails to correctly identify clean traces, while panel (b) shows the result of the
second iteration, where clean traces are clearly isolated.

Moreover, we want to bring clarity to our message and to be more conclusively demonstrate the
cleanliness of the selected traces. Therefore, we propose an additional statistical analysis based on
normalized conductance histograms (to one quantum of conductance), presented in both linear and
logarithmic scales (see Figure 5). In these histograms, we compare the raw dataset with the subset of
3912 traces identified as clean. The color code indicates red for the data raw and green for the classified
as clean.

The linear-scale histogram allows us to observe high conductance features and directly compare
the overall profile of the raw(red) and clean datasets (green). In contrast, the log-log histogram
(logarithmic in both counts and conductance) enhances the visibility of features typically associated
with environmental contamination, such as peaks around ~ 1 - 10~1 Gy or even down to ~ 1-10~% Gy.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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As expected, the log-log representation emphasizes all differences, especially in the low-conductance
region. Finally, we provide a comparative table showing the number of traces classified as clean and
contaminated within our dataset.

(a) (b)
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Figure 5. Panel (a) shows the histogram on a linear scale, while panel (b) presents it on a logarithmic scale (log-log).
The red curves correspond to the raw dataset (5024 traces), and the green curves represent the subset of clean 3912
traces identified by the DBSCAN algorithm.

Further assess the robustness of our clustering procedure, we analyze the conductance histograms
in the range from 0.1 to 5 Gy for both the raw data(red color) and the clean subset (green line). As
shown in Figure 5a, the histogram of the full dataset exhibits a strong peak centered around 1 Gy,
consistent with the typical conductance of single-atom Au contacts. Focusing on the peaks at 1, 2,
and 3 Gy, we observe that, for both the raw data and the clean dataset, the peak positions remain
essentially the same, with only subtle differences. A slight decrease in the count density is noticeable
near 2 Gy for the clean traces. Interestingly, and in contrast with previous studies where molecules
are deposited on gold atomic contacts—where a significant broadening of the 1 Gy peak is typically
observed [35,36]—such broadening is absent in our data, suggesting that environmental contamination
does not produce a comparable effect.

However, a notable difference emerges in the low-conductance regime, around 0.1 Gy. In this
region, a clear peak appears in the raw dataset but is entirely absent in the clean traces. This highlights
the importance of representing conductance histograms in a logarithmic scale, which allows better
resolution in the low-conductance region and helps reveal the true positions and nature of such peaks,
potentially masked in linear representations.

The distinction between clean and contaminated traces is clearly observed in the log-log scale
histograms in Figure 5b. In the clean dataset (represented by the green histogram), there’s a marked
deep in the count density, specifically between approximately 8 - 10~! Gy and 1 - 10~3 Gy. Below this
threshold, the histogram exhibits a linear trend on the log-log scale, which is a characteristic behavior
of the tunneling regime. Conversely, the raw data (red area) displays a prominent distribution of
conductance values within the same range. Here, a significant concentration of events stands out,
centered around 2 - 107! Gy. This peak is commonly associated with contamination from environmental
sources or hydrocarbons, as confirmed in our previous study [35]. It’s crucial to note that the count
density of this peak in the contaminated histogram, close to 2 - 10! Gy, is almost an order of magnitude
higher compared to the clean traces. The latter, in contrast, show no distinct peak in this region, only
baseline counts. Furthermore, another prominence exist in the contaminated data also disrupts the
linear trends observed in the clean traces within the 1072 Gy to 1072 Gy range. This deviation is also
attributed to contamination, given that no molecules were intentionally deposited and, under ideal
conditions, no counts should appear in this range.

With all this data, we can quantitatively determine the percentage of clean and contaminated traces
obtained after applying our classification process. This statistical analysis allows us to evaluate whether

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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our samples progressively degrade over time due to environmental exposure, or if contamination
occurs immediately upon exposure.

The following Table 3 summarizes the total number of traces analyzed, along with the relative
proportions of clean and contaminated traces:

Table 3. Statistical summary of trace classification.

Total traces Clean traces (%) Contaminated traces (%)
5024 3912 (77.8%) 1112 (22.2%)

Altogether, the combined visual and statistical analyses support the effectiveness of our DBSCAN-
based classification. The subset of clean traces not only excludes contamination artifacts but also
reproduces features known from high-purity, low-temperature measurements. This reinforces the
reliability of our approach and demonstrates that meaningful structural and electronic information can
be extracted from ambient-condition experiments, provided that appropriate data-cleaning procedures
are applied.

5. Conclusions

Therefore, we conclude that we have developed a robust trace classification procedure capable
of separating clean and contaminated traces through a two-step DBSCAN-based protocol. This
methodology enables a quantitative evaluation of the proportion of clean versus contaminated traces
within a dataset. In our case, we determined that 77.8% of the traces are completely clean, meaning
they do not exhibit any counts or plateaus in the range of [8 - 1071, 1 - 1073] G,

Importantly, this constitutes the first compact device that, via electronic transport measurements,
can quantify the presence of a single contaminant molecule. Although it does not provide information
about the chemical identity of the contaminant, it reliably assesses its abundance.

These findings demonstrate that a large fraction of the traces are of high purity. Furthermore,
our methodology could be extended to evaluate how different metals degrade upon exposure to
environmental conditions. This, in turn, would support decisions about whether molecular deposition
is justified or help define the minimum contamination threshold required for reproducible and reliable
molecular-scale measurements.

Author Contributions: G.P. contributed to the methodology, software development, investigation, and data
analysis. C.S. contributed to the conceptualization, methodology, validation, formal analysis, investigation,
resources, supervision, writing—original draft, writing—review and editing, and funding acquisition.

Funding: This research received no external funding

Acknowledgments: This work received financial support from the Generalitat Valenciana through CIDEXG/2022/45
and the Spanish Government by PID2023-1466600B-I00. This research is an integral part of the Advanced Materials
program, supported by MCIN with funding from the European Union NextGenerationEU (PRTR-C17.11) and the
Generalitat Valenciana (MFA /2022/045). We also acknowledge funding from MICIU/AEI/10.13039/501100011033
and the European Regional Development Fund (ERDF/EU) under project PID2023-1466600B-100. Finally, the authors
extend their gratitude for insightful discussions with Prof. Carlos Untiedt, Dr. Wynand Denam, Dr. Tamara de Ara,
Andrés Martinez, Juan Pablo Cuenca, and Enrique Guzmdn.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MCB]J Mechanical Controllable Break Junctions
DBSCAN  stands for Density-Based Spatial Clustering of Applications with Noise

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0993.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 d0i:10.20944/preprints202506.0993.v1

10 of 11

References

1.  Agrait, N,; Yeyati, A.L.; Van Ruitenbeek, ].M. Quantum properties of atomic-sized conductors. Phys. Rep.
2003, 377, 81-279.

2. Cuevas, ]J.C,; Scheer, E. Molecular Electronics, 2nd ed.; WORLD SCIENTIFIC, 2017. https://doi.org/10.1142/
10598.

3. Evers, F; Korytar, R.; Tewari, S.; van Ruitenbeek, ]. M. Advances and challenges in single-molecule electron
transport. Rev. Mod. Phys. 2020, 92, 035001-035065. https://doi.org/10.1103/RevModPhys.92.035001.

4. Pascual, ].I; Méndez, J.; Gémez-Herrero, J.; Bar6, A.M.; Garcia, N.; Binh, V.T. Quantum contact in gold
nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 1993, 71, 1852-1855. https://doi.org/10.1
103/PhysRevLett.71.1852.

5. Krans, ].M.; Muller, CJ.; Yanson, LK.; Govaert, T.C.M.; Hesper, R.; van Ruitenbeek, ].M. One-atom point
contacts. Phys. Rev. B 1993, 48, 14721-14724. https://doi.org/10.1103/PhysRevB.48.14721.

6. Krans, ].M.,; van Ruitenbeek, ]. M. Subquantum conductance steps in atom-sized contacts of the semimetal
Sb. Phys. Rev. B 1994, 50, 17659-17661. https:/ /doi.org/10.1103/PhysRevB.50.17659.

7.  Krans, ] M,; van Ruitenbeek, ].M.; Fisun, V.V;; Yanson, L.K,; de Jongh, L.J. The signature of conductance
quantization in metallic point contacts. Nature 1995, 375, 767-769. https://doi.org/10.1038/375767a0.

8.  Landauer, R. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction.
IBM Journal of Research and Development 1957, 1, 223-231. https://doi.org/10.1147/rd.13.0223.

9. van Wees, B.J.; van Houten, H.; Beenakker, C.W.].; Williamson, J.G.; Kouwenhoven, L.P.; van der Marel, D.;
Foxon, C.T. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett.
1988, 60, 848-850. https://doi.org/10.1103 /PhysRevLett.60.848.

10.  Agrait, N.; Rodrigo, J.G.; Vieira, S. Conductance steps and quantization in atomic-size contacts. Phys. Rev. B
1993, 47, 12345-12348. https:/ /doi.org/10.1103/PhysRevB.47.12345.

11.  Pan, X; Qian, C.; Chow, A.; Wang, L.; Kamenetska, M. Atomically precise binding conformations of adenine
and its variants on gold using single molecule conductance signatures. The Journal of Chemical Physics 2022,
157,234201. https://doi.org/10.1063/5.0103642.

12. Smit, RH.M.; Noat, Y.; Untiedt, C.; Lang, N.D.; van Hemert, M.C.; van Ruitenbeek, ] M. Measurement of the
conductance of a hydrogen molecule. Nature 2002, 419, 906-909. https:/ /doi.org/10.1038 /nature01103.

13.  Kim, Y,; Pietsch, T,; Erbe, A.; Belzig, W.; Scheer, E. Benzenedithiol: A Broad-Range Single-Channel Molecular
Conductor. Nano Letters 2011, 11, 3734-3738, [https://doi.org/10.1021/nl201777m]. PMID: 21805977,
https://doi.org/10.1021/n1201777m.

14. Tewari, S.; Sabater, C.; van Ruitenbeek, J. Identification of vibration modes in single-molecule junctions by
strong inelastic signals in noise. Nanoscale 2019, 11, 19462-19467. https://doi.org/10.1039/CONRO5774A.

15. Reed, M.; Zhou, C.; Muller, C.; Burgin, T.; Tour, J. Conductance of a molecular junction. Science 1997, 278, 252
—254. Cited by: 3424, https://doi.org/10.1126/science.278.5336.252.

16. Xu, B.; Tao, N.J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions.
Science 2003, 301, 1221-1223, [https:/ /www.science.org/doi/pdf/10.1126 /science.1087481]. https:/ /doi.
org/10.1126/science.108748]1.

17. Herrer, I.L.; Ismael, A.K.; Milan, D.C.; Vezzoli, A.; Martin, S.; Gonzélez-Orive, A.; Grace, I.; Lambert,
C,; Serrano, J.L.; Nichols, R.J.; et al. Unconventional Single-Molecule Conductance Behavior for a New
Heterocyclic Anchoring Group: Pyrazolyl. The Journal of Physical Chemistry Letters 2018, 9, 5364-5372,
[https://doi.org/10.1021/acs.jpclett.8b02051]. PMID: 30160491, https://doi.org/10.1021/acs.jpclett.8b020
51.

18.  Montenegro-Pohlhammer, N.; Sdnchez-de Armas, R.; Calzado, C.J.; Borges-Martinez, M.; Cardenas-Jirén,
G. A photo-induced spin crossover based molecular switch and spin filter operating at room temperature.
Dalton Trans. 2021, 50, 6578-6587. https://doi.org/10.1039/D1DT00078K.

19. de Ara, T,; Hsu, C.; Martinez-Garcia, A.; Baciu, B.C.; Bronk, PJ.; Ornago, L.; van der Poel, S.; Lombardi, E.B.;
Guijarro, A ; Sabater, C.; et al. Evidence of an Off-Resonant Electronic Transport Mechanism in Helicenes.
The Journal of Physical Chemistry Letters 2024, 15, 8343-8350, [https:/ /doi.org/10.1021/acs jpclett.4c01425].
PMID: 39110695, https:/ /doi.org/10.1021/acs.jpclett.4c01425.

20. Singh, A.K.; Martin, K.; Mastropasqua Talamo, M.; Houssin, A.; Vanthuyne, N.; Avarvari, N.; Tal, O. Single-
molecule junctions map the interplay between electrons and chirality. Nature Communications 2025, 16, 1759.
https://doi.org/10.1038 /s41467-025-56718-9.

21. Cabosart, D.; El Abbassi, M.; Stefani, D.; Frisenda, R.; Calame, M., van der Zant, H.S.J.; Per-
rin, M.L. A reference-free clustering method for the analysis of molecular break-junction mea-

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.1142/10598
https://doi.org/10.1142/10598
https://doi.org/10.1103/RevModPhys.92.035001
https://doi.org/10.1103/PhysRevLett.71.1852
https://doi.org/10.1103/PhysRevLett.71.1852
https://doi.org/10.1103/PhysRevB.48.14721
https://doi.org/10.1103/PhysRevB.50.17659
https://doi.org/10.1038/375767a0
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1103/PhysRevLett.60.848
https://doi.org/10.1103/PhysRevB.47.12345
https://doi.org/10.1063/5.0103642
https://doi.org/10.1038/nature01103
http://arxiv.org/abs/https://doi.org/10.1021/nl201777m
https://doi.org/10.1021/nl201777m
https://doi.org/10.1039/C9NR05774A
https://doi.org/10.1126/science.278.5336.252
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1087481
https://doi.org/10.1126/science.1087481
https://doi.org/10.1126/science.1087481
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpclett.8b02051
https://doi.org/10.1021/acs.jpclett.8b02051
https://doi.org/10.1021/acs.jpclett.8b02051
https://doi.org/10.1039/D1DT00078K
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpclett.4c01425
https://doi.org/10.1021/acs.jpclett.4c01425
https://doi.org/10.1038/s41467-025-56718-9
https://doi.org/10.20944/preprints202506.0993.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2025 d0i:10.20944/preprints202506.0993.v1

11 of 11

surements. Applied Physics Letters 2019, 114, 143102, [https://pubs.aip.org/aip/apl/article-
pdf/doi/10.1063/1.5089198 /13147123 /143102_1_online.pdf]. https://doi.org/10.1063/1.5089198.

22. Liu, B.; Murayama, S.; Komoto, Y.; Tsutsui, M.; Taniguchi, M. Dissecting Time-Evolved Conductance
Behavior of Single Molecule Junctions by Nonparametric Machine Learning. The Journal of Physical Chemistry
Letters 2020, 11, 6567—6572, [https://doi.org/10.1021/acs.jpclett.0c01948]. PMID: 32668163, https:/ /doi.org/
10.1021/acs.jpclett.0c01948.

23. Lin, L; Tang, C.; Dong, G.; Chen, Z; Pan, Z; Liu, J.; Yang, Y.; Shi, J.; Ji, R.; Hong, W. Spectral Clustering to
Analyze the Hidden Events in Single-Molecule Break Junctions. The Journal of Physical Chemistry C 2021,
125, 3623-3630, [https:/ /doi.org/10.1021/acs.jpcc.0c11473]. https://doi.org/10.1021/acs.jpce.0c11473.

24. Bro-Jergensen, W.; Hamill, ].M.; Bro, R.; Solomon, G.C. Trusting our machines: validating machine
learning models for single-molecule transport experiments. Chem. Soc. Rev. 2022, 51, 6875-6892. https:
//doi.org/10.1039/D1CS00884F.

25.  Komoto, Y.; Ryu, J.; Taniguchi, M. Machine learning and analytical methods for single-molecule conductance
measurements. Chem. Commun. 2023, 59, 6796-6810. https://doi.org/10.1039/D3CC01570].

26. Ester, M.; Kriegel, H.P; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining. AAAI Press, 1996, KDD’96, p. 226-231.

27. Ester, M. Density-Based Clustering. In Data Clustering, 1st ed.; Chapman and Hall/CRC, 2014; p. 17.

28. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P,; Xu, X. DBSCAN Revisited, Revisited: Why and How You
Should (Still) Use DBSCAN. ACM Transactions on Database Systems (TODS) 2017, 42, 19:1-19:21. https:
//doi.org/10.1145/3068335.

29. Ornago, L. Complexity of Electron Transport in Nanoscale Molecular Junctions. Dissertation (tu delft), Delft
University of Technology, Delft, Netherlands, 2023. Supervisors: H.S.J. van der Zant, F.C. Grozema.

30. Cuenca, J.P; de Ara, T.; Martinez-Garcia, A.; Guzman, F,; Sabater, C. Exploring Three-Atom-Thick Gold
Structures as a Benchmark for Atomic-Scale Calibration of Break-Junction Systems. ArxiV 2025, X, X.
https://doi.org/X.

31. Gimzewski, J.K;; Moller, R. Transition from the tunneling regime to point contact studied using scanning
tunneling microscopy. Phys. Rev. B 1987, 36, 1284-1287. https://doi.org/10.1103/PhysRevB.36.1284.

32. Untiedt, C.; Caturla, M.].; Calvo, M.R.; Palacios, J.J.; Segers, R.C.; van Ruitenbeek, ].M. Formation of a
Metallic Contact: Jump to Contact Revisited. Phys. Rev. Lett. 2007, 98, 206801. https://doi.org/10.1103/
PhysRevLett.98.206801.

33. Sabater, C.; Caturla, M.J.; Palacios, J.J.; Untiedt, C. Understanding the structure of the first atomic contact in
gold. Nanoscale Research Letters 2013, 8, 257. https://doi.org/10.1186/1556-276X-8-257.

34. Xu, B,; Tao, N.J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions.
Science 2003, 301, 1221-1223, [https:/ /www.science.org/doi/pdf/10.1126 /science.1087481]. https://doi.
org/10.1126/science.108748]1.

35. deAra, T, Sabater, C.; Borja-Espinosa, C.; Ferrer-Alcaraz, P; Baciu, B.C.; Guijarro, A.; Untiedt, C. Signature of
adsorbed solvents for molecular electronics revealed via scanning tunneling microscopy. Materials Chemistry
and Physics 2022, 291, 126645. https://doi.org/https://doi.org/10.1016 /j.matchemphys.2022.126645.

36. Martinez-Garcia, A.; de Ara, T.; Pastor-Amat, L.; Untiedt, C.; Lombardi, E.B.; Dednam, W.; Sabater,
C. Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Mono-
cyclic Hydrocarbons” Molecular Junctions. The Journal of Physical Chemistry C 2023, 127, 23303-23311,
[https://doi.org/10.1021/acs.jpcc.3c05393]. https:/ /doi.org/10.1021/acs.jpcc.3c05393.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


http://arxiv.org/abs/https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.5089198/13147123/143102_1_online.pdf
http://arxiv.org/abs/https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.5089198/13147123/143102_1_online.pdf
https://doi.org/10.1063/1.5089198
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpclett.0c01948
https://doi.org/10.1021/acs.jpclett.0c01948
https://doi.org/10.1021/acs.jpclett.0c01948
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpcc.0c11473
https://doi.org/10.1021/acs.jpcc.0c11473
https://doi.org/10.1039/D1CS00884F
https://doi.org/10.1039/D1CS00884F
https://doi.org/10.1039/D3CC01570J
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/X
https://doi.org/10.1103/PhysRevB.36.1284
https://doi.org/10.1103/PhysRevLett.98.206801
https://doi.org/10.1103/PhysRevLett.98.206801
https://doi.org/10.1186/1556-276X-8-257
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1087481
https://doi.org/10.1126/science.1087481
https://doi.org/10.1126/science.1087481
https://doi.org/https://doi.org/10.1016/j.matchemphys.2022.126645
http://arxiv.org/abs/https://doi.org/10.1021/acs.jpcc.3c05393
https://doi.org/10.1021/acs.jpcc.3c05393
https://doi.org/10.20944/preprints202506.0993.v1
http://creativecommons.org/licenses/by/4.0/

