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Abstract: Manufacturing industries are undergoing a significant transformation towards Smart
Manufacturing (SM) to cater to the ever-evolving demands of customized products. A major obstacle
in this transition is the integration of Computer-Aided Process Planning (CAPP) with Scheduling.
This integration poses challenges because of conflicting objectives that must be balanced, resulting in
the Integrated Process Planning and Scheduling problem. In response to these challenges, our
research introduces a novel hybridized machine learning-optimization approach designed to assign
and sequence setups in Dynamic Flexible Job Shop environments via dispatching rule mining,
accounting for real-time disruptions such as machine breakdowns. This approach seeks to bridge the
gap between CAPP and scheduling by treating setups as dispatching units, ultimately minimizing
makespan and bolstering manufacturing flexibility. The problem is modeled as a Dynamic Flexible
Job Shop problem, and it is tackled through a comprehensive methodology that combines
mathematical programming, heuristic techniques, and the creation of a robust dataset for data
mining, which captures attributes reflecting priority relationships among setups. Empirical results
validate the effectiveness of our methodology, demonstrating that the mining model surpasses
classical dispatching rules. Furthermore, our model exhibits robust generalization capabilities in the
context of SM, paving the way for more efficient and adaptive production.

Keywords: process planning; dynamic scheduling; supervised classification learning; smart
manufacturing; optimization

1. Introduction

Over the last three decades, the manufacturing industry has significantly transformed from
traditional manufacturing processes to the Smart Manufacturing (SM) era, driven by the increasing
demand for highly customized products. This shift has posed extraordinary challenges for
production planning and scheduling, necessitating real-time and flexible approaches to meet these
customization requirements. In response, manufacturing systems must autonomously adapt their
process plans and production schedules to dynamically changing manufacturing environments.

Process Planning (PP) is critical in linking design and manufacturing, involving decisions related
to raw materials, processes, machines, and sequencing operations. Traditional PP largely depends on
the knowledge and experience of human experts, potentially leading to inefficient decision-making
and non-optimal solutions (Besharati-Foumani, Lohtander, and Varis 2019). This approach also
suffers from being nongeneralizable and cannot fulfill mass customization requirements, which
requires manufacturing flexibility (Trstenjak and Cosic 2017). Due to the capability of computers to
aid planning activities with increased speed and accuracy, the Computer-Aided Process Planning
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(CAPP) method has been gaining popularity among researchers (Nikolov et al. 2024; Al-wswasi,
Ivanov, and Makatsoris 2018). Wu (W. Wu et al. 2020) defined CAPP as a combination of tasks
involving translating a part's geometric model into machining features, determining suitable
machining resources and operations, and selecting the most cost-effective setup plan and operation
sequence considering design and manufacturing constraints. Most CAPP systems use either the
variant approach (retrieval of the existing plan and modification) or the generative approach
(developing a plan based on part geometry) to generate the process plan (W. J. Zhang and Xie 2007).
Despite the efforts, few CAPP systems can significantly improve manufacturing because of the highly
complex and dynamic aspects (Al-wswasi, Ivanov, and Makatsoris 2018).

Scheduling allocates manufacturing jobs to manufacturing resources over a specific time
interval. The scheduling function depends on the job arrival pattern, operation precedence relation,
and the number of available resources and determines the most suitable time to execute an operation
on a machine tool. In summary, scheduling is an optimization problem where the objective is to
manufacture final products in the shortest possible time considering resource capacity limitations
(Shen, Wang, and Hao 2006). PP and scheduling are two separate manufacturing activities; however,
both functions are closely related. PP can also be considered a manufacturing resource management
function; PP and scheduling objectives are incompatible and usually in conflict. Where scheduling
usually considers manufacturing resources with time-based objectives, PP mainly focuses on
minimizing manufacturing cost and product quality objectives. Traditionally PP and Scheduling are
done sequentially; scheduling is done after PP. This approach has some significant drawbacks.
According to Li et al. (Xinyu Li and Gao 2020), the process planner creates a process plan for
individual jobs within the sequential approach. The capacity limitation of resources and uncertain
events, such as delays, urgent orders, and machine breakdowns, are not considered in this stage.
During the scheduling phase, this fixed process plan often becomes infeasible due to the dynamic
changes in the production floor. Thus, it is crucial to study the overlap between the PP and scheduling
objectives to handle this kind of disruption of the production floor.

The integrated CAPP and scheduling problem in this research involves completing ] jobs on m
machines, each comprising multiple setups (n;). This problem is modeled as a Flexible Job Shop
Scheduling Problem (FJSP). The goal is to assign setups to machines and sequence them to minimize
makespan while following the logical sequence of setups within each job.

-
Job_1: Setup 1, N ‘ Setup 2, / ........ 4 Setup n,
\ PNy

~
Job_2: Setup 1, \ Setup2, | i Setup n,

M Setup lj Setup 2] ........................... Setup n

Figure 1. Schematic view of the problem.

This research aims to create an ML-Optimization model to tackle the integrated CAPP and
Scheduling problem. The research has several key contributions:
e to conduct an in-depth analysis of existing literature related to Integrated Process Planning and

Scheduling (IPPS) approaches, providing a comprehensive understanding of the field,
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e to develop an initial schedule that solves the machine assignment and sequencing problems,
forming the basis for subsequent analyses and optimizations,

e to formulate a mixed-integer linear programming (MILP) model specifically designed for
sequencing setups efficiently,

e to create a machine learning model tailored for extracting dispatching rules, utilizing data-
driven insights to enhance scheduling efficiency,

e  to apply the developed model in real-world scenarios, validating its practicality and assessing
its effectiveness in solving the integrated CAPP and Scheduling problem.

e and, to showcase the model's adaptability by demonstrating its ability to handle dynamic
manufacturing environments, including rescheduling in response to unpredictable events.
This introduction has provided an overview of the research problem statement, objectives, and

research questions. Subsequent sections of the manuscript will delve into literature review in section

2, research methodology in section 3, and findings in section 4, concluding with recommendations
for future studies in section 5.

2. Literature Review

This section presents a critical review of the relevant literature, followed by a discussion of the
concluded gaps.

2.1. Review of IPPS

The IPPS problem is one of the most intricate problems for manufacturing systems (Haro et al.
2024). In most research papers addressing the IPPS problem, it is typically dissected into three
subproblems: (i) the selection of process plans, (ii) the allocation of machines, and (iii) scheduling
(Barzanji, Naderi, and Begen 2020). The conventional approach to addressing this problem involves
first, choosing the process plan, followed by the subsequent allocation and scheduling of operations
(Barzanji, Naderi, and Begen 2020; X. Wu and Li 2021).

All of these approaches consider operations as the dispatching unit. Operation sequencing is a
common problem for both process planning and scheduling functions. For PP, operations of a job are
sequenced with objectives such as minimizing machining costs (Priyabrata Mohapatra, Nanda, and
Maji 2015). In the case of scheduling, the operations are sequenced to complete the jobs in the shortest
possible time (Alemao, Rocha, and Barata 2021; Parente et al. 2020; Wenzelburger and Allgower 2021;
Liu et al. 2019). This creates conflict between the objective of PP and scheduling. Process planning
might involve trade-offs between cost and other factors like quality, production time, or resource
utilization. For example, using a slower machine that consumes less energy and produces might be
cost-effective but increase production time. On the contrary, scheduling decisions often prioritize
time over cost. This can lead to situations where machines are frequently set up or reconfigured for
different jobs, which might not be the fastest manufacturing approach

Now, setup planning can play a crucial role in bridging the gap in this conflict. (Haddadzade,
Razfar, and Zarandi 2016). Setup planning is a pivotal task within CAPP that guides workpiece setup,
influencing manufacturability, production efficiency, costs, and the integration of
CAD/CAPP/CAM/CNC, thus advancing intelligent manufacturing (Y. Zhang et al,, 2022). It is
divided into three sub-tasks: setup generation by grouping manufacturing operations, operation
sequencing within setup, and setup sequencing (Ming et al. 2000; Joshi et al., 2008). Many works
dedicated to the IPPS problem acknowledged the importance of setup planning for the integration of
CAPP and the Scheduling function. For instance, Mohapatra et al. (2015) proposed adaptive setup
grouping strategies for minimization of cost and makespan and maximization of machine utilization
for alternative machines (3-axis, 4-axis, 5-axis, etc.) for a single part. They have focused on grouping
operations for a workpiece and assigning each setup to suitable machines, following a cross-machine
setup approach. However, they neglected the importance of addressing the true integration of the
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process planning and scheduling problem, which should involve the consideration of n parts to be
processed on m machines. To solve the issue, Haddadzade et al. (Haddadzade, Razfar, and Zarandi
2016) proposed a cross-machine setup planning approach for multiple parts and grouped operations
simultaneously targeting various objectives. Although, this research does not consider the routing
and sequencing task of the problem.

Furthermore, there is currently an increase in the number of Adaptive Setup Planning (ASP)
studies focusing on generating machine-specific setups upon request from dynamic schedule (Cai,
Wang, and Feng 2009). Adopting such an ASP approach has the advantages of adapting to unforeseen
events, such as changes in machine availability, fixtures, and tools, and significantly decreasing the
time required for re-planning and rescheduling. Thus, it is necessary to consider setups as the
dispatching unit for scheduling instead of operations. Cai et al. (2009) reinforced the use of setups as
the dispatching and scheduling unit of machining.

From the literature review (Table 1), it becomes apparent that most previous research has
primarily concentrated on addressing the process plan selection and routing problem under static
conditions. While some studies have demonstrated the potential to adapt setup plans to changing
shop floor conditions, they have not effectively tackled the sequencing problem within dynamic

scenarios.
Table 1. Synthesis of IPPS Research.
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Begen 2020)
(X. Wu and Li 2021) nxm x/ x/ S Crmax
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(j =job, m = machine, O = operation, 5= setup, #S = no of setup, C= cost, Mu= machine utilization, tol= tolerance,
SF= surface finish, Ps= Part stability, MFT= mean flow time, # Ju.=no of tardy job, Cmax= makespan, Es= stacking

error).

However, static scheduling becomes outdated when unforeseen events occur on the shop floor
due to unrealistic assumptions considered during their creation. Liu et al. (2021) point out in their
review that deterministic scheduling assumptions, like known and fixed processing times and the
absence of machine failures, render these static schedules impractical in real-world situations. As
Industry 4.0 continues to evolve, the production system is gaining enhanced flexibility; this progress
comes hand in hand with added intricacies in production scheduling. Manufacturing systems
inevitably face unpredictable disruptions, causing changes in planned activities due to factors such
as resource availability shifts, order arrivals or cancellations, and longer processing times.
Consequently, there arises a necessity for scheduling mechanisms to swiftly adapt to these potential
disruptions and efficiently re-optimize the operational sequences in real-time (Ferreira, Figueira, and
Amorim 2022).

Therefore, this research takes a novel approach by treating the setups for each job or workpiece
as the dispatching and scheduling unit. The objective is to encompass the problem of PP within the
dynamic scheduling framework. This innovative approach allows for the development of a one-shot
solution method for the integrated CAPP and scheduling problem. Furthermore, it facilitates the
reconfigurability of the process plan, as highlighted by Azab and ElMaraghy in 2007 (Azab and
ElMaraghy 2007).

2.2. Dynamic Scheduling for Smart Manufacturing

The challenge of managing schedules while accounting for real-time events (i.e., disruptions) is
referred to as dynamic scheduling. The purpose of this scheduling type is to offer a partial or
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complete reconfiguration of the production schedule to lessen the effect of disruptions (Ouahabi et
al. 2024). Research has developed into dynamic scheduling to address real-time disruptions, treating
it as a series of static scheduling problems that require periodic revision or updates triggered by real-
time events. The methodology of Dynamic scheduling can be grouped into proactive-reactive and
predictive-reactive approaches (Ferreira, Figueira, and Amorim 2022; Priore et al. 2014). The aim of
the predictive-reactive approach is to develop a preliminary schedule that seeks to mitigate the effects
of uncertain events on overall system performance (Ouelhadj and Petrovic 2009). To adjust the
preliminary schedule or reschedule, we need to answer two questions: when and how to react to
uncertain events. Three policies, periodic, event-driven, and hybrid rescheduling, are suggested in
the literature to address the questions as to when to reschedule and how to reschedule. Schedule
repair and complete rescheduling are also tackled in the literature (Priore et al. 2014).

Existing scheduling methodologies can be grouped into three categories: exact approaches,
meta-heuristic algorithms, and heuristic approaches (Priore et al., 2014; L. Zhang et al., 2022). Exact
approaches based on mathematical modeling have been used to ensure better performance than other
heuristic methods in terms of finding optimal solutions. Approaches such as mixed-integer linear
programming, branch and bound can find the optimal solutions for small or mid-size scheduling
problems (Jun, Lee, and Chun 2019). However, they are computationally inefficient for large-scale
problems because they cannot solve the problems in polynomial times (Jun, Lee, and Chun 2019).
Metaheuristics [e.g., simulated annealing (SA), tabu search, genetic algorithms (GAs)] are widely
applied to solve large scheduling problems (Priore et al. 2014). For instance, Chen et al. (2024)
proposed a Q-Learning-based NSGA-II algorithm for a dynamic flexible job shop with transportation
resources. However, Meta-heuristic algorithms are time-consuming, and their performance can even
vary dramatically among different problems, especially for solving dynamic or online scheduling
problems. Shahzad and Mebarki stated in their work that, although metaheuristics have an
advantage over heuristics, such as dispatching rules in terms of solution quality and robustness, these
are usually more difficult to implement and tune and are computationally too complex to be applied
in a real-time system (Shahzad and Mebarki, 2012). Ouelhadj and Petrovic (2009) have reported in
their study that hardly any research has addressed the use of metaheuristics in dynamic scheduling.

Currently, in literature, a common and popular way of dynamically scheduling jobs is by
implementing dispatching rules. Dispatching rules are efficient, simple, and capable of instantly
solving scheduling problems by assigning a priority for every job in the waiting queue and are
frequently used in practice due to their ease of implementation and quick computation time (Renke,
Piplani, and Toro 2021; Jun and Lee 2021; Kianpour et al. 2021; S. Zhang et al. 2021). However, as
dispatching rules are traditionally derived by empirical or analytical studies, the performance of
these rules depends on the state the system is in at each moment (Priore et al. 2014). To resolve this
limitation and boost their effectiveness/performance, machine learning algorithms arise as a
promising solution (Priore et al. 2014; Ferreira, Figueira, and Amorim 2022; Taghipour et al. 2024; Wu
etal. 2024 ). Among the two approaches of dynamic scheduling, a knowledge-based system is capable
of extracting implicit knowledge from earlier system simulations to determine the best dispatching
rule for each possible system state.

The main algorithm types in the field of dispatching rule development are case-based reasoning
(CBR), neural networks, inductive learning, and reinforcement learning. The Inductive Learning
Algorithm (ILA) is an iterative and inductive machine learning approach employed to generate a set
of classification rules, typically presented in the "IF-THEN" format, based on a given set of examples.
This algorithm progressively refines its rule set through successive iterations, appending newly
generated rules to the existing set. Shahzad et al. (Shahzad and Mebarki 2012) proposed a hybrid
simulation-optimization-data mining approach to generate JSP solutions by tabu search and
identified the dominant relationship between competing jobs with predefined attributes. A decision
tree is subsequently employed to dispatch jobs in real-time efficiently. Zhao et al. (2022) constructed
a data mining dynamic scheduling model to assign Dispatching Rules (DRs) from a DR library to
different scheduling subproblems in real-time. Metan et al. (2010) have also developed a decision tree
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learning model to select dispatch jobs in real-time. Habib Zahmani and Atmani (2021) have
developed a GA-datamining approach to automatically assign different dispatching rules to
machines based on the jobs in the queues. This work tried to address the dominance or priority of
different jobs. Olafsson and Li (2010) are one of the pioneers in developing a data mining-based
approach to discovering new dispatching rules for operation sequencing of multiple jobs. They used
a decision tree to discover key scheduling decisions from production data. Liping et al. (2022) have
investigated new dispatching rules for operation sequencing development through the optimization
of scheduling along with the data transformation and mining through a hybrid GA-random forest
algorithm. Jun et al. (2019) have also taken a similar approach to developing operation assignment
and sequencing rules using random forests. From this, it becomes evident that developing a
dispatching rule mining system for dynamic setup sequencing can be beneficial for addressing the
current gap in the integrated CAPP and Scheduling problem.

Based on the literature review presented, this study adopts a predictive-reactive approach to
effectively sequence setups on the shop floor to address the gap in process planning and scheduling
objectives. By integrating machine learning and optimization within a unified framework, the
schedule can be dynamically adjusted in response to these disruptions, all while ensuring that the
fundamental objectives of the Integrated CAPP and Scheduling problem remain unviolated.

3. Methodology

We introduce a novel approach that combines machine learning (data mining) and optimization
techniques for addressing the integrated CAPP and Scheduling problem. The primary objective of
this approach is to create a set of rules for guiding dispatching decisions to sequence setups within a
flexible job shop scheduling environment. Thus, initial nominal solutions for small problem instances
are generated as sources of learning rules for scheduling. Once the solutions have been obtained, they
are transformed into learning data by constructing new attributes. In this research, the term
‘attributes’ refers to the set of all data related to the scheduling decisions. The proposed approach
first assigns setups to available machines on the shop floor. Secondly, setups are sequenced on an
assigned machine by learning the best dispatching rule through an ML-Optimization model. Finally,
considering an event of a random machine breakdown, the initial schedule is adjusted by re-assigning
disrupted setups on the new available machine and sequenced utilizing the mined dispatching rule.

The methodology is described as follows:

e Initially, a simulation module generates a series of problem instances relevant to real-world
scheduling systems. Alternatively, historical data from the manufacturing system can be used
in place of this. These problem instances are then stored in an instance database.

e  Subsequently, the optimization module generates solutions for a subset of these instances, from
which the initial training dataset is created. These solutions represent a collection of well-
informed scheduling decisions that could potentially benefit the manufacturing system. These
scheduling decisions form valuable scheduling knowledge, stored in a scheduling database, and
utilized by a learning process to construct a decision tree. This decision tree is then used for
generating the dispatching rule of the setups. Notably, it is a dynamic sequencing model which
can be updated with the change in resources.

e  Figure 2 illustrates the dispatching rule mining approach framework for sequencing the setups.

Later, the generated rule can also be used to sequence disrupted setups as needed dynamically.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0956.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025 d0i:10.20944/preprints202506.0956.v1

8 of 34
< Start )
v
Step 1: Setup planning solution
1. no of setup 2. sequence of setup
v
Step 2: Production data
1. no of eligible machine; 2. processing time; 3. due date
Step3: Generate of FISP problem instances
Step 4: Generate of initial scheduling solution
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2. solving the sequencing sub-problem with mathematical programming
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1. select pair of setup; 2. create data mining attribute;
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1. model selection; 2. hyperparameter tuning; 3. model training
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1. evaluation of model performance using 10 fold cross validation
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Step 8: Is model performance
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Yes
No

Step 9: Is model's prediction matches with solver's
solution closely for unseen FJSP test dataset?

Yes
\ 4

/ Dispatching rule mining model /

v

C End )

Figure 2. Rule mining procedure for initial nominal schedule.

3.1. Solving the FJSP

An FJSP instance can be divided into two sub-problems: a routing problem and a sequencing
problem. The routing sub-problem involves assigning each operation to a suitable machine. In
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contrast, the scheduling sub-problem focuses on determining the order in which operations should
be performed while considering precedence constraints. The sequencing problem is for sequencing
assigned operations to machines and is equivalent to the classical job shop scheduling problem. These
two sub-problems have been shown to be NP-hard (Jun, Lee, and Chun 2019).

The Flexible Job Shop Problem (FJSP) can be approached using two main strategies: concurrent
approaches and hierarchical approaches. Hierarchical approaches provide a structured method by
independently handling assignments and sequencing decisions, thus reducing the problem's
complexity.

A hierarchical methodology is employed to address the research problem in this research study.
Specifically, a rule-based algorithm is adopted to tackle the routing problem, thereby transforming
the initial problem into a form that can be effectively analyzed and compared with a classical job shop
sequencing problem.

3.1.1. Solving the Routing Sub-Problem / Machine Assignment

The routing sub-problem is a crucial aspect of production scheduling and involves the
assignment of each operation or task to a suitable machine or workstation. This is a fundamental step
in optimizing the production process, as it determines the sequence in which tasks are executed and
the allocation of resources.

Solving the routing sub-problem aims to minimize production costs, maximize efficiency and
utilization, reduce makespan, or achieve other specific objectives depending on the manufacturing
environment and requirements. Various algorithms and techniques, such as mathematical
optimization, heuristics, and simulation, can be used to address the routing sub-problem and find an
optimal or near-optimal assignment of operations to machines.

In this study, we have employed the approach by localization (AL), summarized in Table 2,
which enables us to address the resource allocation challenge and construct an ideal assignment
model (Pezzella, Morganti, and Ciaschetti 2008; Vital-Soto, Azab, and Baki 2020). This method
considers both the time it takes to complete tasks and the load on each machine, which is the total
processing time of the operations assigned to it. The process involves identifying, for each operation,
the machine with the shortest processing time, locking in that assignment and subsequently adding
this time to all the following entries in the same column (updating the machine's workload), as shown
in Table 3, where bold values correspond to workload updates.

Table 2. Algorithm for solving routing subproblem.

Input: FJSP problem instance

Output: Route of Jobs

For index in range(length_input):

# Get the current row by random
row =random_select

selection
get row_min # assign setup in machine with
get min_column_index min_pt

for i in range(index+1, len(length_input)):

#Add the minimum value to the
row_val += row_min subsequent rows in the same

column
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End For
End For
Table 3. Approach by localization.
M1 | M2 | M3 M1 | M2 | M3 M1 | M2 | M3 M1 M2 | M3
s11 7 6 4 7 6 5 11 6 5 7 6 4
s12 4 8 5 4 8 6 4 8 6 4 8 5
s13 9 5 4 9 5 5 13 5 5 9 5 4
s21 2 5 1 2 5 1 6 5 1 2 5 1
s22 4 6 8 4 6 9 8 6 9 4 6 8

Machine workload updates are in boldface; highlighted cells show the final assigned machines (solution of the

routing problem).

3.1.2. Solving the Sequencing Sub-Problem/Job Shop Scheduling (JSP)

Once the assignments are settled, the problem becomes akin to a classical JSP problem. We just
need to determine the sequence of the setups on the machines. The sequencing is feasible if it respects
the natural precedence relationship among the setups of the same job, i.e., setup Sij cannot be
processed before setup Sij+1. In this study, the sequencing of the initial assignments is obtained by
solving the following Mixed Integer Linear Programming (MILP) model, which is formulated as
follows:

The problem considers n jobs that must be processed in m machines. Each job consists of a total
of nj setups. Each setup Sij must be assigned to a machine k and find the sequence of the job j. The
setup planning solution includes and sets the precedence between the setups of a job. The objective
is to minimize the maximum makepan.

The following assumptions are proposed for the FJSP:

(1) All the jobs and machines are available at time zero.

(2) Each machine can perform at most one operation at any time.

3) Transportation time is not considered.

4) procession time includes setup time.

5) Job preemption is not allowed.

(6) The setup numbers are indicative of their natural logical sequence within a job.

The notations used in this paper are defined as follows:
Index:

J: Number of jobs

j: The index of jobs of {1,2,..,J}

m: Number of machines

k: The index of machine {1,2,..,m}

nj: Number of setup in ajob j

i: The index of setup {1,2,...n;j

Parameter:

P, j x: Processing Time of setup i of job j on machine k
M: a very large positive number
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I {1, if the setup i of job jis processed on machine k
Lik 0 otherwise
Decision variables:
S j k- start time of the setup i of job j on machine k
7o = {1, if the setup i of job j precedes setup i'of job j' on machine k
LTk 0 otherwise
Cimax: Makespan
MILP Model:
Min Cpax 1
s.t.,
Si,j,k <M =* xi‘j_k \4 i, ],k (2)
Sit1,jk = Sijk T Pijr * Xijk 3)
Vi = 1 (rl]—1),], k, xl'+1,j‘k = 1,xi‘j‘k = 1
Siv1jkr = Sijjk + Prji * Xijk 4)
Vi= 1 (rl]—1),], k’: k +* k’, k,xi+1‘j’k, = 1, xi’j‘k = 1
Si’j’k = Sijk + Pijk * xl-jk - M(?) - Zii’jjlk - xirj,k - xijk) (5)
v i, i1 i’,j,j’:j * j’ieriljlk = 1lxijk =1
Sijie = Surjuie + Pujuie * Xisje — M(3 = Zigtjjne = Xit jue = Xijic) (6)
v i,i’:i * i,,j,j,:j * j’, k,xi,j,k = 1,xijk =1
Cmax = Xik=1Sijkc + Tie=1 Xijic * Pijrc Vi, Kk @)
Sijk:Cmax >0 Vl,],k (8)
Zyr i €01} 1,100 % 1,5,§7) # ',k 9)

The objective function is defined by Eq. (1), which minimizes the makespan. Constraint set (Eq.
(2)) defines the start time for each setup on the assigned machine. The disjunctive sets (Egs. (3) and
(4)) are feasibility constraints that ensure that only one setup of a job processed on a machine at a
time and precedence relationship is followed. The disjunctive constraint sets (Egs. (5) and (6)) avoid
the overlapping of setup on same machines of different job at a time. Constraint sets (Eq. (7)) define
the maximum make span. Constraint set (Eq. (8)) ensures that the starting time and make span should
be either positive or zero. Constraint sets (Egs. (9) define the types of variables.

The goal of the experiment is to solve the problem instance to generate quality solutions
(makespan). OR-Tools2 (ORT), an open-source solver developed by Google(Da Col and Teppan
2019b). In this research, we employed Google’s OR-Tools to find the sequence of the initial
assignment. Concerning the solvers’ version, we use version 9.6 for OR-Tools. We have decided to
use the CP-SAT solver because CP-SAT has proven to be better on average, as reported in the
literature, is fairly easy to implement, and is compatible with other necessary Python libraries and
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packages (Da Col and Teppan 2019b; 2019a). The experiment is conducted on a system equipped with
a 3 GHz Intel Core i7 4-Core (11th Gen), 16GB of DDR4 RAM, and a 256GB M2 SSD.

3.2. Construction of Data Mining Dataset from Initial Solution

Creating an appropriate training dataset is a pivotal aspect of the entire rule-mining procedure.
When viewed from the perspective of setup sequencing, the primary objective is to identify the
preferred order in which setups should be prioritized for dispatching among a collection of
schedulable setups, regardless of whether they belong to the same or different jobs and are intended
for the same machine at a specific moment. By extracting this knowledge from the training dataset,
we can determine the sequence for dispatching the next setup at any given time. Subsequently, this
knowledge can be used to generate dispatching lists for any combination of jobs and machines,
provided that the assignment or routing for each setup is known.

3.2.1. Attributes Selection

Attribute selection is the task of identifying the most appropriate set of attributes for a classifier,
with the aim of reducing the number of attributes while maximizing the separation between classes
(Shahzad and Mebarki 2012). This process is crucial for the effectiveness of subsequent model
induction since it helps eliminate redundant and irrelevant attributes. However, it is also important
to note that the attributes recorded as part of the available data may not always be the most relevant
or useful for the data mining process, making the creation of new attributes a necessary consideration.

Priority relationship can be formed between the jobs while the sequencing based on their
processing time, due date etc. (Shahzad and Mebarki 2012; Xiaonan Li and Olafsson 2005; Olafsson
and Li 2010). This priority relationship can be reduced by only considering two setups on the same
machine, among schedulable jobs, at any given instance for comparison. However, proper attribute
selection is essential for capturing this relationship.

Furthermore, both the selection of raw attributes from production data and creation of new
attributes are closely tied to the objectives of the scheduling problem. Objectives related to making
span require different attributes to be considered compared to objectives related to flow time or
tardiness. For example, attributes related to processing time, precedence relationship and associated
statistics are more suitable for makespan or completion time-based objectives. Similarly, attributes
related to deadlines and associated statistics are more suitable for tardiness-based objectives.

Additionally, the attributes that are recorded as part of the raw production data may not be the
attributes that are the most useful for the data mining itself. Thus, new attributes creation must be
considered. (Shahzad and Mebarki 2012; Xiaonan Li and Olafsson 2005; Olafsson and Li 2010).
Combining raw attributes through arithmetic operations can lead to the creation of new valuable
attributes, as pointed out by Olafsson and Li (2010). However, it is important to avoid having a large
set of attributes, as they are often not independent of each other, which can make the process
computationally impractical (L. Zhang et al. 2022).

This study considers 11 attributes belonging to two types, raw and constructed. The four raw
attributes based on are the setup processing time (pix) and the due date of the job (dj). These are
considered directly from production data. Constructed attributes can further be divided into two
types. Composite attributes and categorical attributes. 2 composite attributes are constructed with
basic arithmetic operations following the methodology proposed by Li and Olafsson, (Xiaonan Li and
Olafsson 2005; Olafsson and Li 2010). The categorical attributes represent binary variables used to
indicate a direct comparison between two setups, A and B. When the raw attribute value of A exceeds
that of B, the categorical value is set to 1. Conversely, when the raw attribute value of A is less than
that of B, the categorical value is set to -1. For all other situations, the categorical value is set to 0. In
this research, 5 categorical attributes are also constructed to capture the priority, delay, and
precedence relationship among setups. Details of the attributes are shown in Table 4.
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Table 4. Considered attributes for rule mining.
Type Feature/attributes Notation
processing time of setup A p_A
processing time of setup B p_B
Raw
due data of the A d_A
due data of the B d B
if processing time of A is higher than B (categorical) p_A>B
if due date of A is higher than B (categorical) d_A>B
processing time difference p_A-B
Constructed Due date difference d_A-B
if A & B has precedence relationship (categorical) Ziij
if A precedes B (categorical) Zip>Zij
if A and B processed on same machine (categorical) Xii'k

3.2.2. Creation of Training Dataset

The goal of this step is to convert the initial nominal scheduling solution into training data. From

the previous steps, nominal solutions for each problem instance are saved as a flat data file. The

columns represent separate data attributes, and each row of the file represents the schedule of a setup.

Then the training dataset for sequencing setups is generated by following 2 steps, as shown in Figure

3.

o  First, the first setup in the schedule list is selected and all setups that can be processed at the

start time are taken. Subsequently all possible combinations of setup pairs are selected. Thus, for

ixj

a problem instance with j job each having i setups, there will be 2 x C,”/ possible setup pair.

e  Then, rows for all possible pairs of setups are appended to a dataset with their attributes.
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Table: Flat data format
Sij m Pijk dj seq | Sijk Siik
ml s00J0 | 5 (8| 0| O
m0 sOLj1, 2 |81 5
024 6 8 10 12 14 s10/ 1| 4 |10 O | O
Figure: Initial nominal solution sl1{0] 6 |10] 1 7 113
2000 3 |52 4 7
AB PAjk d_i PBj’k‘ dj' . A_gO first
s00 sOI] 5 8 2 8 1
s0l s00| 4 10 5 8 0
s00 sll| 5 8 6 10 . 1
sll s20| 6 10 3 5 . 0

(j,j €setifall job (1...]); k. k" € set if all machine (1...m))

Figure 3. Process of training dataset generation.

3.3. Development of Dispatching Rule Mining Model

The setup sequencing rule or dispatching rule is mined using the following supervised learning
methodology. The implementation details are described in the following sections.

3.3.1. Preprocessing of the Data

Preprocessing the data, including feature selection and data cleaning, such as handling missing,
outliers, inconsistent, skew values, removing duplicates, ensuring data format consistency, correcting
typos, errors, dealing with irrelevant or redundant information etc. In the present scenario, case
studies have been meticulously crafted through simulation. Nevertheless, it is imperative to
emphasize the significance of this step, particularly when dealing with datasets derived from real-
world manufacturing systems.

3.3.2. Model Selection

The choice of potential classifiers suitable for the problem depends on the problem's complexity,
dataset size, interpretability needs, and available algorithms. For this research, Random Forest, K-
Nearest Neighbors (KNN), Support Vector Machine (SVM), Naive Bayes, and Logistic Regression is
chosen which represent a mix of ensemble, instance-based, linear, and probabilistic algorithms. These
classifiers offer a range of strengths and weaknesses, and they are widely recognized and applied in
various classification scenarios. Given the relatively small dataset size and the need to understand
the behavior of different algorithm families, these choices provided a comprehensive baseline for
assessment.

3.3.3. Parameter Tuning

Identify hyperparameters specific to the chosen models (e.g., learning rate, number of trees,
regularization strength) that affect model performance. We investigated the typical variation of
parameters for each learning algorithm. This section provides a summary of the parameters
employed for each learning algorithm (Caruana and Niculescu-Mizil 2006).

Random Forest (RF): The number of trees in the forest varies between 50 to 500. The number of
features to consider when looking for the best split was 1, 2, 4, 6, 8 and 11.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0956.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025 d0i:10.20944/preprints202506.0956.v1

15 of 34

KNN: We used 10 values of k ranging from k =1 to (number of sample). The standard Euclidean
distance was used as distance computation matric.

SVM: The following kernels were used: linear, polynomial degree 3 and radial with kernel
varying coefficient (1 / (n_features * X.var()), 1 / n_features, 0.001, 0.01, 0.5, and 1)

Naive Bayes (NB): We employed Gaussian Naive Bayes.

Logistic Regression (LR): Regularized logistic regression is employed. Tolerance was varied by
a factor of 10 from 10 to 10°.

3.3.4. Cross Validation

This study uses stratified K-fold CV on the dataset to perform 5- and 10-fold cross-validation.
The dataset is shuffled to have representative folds.

3.3.5. Model Evaluation Metrics

In this research, the best-performing model based on its performance on the cross-validation set
is selected and assessed against the test set, which it has never seen before. This gives an estimate of
its generalization ability. To evaluate the performance, the approach proposed by Caruana and
Niculescu-Mizil (2006) has been adopted. In this evaluation process, we have calculated performance
metrics based on seven evaluation parameters: Accuracy (ACC), F-score (FSC), Receiver Operating
Characteristic (ROC) score, Precision (APR), Recall (REC), Root Mean Square Error (RMS), and Cross-
Entropy (MXE), as well as the execution time (TIME).

3.4. Reconfiguration of Initial Nominal Schedule Under Disruption

This section explains the rescheduling strategy. The rescheduling strategy employs dynamic
adjustments to the existing schedule, prioritizing the reassignment of affected jobs to alternative
available machines. This ensures production can resume as swiftly as possible following a breakdown
event. In this research, we have considered an FJSP with a machine breakdown problem based on the
following definitions and assumptions:

Index:

J: Number of jobs

j: The index of jobs of {1,2,..,J}

m: Number of machines

k: The index of machine {1,2,..,m}

nj: Number of setup in a job j

i: The index of setup {1,2,..,nj}

m; j: A subset of machines for setup i

m; xS (M1, m,.., mx)

Parameter:

P, j x: Processing Time of setup i of job j on machine k

Xijk = {1, if the setup i of job jis processed on machine k

0 otherwise
T sp=Mean time between breakdown of machine k

P, j x: Processing Time of setup i of job j on machine k
THy: Breakdown probability threshold of machine k

Decision variables:

P {1, if the setup i of job j is processed on machine k
L1k 0 otherwise

s; j - start time of the setup i of job j on machine k

e; j x: end time of the setup i of job j on machine k

tk,: Breakdown time of machine k, t&, = f(t)

Assumptions:

The occurrence of machine failures is modeled as following an exponential distribution
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During a production cycle, only one machine will experience breakdown

3.4.1. Machine Breakdown Distribution

According to the assumption of He and Sun (He and Sun 2013), breakdown probability follows
the exponential distribution.

p {O,WhentSOOthrbk
k=
1—e ™ when0 <t <1y

Here, Px= Probability of machine failure, rok = Estimated repair time, £ = 1/Mean time between
two successive breakdowns

Following this assumption, this thesis introduces a Monte Carlo simulation-based approach to
model the probability of breakdowns occurring over a production cycle. The simulation model is
implemented using Python, leveraging the random and matplotlib libraries.

Simulation model for Machine Breakdown:

e  Setting the Mean Time Between Breakdowns (lambda): The mean time between breakdowns
(lambda) is a key parameter that influences the simulation's behavior. This parameter is user-
adjustable, allowing different real-time scenarios and system characteristics to be explored.

¢  Generating Random Breakdown Times: Using an exponential distribution, the simulation
generates random breakdown times for each machine independently. We conduct 1000
simulations for each machine to collect data on breakdown times.

e Calculating Breakdown Probability: We compute each machine's breakdown probabilities at
various time points. This allows us to construct cumulative probability curves specific to each
machine.

In this research, If the probability function exceeds a specified threshold, the machine will
experience a breakdown. Multiple breakdowns are not considered to simplify the problem.

3.4.2. Rescheduling Framework

To address rescheduling in response to machine breakdowns, a comprehensive strategy is
proposed, which is outlined in the following framework (Figure 4):

Assuming an initial state at t = 0, where the probability of machine breakdown is zero, the
prescheduling process is initiated on the job floor, and setups are executed in accordance with the
initial nominal scheduling solution. In instances where no machine breakdown occurs, this schedule
becomes the realized schedule. As the probability of machine breakdown surpasses a predefined
threshold, machine failures are anticipated. Subsequently, the following decision criteria must be
evaluated:

e  Identification of Interrupted Setups: A critical assessment is conducted for all setups in

progress on the broken machine at the time of breakdown. Setups categorized as "interrupted
setups” if their scheduled end time exceeds the breakdown time.

¢  Reassignment of Interrupted Setups: To resume production without delay, these interrupted
setups must be reassigned to currently available eligible machines. This reassignment is
executed following a localization heuristic approach.

e  Sequencing of Interrupted Setups: Once the setups have been reassigned to new machines,
their sequence is determined using a dispatching rule derived from the RF-PDR mining model.

e  Continuation of the Rescheduling Process: The rescheduling process is iteratively executed

until the machine is repaired and brought back into operational condition. Throughout this
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process, the current availability of resources is continuously considered to ensure optimal
scheduling decisions.
This rescheduling framework is designed to effectively address machine breakdowns,

minimizing disruption to production processes and optimizing resource utilization systematically
and adaptively.

3.4.3. Robust and Stability Measures of Rescheduling

The rescheduling implemented on the job floor is characterized by two crucial attributes:
robustness and stability. Developing a rescheduling system that embodies robustness and stability is
imperative to mitigate the impact of unforeseen disruptions. In this study, the robustness and
stability metrics are adopted from He and Sun’s (2013)and defined as follows:

Robustness, RM = Smaxk™ Cmaxp 100y,

maxp

Here, Cmaxk = makespan after rescheduling, Cmaxp = makespan of prescheduling
The stable measures can be articulated as follows:

n/ ql
Yj=12i=1|Cijp=Cijr |
n
j=1

SM = min

nj

Here, n’ = no of unfinished and currently in-progress jobs, n = total number of jobs, q’ = no of
unfinished and currently in-progress setup of job I, Cijp = predicted completion time for setup i of job
j in the prescheduling phase, Cir = completion time for setup i of job j in the rescheduling process
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Figure 4. Rescheduling Framework.

ea

4. Experimental Setup
A simulation module is used to generate the relevant scheduling problem instances. In our
experiments, we created 3 sets of similarly sized static FJSP instances: FJSP_5, which consists of 5 jobs
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and 3 machines. These specific problem instances were generated randomly, following the
parameters outlined in the methodology introduced by Jun et al. (2019). All jobs are assumed to be
available simultaneously at time zero. The discrete uniform distribution between 10 and 50 is used
to generate the operation processing times. The due date of each job was specified by a date tightness
parameter, as in Tay and Ho (2008). The due date formula is

di=c?* }11 P_bar_ij

where, ¢ = tightness factor of the due date, ni= number of operations of job i

Table 5. Considered parameters for the case study.

Parameters FJSP_5
no of jobs 5
range setups per job 2-3
no of machines 3
min no of equivalent machine per setup (flexibility:f) 2
range of processing time per setup (hours) 10-50
Tightness factor of due date 0.8-1.2

Following the methodology outlined in Section 3.1, we initially obtained nominal solutions
encompassing routing and sequencing decisions. Figure 5 illustrates the Gantt chart derived from
these obtained solutions. Subsequently, these solutions are arranged in a flat-file format to assemble
the dataset required for rule mining, as detailed in Table 6. Each row within the flat data file
corresponds to a specific setup, while the columns encapsulate relevant production data. The next
step involved crafting a training dataset from these flat files by aggregating all feasible setup pairs
and their corresponding attributes for each case study. In total, we generated 313 setup pairs from
these three case studies.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0956.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025

doi:10.20944/preprints202506.0956.v1

20 of 34
(a) makespan =108 job 0
Mo job 1
Ml job2
M2 job3
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 job4
(b) makespan =103 job 0
MO E job 1
Ml ‘ job2
M2 ‘ job 3
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 job 4
(c) makespan =101 job0
MO job 1
M1 job 2
M2 job 3
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 job4
Figure 5. Gantt chart (a) Case study 1, (b) Case study 2, (c) Case study 3.
Table 6. Initial nominal solution in flat data format.
Sjj k Pix d; seq Sijk €ijk
s00 0 23 49.2 1 16 39
s01 1 21 49.2 2 39 60
s02 1 27 49.2 3 60 87
s10 0 31 444 2 39 70
sl1 2 29 444 2 70 99
s20 0 16 45.2 0 0 16
s21 2 30 45.2 1 18 48
s30 1 18 48 0 0 18
s31 0 19 48 3 70 89
s32 0 19 48 4 89 108
s40 2 18 42.8 0 0 18
s41 1 21 42.8 1 18 39

Sij = Setup ID, k = Assigned machine, Pik=Processing time of Sijon k, dj = Due date of job j,.

seq =

Sequence of Sijon k, six = Start time of Sjon k, eiix = End time of Sijon k

4.1. Findings of Parameter Tuning and Model Selection

To rigorously evaluate the performance of our model, we employed a systematic approach. We

began by selecting 250 setup-pair instances at random from a comprehensive dataset compiled from
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three distinct case studies. These instances were divided into training and testing sets, with 5-fold

cross-validation applied to each trial to ensure robustness and reduce bias. The experimentation

involved training models and selecting optimal parameters for the prediction of sequences between
two setups.
Following are the key findings from model parameter tuning,

o  RF Classifier: The RF classifier with 500 trees and 11 features consistently outperformed other
configurations across all evaluation metrics. However, it is important to note that the
computational time increased significantly, from 3 seconds for 50 trees to 16 seconds for 500
trees. Interestingly, beyond 300 trees, the performance metrics exhibited minimal change. Hence,
for the RF classifier, a balance between computational efficiency and performance led us to select
the model with 300 trees and 11 features for building the rule mining model, referred to as the
RF-PDR mining model.

e  k-Nearest Neighbors (KNN) Classifier: In the case of KNN, a k-value of 1 yielded the best
metrics. However, the computational time was minimal for all k-values, making it a
computationally efficient choice.

e  Support Vector Machine (SVM) Classifier: SVM exhibited similar performance across various
parameter combinations. Models with a linear kernel and a scale coefficient consistently
outperformed other. SVM models were also relatively efficient in terms of execution time.

o Logistic Regression (LR) Classifier: LR showed the weakest performance across all metrics,
with limited variation based on parameter selection. The best results were obtained with a
tolerance value of 0.001.

Following are the key findings from normalized performance metrics,

To facilitate a fair and comprehensive comparison across different algorithms, performance
metrics were scaled using z normalization. This enabled us to objectively evaluate and select the best
model for learning dispatching rules. Table 7 presents the normalized values for each algorithm on

each of the seven metrics and execution time, calculated as the average over 5-fold cross-validation
across different parameter combinations.

Table 7. Normalized scores for each learning algorithm by metrics (average over 5-folds).

;g Combinations § § é) % é % % g %
100,1 0.643 | 0.570 | 0.593 | 0.591 | 0.609 | 0.500 | 0.333 | 0.548 | 0.980
100,6 0.738 | 0.670 | 0.701 | 0.705 | 0.696 | 0.375 | 0.251 | 0.591 | 0.927
g 100,11 0.810 | 0.748 | 0.691 | 0.773 | 0.783 | 0.188 | 0.186 | 0.597 | 0.950
o]
L: 300,1 0.857 | 0.783 | 0.845 | 0.864 | 0.739 | 0.250 | 0.137 | 0.639 | 2.735
i 300,6 0.857 | 0.783 | 0.845 | 0.864 | 0.739 | 0.250 | 0.137 | 0.639 | 2.735
il 300,11 0.925 | 0.890 | 0.907 | 0.919 | 0.917 | 0.108 | 0.078 | 0.643 | 2.353
é’ 500,1 0.952 | 0.913 | 0.948 | 0.909 | 0.913 | 0.125 | 0.069 | 0.690 | 4.324
500,6 1.000 | 0.957 | 1.000 | 1.000 | 1.000 | 0.063 | 0.029 | 0.721 | 4.586
500,11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.714 | 4.703
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k=1 0.833 | 0.714 | 1.000 | 1.000 | 0.875 | 0.750 | 1.000 | 0.882 | 0.000

z k=20 0.667 | 0.714 | 0.706 | 0.833 | 0.625 | 0.750 | 0.902 | 0.742 | 0.006

§ k=50 0.500 | 0.429 | 0.412 | 0.500 | 0.375 | 0.875 | 0.902 | 0.570 | 0.009

k=80 0.500 | 0.429 | 0.412 | 0.500 | 0.375 | 0.875 | 0.902 | 0.570 | 1.000

‘linear’, "scale’ 0.500 | 0.286 | 0.412 | 0.500 | 0.375 | 0.875 | 0.853 | 0.543 | 0.067

‘rbf’, "scale’ 0.500 | 0.286 | 0.412 | 0.333 | 0.375 | 0.938 | 0.833 | 0.525 | 0.067

‘poly’, “scale’ 0.333 | 0.286 | 0.412 | 0.333 | 0.000 | 0.938 | 0.804 | 0.444 | 0.079

‘linear’, "auto’ 0.333 | 0.286 | 0.412 | 0.333 | 0.250 | 0.875 | 0.804 | 0.470 | 0.070

‘rbf’, auto’ 0.333 | 0.286 | 0.412 | 0.333 | 0.250 | 0.938 | 0.804 | 0.479 | 0.061

_ ‘poly’, "auto’ 0.333 | 0.143 | 0.118 | 0.333 | 0.250 | 0.938 | 0.706 | 0.403 | 0.055

g ‘linear’, 0.001 0.333 | 0.143 | 0.118 | 0.000 | 0.250 | 0.938 | 0.735 | 0.360 | 0.070

g ‘rbf’, 0.001 0.333 | 0.143 | 0.118 | 0.167 | 0.250 | 0.938 | 0.716 | 0.381 | 0.070
4

g ‘poly’, 0.001 0.167 | 0.143 | 0.118 | 0.167 | 0.250 | 1.000 | 0.706 | 0.364 | 0.076

” ‘linear’, 0.01 0.167 | 0.143 | 0.118 | 0.167 | 0.250 | 1.000 | 0.696 | 0.363 | 0.073

‘rbf’, 0.01 0.167 | 0.000 | 0.118 | 0.167 | 0.125 | 1.000 | 0.676 | 0.322 | 0.070

‘poly’, 0.01 0.167 | 0.100 | 0.118 | 0.167 | 0.125 | 1.000 | 0.667 | 0.335 | 0.070

‘linear’, 1 0.167 | 0.100 | 0.118 | 0.000 | 0.125 | 1.000 | 0.657 | 0.309 | 0.055

‘tbf’, 1 0.167 | 0.086 | 0.059 | 0.167 | 0.150 | 1.000 | 0.645 | 0.325 | 0.052

‘poly’, 1 0.000 | 0.143 | 0.059 | 0.000 | 0.125 | 1.000 | 0.637 | 0.281 | 0.052

% 0.167 | 0.000 | 0.118 | 0.000 | 0.125 | 1.000 | 0.627 | 0.291 | 0.061

tol = 0.0001 0.167 | 0.000 | 0.118 | 0.000 | 0.125 | 1.000 | 0.618 | 0.290 | 0.064

~ tol =0.001 0.167 | 0.000 | 0.000 | 0.000 | 0.125 | 1.000 | 0.608 | 0.271 | 0.061

S tol=1 0.083 | 0.000 | 0.000 | 0.000 | 0.125 | 1.000 | 0.598 | 0.258 | 0.061

= tol =100 0.083 | 0.029 | 0.000 | 0.000 | 0.125 | 1.000 | 0.588 | 0.261 | 0.067

tol = 10000 0.083 | 0.026 | 0.000 | 0.000 | 0.125 | 1.000 | 0.582 | 0.267 | 0.061

In the table, the algorithm with the best performance on each metric is boldfaced. Upon
aggregating the results across all seven metrics, RF emerged as the superior model. Following RF,
KNN exhibited the next best performance, while LR consistently performed the poorest across all
metrics.

Taking into consideration both performance and computational efficiency, we opted for the RF
classifier with 300 trees and 11 features to build the RF-PDR mining model. This decision strikes a
balance between robust predictive capabilities and manageable computational demands, making it
an ideal choice for learning dispatching rules in our context. This selection ensures that the RF-PDR
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mining model can provide effective sequencing recommendations for setups in a flexible job shop
scheduling environment, thereby optimizing manufacturing operations. The comprehensive
evaluation process presented in this section underpins our confidence in the chosen model's ability
to deliver real-world value.

4.2. Evaluation of Generalization Capability of the RF-PDR Mining Model

The effectiveness and generalization capability of our Random Forest (RF)-based dispatching
rule mining model were rigorously assessed through extensive testing on new, unseen problem
instances. In this section, we present the results of these tests, highlighting the model's ability to
predict sequencing schedules for setups within a flexible job shop scheduling environment. To assess
the model's generalization prowess, we conducted experiments where we excluded instances
generated from one specific problem instance and utilized instances generated from the remaining
two problem training datasets.

The RE-Dispatching Rule Mining Model displayed remarkable performance in these instances.
In the first case, labeled as FJSP5_C1 with perfect prediction, the model flawlessly predicted the
sequencing schedule for all setups, achieving a flawless match with the optimization solver's
solutions (Figure 6).

Moving on to the second and third instances, labeled as FJSP5_C2 and C3, the model continued
to exhibit high accuracy. It successfully predicted the sequencing schedule for most setups, aligning
perfectly with the solutions obtained from the solver. However, in both of these cases, there was a
minor discrepancy in one sequence, where the model's prediction slightly diverged from the solver's
output (Figures 7 and 8). Importantly, these deviations did not disrupt the natural sequence of setups
within the jobs.

Overall, these results emphasize the robustness and generalization capabilities of the RF-
Dispatching Rule Mining Model. It proves its adaptability to diverse scheduling scenarios and
consistently provides reliable sequencing recommendations, showcasing its impressive performance
across different instances.

The RF-based dispatching rule mining model demonstrates its effectiveness and generalization
potential, making it a valuable tool for improving scheduling efficiency in real-world manufacturing
environments. Further refinements and ongoing testing with a broader range of instances will
continue to enhance its performance and applicability.

Solution obtained from CP-SAT solver

Makespan =108

35

Solution obtained from RF-PDR Mining mode!

Makespan =108

35

Figure 6. Predicted sequence of Case study 1.
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__541<s32
_— 532<s41
7

Solution obtained from CP-SAT solver
— _—— Makespan =103

MO
M1
M2

0510 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 195/
Solution obtained from RF-PDR Mining ryédel

job 0
job 1
job 2
job 3
0510 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 job 4

Figure 7. Predicted sequence of Case study 2.

s31<s12
s12<s31

Solution obtained from CP-SAT solver

Makespan =101

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 &0 85 90 95 100

Solution obtained from RF-PDR mining model

Makespan =108 job 0O

MO job 1
M1 job 2
M2 job 3
0510 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 job 4

Figure 8. Predicted sequence of Case study 3.

4.3. Comparison with Classical Dispatching Rule

To assess the effectiveness of the dispatching rules derived from the RF-PDR (Random Forest-
Dispatching Rule) mining model, we conducted a comparison with two well-established classical
dispatching rules: Earliest Due Date (EDD) and Shortest Processing Time (SPT). The objective of this
comparison was to evaluate the performance of the RF-PDR mining model in generating sequencing
recommendations for setups within a flexible job shop scheduling environment. In our experiment,
we randomly divided the problem instances into training and testing sets, with 60% of the instances
used for training and the remaining instances reserved for testing. This partitioning ensured an
unbiased evaluation of the dispatching rules on unseen data.

Table 8 provides a detailed overview of the makespan (Cmax) for three testing instances, each
characterized by the number of jobs (j), the number of machines (k), and the number of setups within
each job (i). The table presents the makespan results for the RF-PDR mining model, SPT, and EDD
dispatching rules. Results are discussed as follows:

e  RF-PDRvs. SPT: In the comparison between the RE-PDR mining model and the SPT dispatching

rule, it is evident that the RF-PDR model consistently outperforms SPT in terms of makespan.

RE-PDR achieves a lower makespan for each testing instance, indicating more efficient
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scheduling. The percentage deviation between RF-PDR and SPT is also presented, highlighting
the significant improvement achieved by the RF-PDR model.

e Instance FJSP5_C1: RF-PDR achieves a makespan of 108, while SPT results in a considerably
higher makespan of 169, representing a 36% improvement.

e Instance FJSP5_C2: RF-PDR again demonstrates superior performance with a makespan of 114,
compared to SPT's 166, resulting in a 31% improvement.

° Instance FJSP5_C3: In this instance, RF-PDR achieves a makespan of 108, whereas SPT yields a
makespan of 141, indicating a 23% improvement.

. RE-PDR vs. EDD: Similarly, when comparing the RF-PDR mining model with the EDD
dispatching rule, RF-PDR consistently delivers better makespan results. The percentage
deviation highlights the superior performance of the RF-PDR model.

e Instance FJSP5_C1: RF-PDR achieves a makespan of 108, while EDD results in a makespan of
166, marking a 35% improvement.

e Instance FJSP5_C2: RF-PDR's makespan of 114 outperforms EDD's makespan of 198 by 42%.

e  Instance FJSP5_C3: In this instance, RF-PDR's makespan of 108 is substantially better than EDD's
makespan of 169, indicating a 36% improvement.

The RF-PDR mining model exhibits clear superiority in terms of makespan when compared to
the classical dispatching rules, SPT, and EDD. This demonstrates the potential of data-driven
dispatching rules in enhancing scheduling efficiency and optimizing manufacturing operations.
Further research can explore the model's performance on a wider range of problem instances and its
applicability to real-world manufacturing environments. The superior performance of the
dispatching rule obtained from the RF-PDR mining model can be attributed to its adaptability and
ability to discover implicit knowledge from production data. Unlike classical dispatching rules, often
designed for specific manufacturing systems with fixed sequencing criteria, the RF-PDR model
leverages attributes derived from real production data. As a result, the RF-PDR model can
dynamically adjust its sequencing recommendations based on the unique characteristics of each
problem instance, leading to more efficient scheduling. It harnesses the power of machine learning
to uncover hidden patterns and correlations within the data, ultimately outperforming traditional
dispatching rules.

Table 8. Comparison of mined dispatching rule with SPT and EDD dispatching rule.

Crmax
instance Pk i RF-PDR SPT % dev EDD % dev
FJSP5_C1 5x3 2-3 108 169 36% 166 35%
FJSP5_C2 5x3 2-3 114 166 31% 198 42%
FJSP5_C3 5x3 2-3 108 141 23% 169 36%

4.4. Rescheduling with RF-PDR Mining Model

In the experimental setup designed to evaluate the efficacy of the rescheduling framework, we
consider the predicted solution for FJSP_C3 as the initial nominal solution. Table 9 represents the
solution in a flat data format.

Table 9. Initial nominal solution for case study 3 in a flat data format.

. Eligible machine Solution
setup_id - -
m0 ml m2 Assigned mid start end
s00 10 13 0 0 10
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s01 20 12 23 0 75 95
s10 25 11 2 0 11
s11 27 18 20 0 48 75
s12 44 26 15 2 75 90
s20 47 30 27 1 0 30
s21 27 18 1 30 48
s22 25 29 1 48 73
s30 35 22 18 2 11 40
s31 19 27 0 2 40 58
s40 38 23 0 10 48
s41 38 28 29 1 73 101

4.4.1. Machine Breakdown Simulation

The simulation model focuses on predicting breakdown times for three machines, parameter for
each machine is considered as followed:
Input parameters:
e  Mean time between two successive breakdowns:
Am1 =30 hours,
Am2 = 80 hours,
Amz =120 hours
e  Threshold, THsk = 0.7 (He and Sun 2013)
Output:
e  Breakdown time (Refer to Figure 9):
tyy’ =45 hours
tml >120 hours
> 120 hours

Duration Vs Breakdown Probability

0.9
0.8
0.7

0.6

Py
e
(9]

0.4

0.3 TH
0.2

0.1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110
Time
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Figure 9. Time of breakdown.

4.4.2. Identification of Disrupted Setups

Following the evaluation of the critical criteria, which considers eij > t}, we have compiled a
list of disrupted setups in conjunction with the presently available machines. This compilation is
presented in Table 10, wherein a "status" column has been included to categorize the setups into two
distinct classifications: "Interrupted" and "Unfinished."

Table 10. Setup status after machine breakdown.

) current eligible machine solution
setup_id ml m?2 assigned m_id start | end status
s01 12 23 - - - Interrupted
s11 18 20 - - - Interrupted
s40 23 - - - Interrupted
s21 18 1 30 48 Unfinished
s22 25 29 1 48 73 Unfinished
s41 28 29 1 73 101 Unfinished
s12 26 15 2 75 90 Unfinished
s31 27 18 2 40 58 Unfinished

In the context of this table, "Interrupted" setups necessitate reassignment and resequencing on
currently eligible machines, while "Unfinished" setups indicate those that have already been assigned
and sequenced on the available machines.

4.4.3. Re-Scheduling of the Interrupted Setups
In accordance with the localization heuristics approach, the interrupted jobs have been subjected

to reassignment. In Table 11, the cells that are boldfaced denote the updated routing assignments.

Table 11. Updated routing of interrupted setups.

setup_id ml m2
s01 12 23
s11 18 20
s40 23

Subsequently, a revised sequence for the interrupted setups on eligible machines has been
derived utilizing the RF-PDR mining model. This rescheduling solution is visually depicted in Figure
10. The shadow block on failed machine stands for idle time interval (time length is equal to repair
time). As a result of this rescheduling effort, the makespan has been reduced to 116 hours. When the
now broken machine will become operational, unfinished setups then again can be scheduled
considering updated machine availability following the same approach.
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Solution after disruption
makespan =116
th job 0
Failed Machine job 1
MO
job2
M1
job3
M2
0 5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 job4

Figure 10. Rescheduling solution.

4.4.4. Re-Scheduling Robustness & Stability Measure

In order to assess the efficacy of the proposed re-scheduling approach, a comparative evaluation
was conducted, juxtaposing the sequenced results obtained through this approach with those derived
from two widely adopted classical dispatching rules, namely SPT (Shortest Processing Time) and
EDD (Earliest Due Date). Table 12 provides a comprehensive depiction of the performance metrics
associated with robustness and stability.

Table 12. Comparative Analysis with Classical Dispatching Rules.

Crax RM % SM

RF-PDR 116 12.93 25.8
SPT 144 33.33 21.4
EDD 152 40.7 52.6

The comparison illustrates that the RF-PDR approach yields the lowest Cmax value of 116 hours,
indicating the shortest completion time among the considered approaches. Additionally, it exhibits
the lowest RM%, signifying robustness in minimizing deviations from the optimal solution.
Furthermore, the RF-PDR approach boasts a substantial SM value of 25.8, signifying its capability to
maintain stability in scheduling operations.

In contrast, the classical dispatching rules, SPT and EDD, exhibit higher Cmax values, greater
RM% deviations, and SM values, suggesting comparatively inferior performance. These findings
underscore the superior performance of the RF-PDR model in achieving efficient and stable re-
scheduling outcome.

5. Conclusion and Future Research Direction

This research is driven by the objective of addressing the challenge of integrating CAPP and
Scheduling in the realm of Industry 4.0 and SM. Given the growing need for customized products to
meet customer demands, the manufacturing industry requires real-time and adaptable production
planning and scheduling strategies. Traditional, sequential methods of managing PP and Scheduling
have often led to conflicting goals, resulting in inefficiencies in production.

We have introduced an innovative approach that combines machine learning and optimization
techniques to tackle these issues. Firstly, this study delves into the Integrated CAPP and Scheduling
problem within a multipart-multimachine context, addressing a notable gap in the existing literature
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and providing a comprehensive solution to the complex CAPP and dynamic scheduling problem.
Secondly, this research study is pioneering in defining setups as the fundamental dispatching units
for scheduling, effectively resolving conflicts between process planning and scheduling objectives.
Lastly, the introduced dispatching rule mining model has the ability to glean sequencing knowledge
from optimized solutions and implicit insights from production data, serving as a dependable
solution for both scheduling and re-scheduling tasks.

In conclusion, this research aims to enhance manufacturing processes' efficiency,
responsiveness, and overall integrity by integrating process planning and scheduling in the context
of Smart Manufacturing. The fusion of machine learning and optimization techniques holds promise
for addressing the intricacies of modern manufacturing environments and meeting the ever-evolving
customer demands. The research lays a solid foundation for addressing complex process planning
and scheduling challenges. However, several avenues for future work can further enhance the
proposed approach's understanding, application, and impact.

In our proposed approach, it is important to note that the generation of an optimal routing has
not been explicitly addressed within the scope of this research. Instead, we have adopted a heuristic
approach for the assignment of setups, where the attainment of optimality in the initial nominal
solution is not guaranteed. Consequently, this heuristic assignment process can impact the quality of
the sequencing solution. These observations underscore the need for future research endeavors to
investigate and assess the influence of the initial optimal schedule's quality on the subsequent stages
of the integrated process. Another promising avenue for future research lies in addressing the routing
sub-problem through the utilization of unsupervised learning techniques. This could potentially
enhance the efficiency and effectiveness of the overall approach by autonomously discovering
optimal routing strategies.
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