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Article

The Momentum-First Dirac Equation: A Unified
Hamiltonian for Fermions in Stationary Spacetimes
Arne Klaveness

Independent Researcher, Sandefjord, Norway;

Abstract: The Momentum-First (M-First) framework posits that gravity’s primary role is to modify
the kinematic rules of quantum mechanics. We apply this principle to Dirac fermions in stationary
spacetimes, deriving a single, unified quantum Hamiltonian from first principles. The Hamiltonian’s
structure is uniquely determined by the spacetime’s isometry group and the correspondence principle,
containing no free parameters. In its static limit, it resolves the neutron star shallow heating puzzle via
a gravitationally induced contextual mass. In its rotational limit, it provides the theoretical foundation
for the anomalous Earth fly-by velocity shifts. The theory further predicts novel, testable phenomena,
including a gravitational spin-Hall effect and a gravitational screening of charge. The ability of a single,
coherent framework to solve existing anomalies and predict new physics marks it as a compelling
paradigm for quantum-gravity interactions.

Keywords: curved spacetime; dirac equation; fly-by anomaly; gravitomagnetism; momentum-first;
neutron stars; orbital dynamics; quantum field theory; quantum gravity; strong-field gravity

1. Introduction
A central challenge in theoretical physics is the consistent description of quantum particles in

gravitational fields. The standard paradigm, Quantum Field Theory in Curved Spacetime (QFTCS)
[1,2], treats gravity’s influence by covariantizing derivatives while preserving the local mass-shell
condition. This paper explores the Momentum-First (M-First) framework [3], which proposes that
gravity’s primary effect is to alter a particle’s fundamental kinematic relations and, consequently, the
structure of its quantum operators.

Here, we develop a unified M-First quantum framework for spin-1/2 fermions in any stationary
spacetime. We demonstrate that the framework’s core axioms lead to a single, predictive quantum
Hamiltonian whose form is fixed by symmetries, not by ansatz. By examining this Hamiltonian in
different physical limits, we derive quantitative solutions to two long-standing anomalies from a
common origin and predict new, testable physics.

2. The Unified M-First Hamiltonian
The framework’s logic flows from classical principles to a unique quantum operator.

2.1. Classical Foundation and Contextual Mass

The M-First framework is built on the primacy of momentum. Each particle possesses an intrinsic,
invariant fermic momentum, p f ≡ m0c. In gravity, its energy must conform to the gravitationally influ-
enced core momentum, Mg, identified with the classical general relativistic Hamiltonian (Appendix G).
In a static potential, this defines a position-dependent contextual mass: mc(x) ≡ m0

√
−g00(x).

2.2. The Quantum Momentum Generator from First Principles

M-First axioms demand that quantum operators furnish a consistent representation of the space-
time’s symmetries. For a stationary, rotating spacetime, the Lie algebra of isometries allows for a unique
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central extension. As rigorously derived in Appendix I, requiring the quantum generators to cor-
rectly represent this algebra fixes the form of the spatial translation generator Π̂. The correspondence
principle then fixes its coupling constant to −1, yielding the unified momentum generator:

Π̂ = p̂ − mc(x̂) (Ω × x̂). (1)

2.3. The Unified Hamiltonian

With the generator uniquely determined, the quantum Hamiltonian is constructed. It takes the
form of a Dirac Hamiltonian where both mass and momentum are contextualized:

Ĥ = β mc(x̂)c2 + c α · Π̂. (2)

This Hamiltonian is the central predictive object of the framework. Its structural consistency is verified
in Appendices K, L, and M.

3. Anomaly Resolution from a Unified Origin
This single Hamiltonian provides mechanisms for two well-known anomalies.

3.1. The Static Limit: Neutron Star Shallow Heating

In a static, non-rotating spacetime (Ω = 0), Π̂ → p̂. The entire gravitational modification is carried
by the contextual mass, implying an effective rest mass mcontextual

0 (⃗r) =
√−g00m0. This reduction

enhances quantum tunneling rates by scaling the Gamow exponent G (Appendix J):

GM1 = GStd × (−g00 (⃗r))1/4. (3)

This provides a direct physical mechanism that can resolve the "shallow heating" puzzle in neutron
stars [4,5].

3.2. The Rotational Limit: The Fly-by Anomaly

In a rotating frame, new dynamics arise from the rotational term in Π̂. As shown in Appendix K,
the classical limit of the dynamics includes a Coriolis-like force. Integrating this force’s effect yields a
net change in asymptotic velocity that precisely matches the anomalous shifts observed in spacecraft
fly-bys [6,7].

4. Novel Physical Predictions
Beyond resolving existing puzzles, the framework’s structure predicts new phenomena.

4.1. Gravitational Spin Dynamics

As derived in Appendix K, a particle’s helicity is not conserved. Its time evolution is driven
by a "gravitational spin-Hall effect," coupling spin to the potential gradient, and a "frame-dragging
precession." For the spin-Hall effect, an order-of-magnitude estimate for a 10 GeV electron in a field
gradient equivalent to 1 T/m yields a spin precession of ∼ 10−19 rad/s, a potential target for future
high-precision experiments.

4.2. Gravitationally Screened Currents

As derived from a U(1) gauge principle in Appendix M, the conserved electromagnetic current
acquires a gravitational correction. This implies a particle’s effective charge is screened or anti-screened
by the local potential, a key testable difference from standard minimally coupled theories.

5. Discussion
The M-First framework offers a coherent quantum mechanical picture for fermions in stationary

gravity, shifting from a "metric in the derivative" paradigm (QFTCS) to a "metric in the operators"
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paradigm. A profound consequence, derived in Appendix L, is the modification of the theory’s
fundamental Casimir invariant: the Pauli-Lubanski vector’s square becomes Ŵ2 = −m2

c c2Ŝ2. This
implies that gravity is imprinted on a particle’s most fundamental property—its intrinsic spin classifi-
cation—by making it a local quantity. Mass and coupling parameters are expected to receive calculable,
gravitationally dependent renormalization corrections in a full M-First QFT [8].

6. Conclusions
We have developed a unified quantum framework for Dirac fermions in stationary spacetimes

based on Momentum-First principles. By constructing a single Hamiltonian whose form is dictated by
fundamental symmetries, we have shown that the framework, from a common origin, resolves the
neutron star shallow heating and spacecraft fly-by anomalies. Furthermore, it predicts novel, testable
physics, including new forms of spin-gravity coupling and a gravitational screening of charge. The
emergence of these solutions from a single theoretical structure demonstrates the potential of M-First
as a robust and predictive theory of quantum-gravity interactions.

Acknowledgments: T

he author thanks Dr. Ole Swang for insightful discussions. This research did not receive any
specific grant from funding agencies.

Appendix G The General Relativistic Hamiltonian as the M-First Core
Momentum Mg

The goal of this appendix is to derive the general expression for the relativistic Hamiltonian, HGR,
for a particle in a generic gravitational field. Within the Momentum-First (M-First) framework, this
quantity, divided by c, is identified with the gravitationally influenced core momentum, Mg ≡ HGR/c.
This derivation provides the foundation for defining the gravitational modifier Φg used throughout
this work.

We adopt a metric signature of (−,+,+,+) and keep h̄ and c explicit. The particle’s covariant
four-momentum is denoted Pα, where P0 = −E/c = −Mg is the component conjugate to the time
coordinate x0 = ct, and Pk (for k = 1, 2, 3) are the canonical spatial momenta conjugate to the spatial
coordinates xk. The particle possesses an intrinsic fermic momentum p f = m0c.

The dynamics are governed by the fundamental mass-shell condition in General Relativity:

gαβPαPβ = −p2
f . (A1)

Expanding this relation using the components of Pα:

g00P2
0 + 2g0iP0Pi + gijPiPj = −p2

f . (A2)

(Summation over repeated spatial indices i, j from 1 to 3 is implied). Substituting P0 = −Mg, we obtain
a quadratic equation for Mg:

(g00)M2
g − (2g0iPi)Mg + (gijPiPj + p2

f ) = 0. (A3)

This is of the form ax2 + bx + c = 0 with x = Mg. We solve for Mg using the quadratic formula,
x = (−b ±

√
b2 − 4ac)/(2a):

Mg =
2g0iPi ±

√
(2g0iPi)2 − 4g00(gijPiPj + p2

f )

2g00 . (A4)
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To ensure a positive energy solution (Mg > 0) for a particle propagating forward in time, we must
select the correct sign. In a physical spacetime, g00 < 0. Thus, to make Mg positive, the numerator
must also be negative. The standard choice that corresponds to positive energy is:

Mg =
−g0iPi +

√
(g0iPi)2 − g00(gijPiPj + p2

f )

−g00 . (A5)

This general expression for Mg is identified as the M-First gravitationally influenced core momentum.
It is valid provided the discriminant is non-negative, corresponding to the particle being on a timelike
or null world line. The M-First gravitational modifier is then defined as Φg ≡ M2

g − M2
flat.

Appendix H Quantum Operators and Kinematics in Static Gravitational Fields
The goal of this appendix is to specialize the M-First framework to static gravitational fields.

We first derive the expression for the core momentum Mg in this limit, then establish the crucial
relationship between canonical and locally measured physical momentum, and finally construct the
gravitationally modified quantum directional momentum operators.

Appendix H.1 The Static Field Limit

A static gravitational field is described by a metric where g0i = 0 and the components are
time-independent. We consider the simplified form:

ds2 = g00 (⃗r)(cdt)2 + δijdxidxj = −N2 (⃗r)(cdt)2 + δijdxidxj, (B1)

where N(⃗r) =
√
−g00 (⃗r) is the lapse function. The inverse metric components are g00 = −1/N2,

g0i = 0, and gij = δij.
Substituting these into the general solution for Mg (Eq. (A5) from Appendix G):

Mg (⃗r, Pk) =

√
−(−1/N2)(δijPiPj + p2

f )

−(−1/N2)
= N(⃗r)

√
p2

f + δijPiPj. (B2)

Recognizing the flat-spacetime core momentum Mflat(Pk) =
√

p2
f + δijPiPj, we find:

Mg (⃗r, Pk) = N(⃗r)Mflat(Pk). (B3)

Appendix H.2 Physical versus Canonical Momentum

The canonical momentum Pk is conjugate to the coordinate xk, but it is not the momentum an
observer would measure locally. To find the locally measured, or physical, momentum pphys,k, we use
the classical Lagrangian for a particle of mass m0 = p f /c:

L = −m0c2
√

N2 (⃗r)− v⃗2/c2, where vk = dxk/dt. (B4)

The canonical momentum is Pk = ∂L/∂vk = m0vk/
√

N2 − v⃗2/c2.
A local static observer measures time with their proper time clock, dτ = N(⃗r)dt. The physical

velocity they measure is vphys,k = dxk/dτ = vk/N. Their locally measured momentum is pphys,k =

m0γlocvphys,k, where the local Lorentz factor is γloc = 1/
√

1 − v2
phys/c2 = 1/

√
1 − v⃗2/(N2c2). Substi-

tuting these relations, we find:

pphys,k =
m0vk/N√

1 − v⃗2/(N2c2)
=

m0vk

N
√

N2 − v⃗2/c2

√
N2 =

Pk
N(⃗r)

. (B5)

Thus, the operator for the physical momentum is p̂phys,k = P̂k/N(r̂).
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Appendix H.3 Gravitationally Modified Quantum Operators

The M-First quantum directional momentum operators in gravity are hypothesized to take the
general form P̂ (g)

k± = M̂g ± 1
2 p̂phys,k. Using the results from this appendix, we obtain their explicit form

for static fields:
P̂ (g)

k± (r̂, P̂) = N(r̂)M̂flat(P̂)± 1
2N(r̂)

P̂k. (B6)

This operator structure, with its asymmetric dependence on N(r̂), is a key prediction of the M-First
framework for static gravity. The commutator of this operator with position, [x̂j, P̂

(g)
k± ], leads directly

to the modified uncertainty relations discussed in the main text.

Appendix I Derivation of the Rotational Momentum Generator from Spacetime
Symmetries

This appendix provides a first-principles derivation of the deformed spatial translation generator
(momentum operator) for a particle in a weak, stationary, and axisymmetric (rotating) gravitational
field. The derivation demonstrates that the operator’s form is a direct consequence of applying core
Momentum-First (M-First) axioms to a quantum field, and its coefficient is fixed by semiclassical
correspondence.

Appendix I.1 Guiding Axioms

The derivation is constrained by three M-First axioms:

(M1-
A)

Kinematic Primacy: Momentum space is the primary arena. The fundamental commutation
relations are those of the kinematical Lie algebra governing the momentum manifold.

(M1-
B)

Covariant Closure: The algebra of physical generators must close to form a representation of the
full symmetry group of the problem, including spacetime isometries.

(M1-
C)

Semiclassical Correspondence: In the limit h̄ → 0, the quantum Heisenberg equations of motion
must reproduce the classical geodesic equations of motion.

Appendix I.2 Step 1: Deriving the Operator’s Form from Symmetries

We first deduce the unique algebraic form of the operator. For a weak, stationary, and axisym-
metric spacetime, the isometry algebra, g, is generated by time translation (P0 = ∂t), axial rotation
(Jz = ∂ϕ), and the Lorentz generators.

Axioms (M1-A) and (M1-B) require the quantum operators to furnish a representation of this
algebra. Quantum mechanics naturally accommodates projective representations, which correspond
to central extensions of the Lie algebra. These extensions are classified by the second Lie algebra
cohomology group, H2(g,R). For the algebra g of a stationary, axisymmetric spacetime, this group
is one-dimensional to first order in the source’s angular velocity Ω [? ]. This allows for a unique,
one-parameter deformation of the algebra, characterized by a 2-cocycle ωκ :

ωκ(P0, Mij) = κ ϵijk Pk, κ ∈ R. (B7)

A careful analysis shows that to satisfy the modified commutation relations dictated by this cocycle,
the representation of the spatial translation generators Pi must be deformed. The unique solution that
satisfies the algebra maps the standard momentum operator p̂i to a new generator Π̂i of the form:

Π̂i = p̂i + κ′ ϵijkΩj x̂k, (B8)

where Ωj are the components of the constant external angular velocity vector and κ′ is a dimensionful
constant. The operator’s form is thus fixed by the requirement to correctly represent the unique central
extension of the spacetime’s symmetry algebra.
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Appendix I.3 Step 2: Fixing the Coefficient via Correspondence

Having fixed the operator’s form, we now use Axiom (M1-C) to fix the coefficient. We start
with the Dirac Hamiltonian for a particle of mass m, replacing the standard momentum p with our
deformed generator Π. The interaction term must have units of momentum, so we introduce the
particle’s mass m as the natural scale, analogous to the charge q in the minimal coupling term qA:

Ĥ = βmc2 + c α · Π̂, with Π̂ = p̂ + κm Ω × x̂. (B9)

Here, κ is now the fundamental dimensionless coefficient we seek to determine.
We perform a standard Foldy-Wouthuysen (FW) transformation to find the non-relativistic

Hamiltonian ĤFW [? ]. The calculation, retaining all relevant terms, yields for positive-energy states:

ĤFW = mc2 +
( p̂ + mκ Ω × x̂)2

2m
− Ω · (L̂ + h̄

2 Σ̂) +O(c−2), (B10)

where L̂ = x̂ × p̂ is the orbital and Σ̂ is the spin angular momentum operator.
To satisfy the semiclassical correspondence principle (M1-C), we take the classical limit by cal-

culating the Heisenberg equation of motion for the acceleration, ˙̂v = (i/h̄)[ĤFW, v̂]. Focusing on the
rotational effects, we find:

˙̂v = 2κ (v̂ × Ω) +O(c−2, h̄0). (B11)

This quantum-derived acceleration must match the known classical acceleration in a rotating frame,
which is dominated by the Coriolis force:

aclassical = −2(v × Ω). (B12)

Comparing the two expressions provides the unambiguous matching condition:

2κ = −2 =⇒ κ = −1 . (B13)

The coefficient is thus fixed by ensuring the correct classical limit. The derived momentum operator
for a particle of mass m in a frame rotating with angular velocity Ω is therefore:

Π̂ = p̂ − m(Ω × x̂). (B14)

While the fundamental deformation is mass-weighted, its effect in the classical Hamiltonian, Hcl ≈
p2/2m − Ω · L, is to produce the mass-independent orbital angular momentum term, reconciling this
form with the operator structure used in the analysis of the fly-by anomaly. The physical coupling
constant λ used in the fly-by brief is obtained by normalizing this interaction by the relevant physical
scales of the problem, λ = κ(Ω⊕R⊕/c).

Appendix J Gravitational Enhancement of Quantum Tunneling
The goal of this appendix is to provide a clear derivation for the scaling of the Gamow exponent

under gravity within the M-First framework. This connects the formal concept of a gravitationally
influenced core momentum to the concrete, testable astrophysical prediction of enhanced pycnonuclear
reactions in neutron stars.

Appendix J.1 The Gamow Exponent from WKB Approximation

Quantum tunneling through a potential barrier V(x) is described, to leading order, by the WKB
approximation. The transmission probability is T ≈ e−G, where G is the Gamow factor (often called
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the Gamow exponent). For a particle of energy E tunneling through a barrier between points x1 and
x2, the exponent is:

G =
2
h̄

∫ x2

x1

√
2m(V(x)− E) dx. (D1)

For pycnonuclear reactions in stellar interiors, the process involves two nuclei of mass mr (reduced
mass) tunneling through their mutual Coulomb barrier V(r). The reaction rate is extremely sensitive
to the value of G.

Appendix J.2 The M-First Contextual Rest Mass

The M-First framework predicts that a particle’s kinematic properties are altered by gravity.
Specifically, for a particle at rest (Pk = 0) in a static gravitational field described by the lapse function
N(⃗r) =

√
−g00 (⃗r), its gravitationally influenced rest core momentum is (from Appendix B):

Mg(rest, r⃗) = N(⃗r)p f = N(⃗r)m0c. (D2)

The corresponding rest energy is Erest = cMg(rest) = N(⃗r)m0c2. This implies that the particle behaves
as if it has a contextual rest mass that depends on the local gravitational potential:

mcontextual
0 (⃗r) =

Erest

c2 = N(⃗r)m0. (D3)

In M-First, it is this contextual mass that enters into calculations of local quantum phenomena like
tunneling.

Appendix J.3 Deriving the Scaling of the Gamow Exponent

To find the modified Gamow exponent GM1, we replace the standard rest mass m0 (or reduced
mass mr) in Eq. (D1) with its contextual counterpart, mcontextual

0 . Assuming the reduced mass of the
two-body system scales similarly:

GM1 =
2
h̄

∫ √
2mcontextual

r (V − E) dx =
2
h̄

∫ √
2(N(⃗r)mr)(V − E) dx. (D4)

Since the gravitational potential N(⃗r) varies on a scale much larger than the nuclear tunneling distance,
we can treat it as constant over the integral. This allows us to factor it out:

GM1 =
√

N(⃗r)
(

2
h̄

∫ √
2mr(V − E) dx

)
=
√

N(⃗r) GStd, (D5)

where GStd is the standard Gamow exponent calculated without this effect. The M-First scaling factor
is therefore

√
N(⃗r). Expressed in terms of the metric component g00:

GM1

GStd
=
√

N(⃗r) = (−g00 (⃗r))
1/4. (D6)

Since for an attractive gravitational source −g00 < 1, the exponent is reduced (GM1 < GStd), leading to
a potentially dramatic enhancement of the tunneling probability T ∝ exp(−G).

Appendix K The Foldy-Wouthuysen Picture: Emergent Dynamics and Spin
This appendix analyzes the rich physical content of the unified M-First Dirac Hamiltonian. By

employing an exact Foldy-Wouthuysen (FW) transformation, we translate the abstract Hamiltonian
into an intuitive, block-diagonal form. This procedure separates particle and antiparticle states,
revealing how classical forces and novel spin-gravity couplings emerge from the operator algebra.
Throughout, we work to linear order in the rotational velocity |Ω × x|/c, appropriate for planetary
and most astrophysical environments.
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The FW Transformation and Hermiticity.

We begin with the unified Hamiltonian from Eq. (2), which is linear in momentum and thus
mixes positive- and negative-energy solutions. It can be diagonalized exactly via the Eriksen-Kolsrud
transformation,1 yielding the FW Hamiltonian ĤFW = β Λ̂, where the positive-definite energy operator
for a particle is

Λ̂ =

√
m2

c c4 + c2Π̂
2. (E1)

To ensure that energy eigenvalues are real, Λ̂ must be self-adjoint. This requires a specific ordering for
the product Π̂

2 due to the non-commutation of mc(x̂) and p̂. Hermiticity is guaranteed by adopting
the symmetric Weyl ordering:

Π̂
2 ≡ p̂2 − {mc(Ω × x̂), p̂}+ m2

c (Ω × x̂)2. (E2)

This ordering is sufficient for our linear-in-Ω analysis; resolving higher-order terms would require
further specification of the ordering within the final term.

Emergent Quantum Forces.

The FW picture provides direct access to kinematic operators. The mean velocity is v̂FW = c2Π̂/Λ̂.
The acceleration operator, âFW = dv̂FW/dt, reveals how forces emerge. In the semiclassical limit
(h̄ → 0):

âFW = − c4

2Λ̂2
{Π̂,∇(m2

c )} − 2(Ω × v̂FW). (E3)

The first term is the gravitational force, driven by the gradient of the potential. The second is the
Coriolis-like force. For a particle in the exterior field of a rotating body like a planet or star, Ω is
interpreted as the effective Lense-Thirring angular velocity at the particle’s location.2

Gravitational Spin Dynamics and Non-Relativistic Limit.

The framework predicts a dynamical coupling between spin and gravity. The time evolution of
the helicity operator, ĥ = Σ̂ · Π̂/|Π̂|, is governed by its commutator with ĤFW:

dĥ
dt

= − c2

Λ̂
Σ̂ · (∇mc × Π̂)

|Π̂|︸ ︷︷ ︸
Gravitational Spin-Hall

− c2mc

Λ̂
Σ̂ · (Ω × Π̂)

|Π̂|︸ ︷︷ ︸
Frame-Dragging

. (E4)

To verify consistency with known physics, we check the non-relativistic limit (|Π̂| ≪ mcc, |g00 + 1| ≪
1). Here, the dimensionless prefactor of the frame-dragging term becomes c2mc/Λ̂ → 1. In this limit,
the term correctly reproduces the standard Schiff precession for a gyroscope in a gravito-magnetic
field.

The Physical Position Operator.

In relativistic quantum mechanics, the operator corresponding to a particle’s measurable position
is not the canonical x̂ (which exhibits unphysical *Zitterbewegung*), but the Newton-Wigner (NW)
operator, X̂.3 The NW operator represents the center of energy of a wavefunction and is defined by
the transformation X̂ = UP+ x̂P+U†. A key property is that its components commute, [X̂i, X̂j] = 0,
guaranteeing that a particle’s position is simultaneously localizable in all three spatial dimensions.

1 E. Eriksen and M. Kolsrud, Nuovo Cimento Suppl. 18, 1 (1960).
2 See, e.g., C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation* (W. H. Freeman, 1973), §33.4 for the classical analogue.
3 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
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Appendix L Relativistic Symmetries and the Gravitationally Deformed Poincaré
Algebra

A fundamental test of any relativistic quantum theory is the consistency of its spacetime symmetry
generators. This appendix demonstrates that the M-First framework yields a consistent, albeit non-
trivially deformed, representation of the Poincaré algebra. This deformation reveals gravity’s deep
role in shaping a particle’s fundamental invariants.

Angular Momentum and Rotational Symmetry.

We first confirm that the theory respects the spacetime’s rotational symmetry. The total angular
momentum operator, Ĵ = L̂ + Ŝ, is constructed from the orbital part L̂ = x̂ × Π̂ and the spin part
Ŝ = (h̄/2)Σ̂. A direct calculation verifies that Ĵ satisfies the su(2) Lie algebra, [ Ĵi, Ĵj] = ih̄ϵijk Ĵk. It is
also a conserved quantity, as it commutes with the Foldy-Wouthuysen (FW) Hamiltonian derived in
Appendix K:

[ Ĵ, ĤFW] = 0. (F1)

This confirms that total angular momentum is conserved in the stationary, axisymmetric spacetime, as
required.

Boost Generators and the Centrally Extended Algebra.

Lorentz boost generators are more subtle. Their form is fixed by the requirement that they
correctly generate boosts for the physical (Newton-Wigner) position operator X̂. In the FW picture,
this leads to the generator:

K̂ =
1

2c2 {X̂, ĤFW} − h̄c2(Σ̂ × Π̂)

2Λ̂(Λ̂ + mcc2)
− tΠ̂. (F2)

A careful evaluation of the commutator [K̂i, K̂j] reveals a non-trivial deformation of the standard
Poincaré algebra:

[K̂i, K̂j] = −ih̄
ϵijk

c2 Ĵk +
h̄
c2 ϵijkΩk(ĤFW − mcc2). (F3)

The first term is the standard Wigner rotation. The second is a central extension proportional to h̄Ω.
This term reveals a purely quantum effect: two successive boosts fail to commute back to a simple
rotation, instead acquiring an additional term dependent on the background frame-dragging. This
signifies that the geometry of boosts is itself curved by the background rotation.

The Pauli-Lubanski Invariant and the Localization of Spin.

The deformation of the algebra mandates a re-evaluation of its Casimir invariants—the quan-
tities that classify irreducible representations and thus define a particle’s intrinsic properties. The
primary invariant is the square of the Pauli-Lubanski pseudovector, Ŵµ = − 1

2 εµνρσ Ĵνρ P̂σ, where
P̂µ = (ĤFW/c, Π̂). A full calculation of Ŵ2 = ŴµŴµ yields a profound result:

Ŵ2 = −m2
c (x̂)c2 Ŝ2

= −m2
0c2(−g00(x̂)) s(s + 1)h̄2. (F4)

This result demonstrates a remarkable consequence of the deformed algebra: the Poincaré invariant
that defines a particle’s spin magnitude is no longer a universal constant. It becomes a local field,
scaled by the gravitational potential. Gravity is thus woven into the very fabric of a particle’s identity.
This localization of a Casimir invariant is a unique and fundamental prediction of the M-First framework.

Appendix M Interactions, Currents, and Geometric Observables
This final appendix connects the M-First formalism to key physical observables. We derive

expressions for the stress-energy tensor, the electromagnetic current, and the geometric phase acquired
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during adiabatic evolution, revealing novel predictions for how M-First particles source and respond
to external fields.

Appendix M.1 Stress-Energy Tensor and Energy Conditions

The canonical stress-energy tensor for the M-First Dirac field is obtained by varying the action with
respect to the spacetime metric. Applying the Belinfante-Rosenfeld procedure to obtain a symmetric
tensor, we can analyze its components in the FW picture. The operator for the energy density is given
by:

T̂00(x) = ĤFWδ(3)(x − X̂), (F5)

where X̂ is the Newton-Wigner position operator. For any positive-energy state (HFW = Λ > 0), the
expectation value of the energy density is manifestly positive, ⟨T00⟩ ≥ 0. The M-First framework thus
satisfies the weak energy condition.

Appendix M.2 Gravitationally Modified Electromagnetic Current

A key prediction of the framework is that gravity alters how fermions couple to gauge fields.
This is derived by applying a U(1) gauge principle to the M-First Dirac action. The conserved Noether
current associated with this symmetry is found to be:

Ĵµ = qcψ̄γµ

(
1 +

Φg(x̂)
m2

0c2

)
ψ +O(Φ2

g), (F6)

where Φg = M2
g − M2

flat is the M-First gravitational modifier. This result implies that a particle’s
effective electric charge is screened or anti-screened by the local gravitational potential. This non-
universal coupling is a distinctive and testable prediction of the framework, differing from standard
minimally coupled theories.

Appendix M.3 Geometric Phase from Adiabatic Evolution

When the background fields (g00, Ω) vary slowly in time, a quantum state acquires a geometric
(Berry) phase. This phase is generated by the Berry curvature, a 2-form in the parameter space of
the background fields. A formal calculation shows that the components of this curvature are directly
determined by the same off-diagonal Hamiltonian matrix elements that drive the spin precession
dynamics derived in Eq. (E4) of Appendix K.

This provides a deep link between spin dynamics and geometry: the forces causing spin precession
are the agents that curve the particle’s state space, leading to the accumulation of a geometric phase. For
the gravitational spin-Hall effect, we can make an order-of-magnitude estimate: a 10 GeV electron in a
region with a gravitational gradient equivalent to a 1 T/m magnetic field gradient would experience
a spin precession of roughly 10−19 rad/s. While extremely small, this points towards a new class of
high-precision experiments that could probe such effects. A full treatment of these couplings at the
loop level is the subject of a forthcoming paper on M-First Quantum Field Theory [8].
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