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Article 
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Astronomical Research Contents and Handling 
Systems 
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2 INAF- SSDC, Science Space Data Center 
* Correspondence: stefano.gallozzi@inaf.it; Tel.: +39 0694286453 – ORCID: 0000-0003-4456-9875  

Abstract: This paper presents a flexible approach to a multipurpose, heterogeneous archive model that merges 
the robustness of legacy Grid-based technologies with modern Cloud and Edge computing paradigms. It 
leverages innovations driven by Big Data, IoT, AI, and Machine Learning to create an adaptive data storage and 
processing framework. In today’s digital age, where data is the new intangible gold, the “gold rush” lies in 
managing and storing massive datasets effectively—especially when these data serve governmental or 
commercial purposes, raising concerns about privacy and the misuse by third-party aggregators. Astronomical 
data, in particular, require this same thoughtful approach. Scientific discovery increasingly depends on efficient 
extraction and processing of large datasets. Distributed archival models, unlike centralized warehouses, offer 
scalability by allowing data to be accessed and processed across locations via cloud services. Incorporating edge 
computing further enables real-time access with reduced latency. Major astronomical projects must also avoid 
common Single Points of Failure (SPOFs), often resulting from suboptimal technological choices driven by 
collaboration politics or In-Kind Contributions (IKCs). These missteps can hinder innovation and long-term 
project success. This paper outlines best practices in archive project management—from policy development 
and task planning to use-case definition and implementation. Only after these steps can a coherent selection of 
hardware, software, or virtual environments be made. The proposed model—CTAARCHS (Cloud-based 
Technologies for Astronomical Archiving Research Contents & Handling Systems)—is an open-source, 
multidisciplinary platform supporting big data needs in astronomy. It promotes broad institutional 
collaboration, offering code repositories and sample data for immediate use. 

Keywords: CTAARCHS; cloud and edge storage; astronomical archives; big-data in astronomy; 
distributed archives; distributed databases; distributed storage 
 

1. Good and Bad Practices in Data Management Projects 
This paper introduces a flexible archival model that integrates recent developments across Data-

Grid, Cloud, Edge, and Fog computing technologies. Designed to meet the requirements of large-
scale astronomical projects, the model emphasizes resilience, performance, and sustainability while 
avoiding typical Single Points of Failure (SPOFs), which often arise from short-sighted political 
management decisions and suboptimal In-Kind Contribution (IKC) allocations. 

A recurring issue in large scientific collaborations is the allocation of leadership roles based not 
on technical expertise, but on political convenience or financial leverage. This leads to fragmented 
and inefficient work organization, particularly in core areas such as data handling and archiving. It 
is common to see simple tasks unnecessarily divided among multiple groups, each with distinct 
visions and leadership, making coordination and integration difficult. In response, project leaders 
often “descope” activities, reducing group autonomy in favor of hierarchical control. While this may 
streamline decision-making, it suppresses innovation and undermines project agility. 

A particularly harmful trend is the political fragmentation of archive design, where medium- to 
long-term data management is split across loosely defined entities without real architectural 
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boundaries. Such divisions introduce complexity and delay, especially when multiple groups interact 
with a shared infrastructure. Leadership may be assigned to individuals with liĴle or no technical 
background, and the final decision-making authority may reside with administrative bodies rather 
than developers. This practice results in systems driven by political compromise rather than 
technological soundness. 

Effective archive development must begin with robust planning. As outlined in Figure 1, project 
management strategies should reflect the project’s timeline and goals. For short-term 
implementations, use-case generalization and rapid prototyping are essential to test technological 
feasibility. For long-term projects, more detailed planning, including thorough documentation of use 
cases, requirements, and interfaces, should be established early on. However, premature 
commitment to specific technologies should be avoided, as rapid technological evolution can render 
early choices obsolete. 

The system design phase consolidates all use cases and validated requirements into an 
integrated solution based on proven technologies. This is followed by code development, pre-
production testing, and final deployment. A major constraint, particularly in scientific archiving, is 
budgetary: long-term maintenance costs are often underestimated or ignored. As a result, hardware 
acquisition frequently follows funding availability rather than design logic. To overcome this, a 
virtualized, service-based model is adopted, allowing for the decoupling of hardware from software 
layers. 

 

 
 

Figure 1. Good-policies in Data Management Projects. 

This approach enables the implementation of Archive as a Service (AaaS), which builds upon 
the established paradigms of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and 
Software as a Service (SaaS), as illustrated in Figure 2.  

 

Figure 2. Archive as a Service using DataCloud paradigms IaaS, PaaS and SaaS. 
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The archive model distinguishes two main user roles: Data Producers, who supply content at 
various levels, and Data Consumers, who access and possibly process the data (Figure 3). While users 
may act in both roles, each must interact with the system through standardized, role-specific 
interfaces. 

 
Figure 3. OAIS Standard explanation. 

The proposed architecture aligns with the Open Archival Information System (OAIS) reference 
model, which logically separates user interaction from core system operations. The core functions of 
the archive—Ingest, Search/Browse, and Retrieve/Distribute—are built upon two foundational 
components: a repository and a database. The choice of technologies in these areas is dictated by the 
archive’s system topology and performance goals. Ultimately, an effective archive is not just a 
structured data store but an intelligent platform facilitating efficient data access and long-term 
preservation. In the following sections, we discuss database selection as a critical factor in the design 
of scalable, user-centered archive systems. 

2. Storage Architecture in Archival Systems: Centralized vs Distributed 
Approaches 

One of the key design challenges in developing an astronomical archive system is selecting the 
appropriate storage architecture. The decision between a centralized or distributed model depends 
on the archive's use cases, particularly when access is required across geographically distributed 
locations. There is no universal solution—each approach has strengths and limitations based on 
scalability, resilience, access latency, cost, and administrative complexity. 

As summarized in Table 1, centralized architectures offer simplicity, streamlined security, and 
ease of management, making them suitable for small-scale or local deployments. However, they pose 
greater risks of failure and limited scalability. In contrast, distributed architectures support high 
availability (HA), redundancy, and beĴer performance across dispersed users, though they require 
more sophisticated orchestration and monitoring. 

Table 1. Pros and Cons of distributed and centralized archive solution approaches. 

 
 
 

 
Pros 

 

 
Cons 

 
Distributed 

Archive  
 

Centralized 
Archive 

Distributed Archive Centralized Archive 
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Scalability 

Easily scalable 
by adding nodes 
or storage across 

locations. 

Simpler 
infrastructure for 

small-scale 
systems. 

More complex to 
manage coordination 

between multiple nodes.

Harder and costlier to 
scale once capacity is 

reached. 

Resilience & 
Redundancy 

High 
availability; 

failure of one 
node doesn’t 
compromise 

access. 

– 
Requires sophisticated 

monitoring and 
synchronization tools. 

Vulnerable to outages 
if no redundancy or 
failover is in place. 

Performance & 
Speed 

Improved access 
times via 

geographic 
proximity; 

enables load 
balancing. 

Fast access for 
users close to the 

central server. 

Latency may increase if 
not optimized for global 

access. 

Performance can 
degrade under heavy 

load or traffic 
congestion. 

Flexibility & 
Cost 

Potentially 
cheaper to grow 

incrementally 
(e.g., via cloud or 

P2P). 

More cost-
effective for 

small/medium 
deployments. 

Higher operational 
overhead for 

maintaining distributed 
nodes. 

Expensive upgrades 
required as demands 

increase. 

Fault 
Tolerance 

Built-in disaster 
recovery ensures 

data integrity. 
– 

Ensuring data 
consistency across all 
nodes is challenging. 

Greater risk of data 
loss if no proper 

backup or disaster 
plan exists. 

Security – 
Easier to manage 

access and enforce 
security centrally. 

Harder to enforce 
consistent security 

policies across locations. 

Centralized point may 
be a larger attack 

surface if not properly 
secured. 

Data 
Consistency 

– 
Strong consistency 

due to single 
control point. 

Data may be 
temporarily inconsistent 
due to network delays 

or partitions. 

– 

Ease of 
Management 

– 

Easier setup, 
backup, and 

management from 
a single location. 

More complexity in 
setup and maintenance. 

– 

Geographic 
Access 

Efficient access 
from multiple 

locations. 
– 

Latency if nodes are not 
well-distributed or if 
networks are slow. 

Slower access for users 
located far from the 

central server. 

The choice ultimately depends on system scale, geographic distribution, and acceptable 
complexity. The model presented here allows flexible configuration—from a single-node centralized 
instance to a distributed system with multiple nodes in MASTER+SLAVE or fully redundant HA 
configurations, ensuring no single point of failure (SPOF). 

Historically, Data-Grid computing was the dominant model in research environments, where 
computing and storage were distributed across tiered datacenters connected by middleware for data 
orchestration. While effective in some contexts, its hierarchical structure limited scalability and 
flexibility. Over the past decade, this model has largely been replaced by Cloud Computing, which 
enables horizontal scaling, service-based architecture, and global accessibility. Cloud systems offer 
improved resource outsourcing, built-in redundancy, and disaster recovery, making them beĴer 
suited to handle complex, large-scale datasets with minimal management overhead. 
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However, widespread data sharing via cloud platforms raises serious security and privacy 
concerns, making robust access control and encryption critical challenges. 

More recently, computing paradigms have shifted toward Edge Computing, where data 
processing occurs closer to data sources—often at the sensor or device level. This reduces network 
congestion, minimizes latency, and enables real-time applications. Edge computing is particularly 
valuable in time-sensitive use cases, where immediate processing and decision-making are required. 
Enhancing this model with Edge Intelligence—that is, applying AI and machine learning algorithms 
locally—enables automated decisions based on complex, use-case-specific criteria. This adds 
significant value where human intervention must be minimized. 

At a broader level, this leads to Fog Computing, a form of fine-grained distributed processing 
that extends computing and storage further toward the network edge. By integrating IoT devices and 
localized data sources, fog architectures process large volumes of unstructured data near their origin, 
which is essential for real-time analytics. 

Given the limited computational capacity typical at the edge, adaptive AI algorithms play a 
critical role in optimizing performance. These systems can identify semantic paĴerns, adapt 
compression techniques, and reduce computational loads, enabling efficient data analysis and 
visualization. The use of optimized low-latency databases becomes essential in transforming raw 
data into science-ready outputs quickly and interactively. 

Note: Although these models raise legitimate concerns about environmental impact—
particularly related to the power demands of AI training and edge infrastructure—this paper does 
not address sustainability. It is misleading to discuss energy use without a comprehensive life-cycle 
analysis of the hardware and algorithms involved. The sustainability of AI and edge computing 
should not be reduced to superficial claims but rather evaluated within a systemic framework, which 
is beyond the scope of this discussion. 

3. Selecting the Appropriate Database Architecture for Archival Systems 
The database lies at the heart of any archive system, making its selection a critical component of 

the overall design. However, there is no universally optimal solution—the appropriate database 
choice depends on multiple factors, including the storage use case, system topology, data access 
paĴerns, and geographic distribution of users. 

In distributed storage environments, relying on a centralized database for file cataloging 
introduces significant risks. It creates a Single Point of Failure (SPOF) and becomes a performance 
boĴleneck under concurrent, geographically dispersed queries. This undermines the redundancy and 
resilience typically sought in distributed systems. 

Conversely, centralized database architectures are well-suited for smaller or geographically 
constrained archives, where high availability can be ensured through network and service 
redundancy. These systems benefit from ACID-compliant transactions—Atomicity, Consistency, 
Isolation, and Durability—which are essential in contexts requiring strong data integrity, such as 
financial systems. 

However, distributed databases cannot fully guarantee ACID properties and instead operate 
under the CAP Theorem (Brewer’s Theorem), which states that a distributed system can only 
simultaneously satisfy two of the following: Consistency, Availability, and Partition Tolerance. 
Trade-offs among these properties must be carefully evaluated depending on the archive's 
performance and reliability needs (see Table 2 and Figure 4). 

In summary, the choice between centralized and distributed database architectures must align 
with the system's scale, access requirements, and fault-tolerance goals. The database model must not 
only support efficient data access but also integrate seamlessly into the broader storage and 
computing infrastructure. 

Table 2. C.A.P. Theorem, summary properties. 

 Definition 
Key Characteristics 
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Consistency 
All nodes return the most recent 

write for any read request. 

- Guarantees up-to-date data across the 
system 

- All parts of the system see updates 
immediately 

Availability 
Every request gets a response, 
even if some nodes are down. 

- System remains responsive at all times 
- May not always return the latest data 

Partition 
Tolerance 

System continues to work despite 
network failures or 

communication breakdowns 
between nodes. 

- Handles network partitions gracefully 
- Ensures continued operation despite node 

isolation or failure 

 
Figure 4. The CAP Theorem. Of the three properties of database you can pick only two. 

In distributed databases, data is replicated across multiple nodes. When network partitions 
occur—isolating one or more nodes—the system must prioritize among Consistency, Availability, 
and Partition Tolerance (the CAP Theorem). 

 Prioritizing Consistency may halt reads or writes to prevent divergence, sacrificing 
availability. 

 Prioritizing Availability ensures responsiveness, but may serve outdated or inconsistent 
data. 

 Prioritizing Partition Tolerance allows continued operation despite communication 
failures, though it may compromise either consistency or availability. 

Many systems dynamically balance these trade-offs based on application needs. For 
archival systems, using pre-assigned physical file names and a Write Once, Read Many 
(WORM) model minimizes consistency concerns. Once written, immutable data simplifies 
coherence across nodes. This permits a focus on Availability and Partition Tolerance (AP), 
ensuring the system remains operational and responsive—even if some nodes are 
unreachable. 

Partition tolerance is often the most critical factor in large-scale or globally distributed 
environments, as network disruptions are inevitable. Ensuring only a single version of any file exists 
and is replicated guarantees that if a file is accessible, it is valid and consistent system-wide. 

Another key factor in choosing a database system is balancing data scalability with the 
complexity of the data model and queries. As illustrated in Fig. 5, certain database families are 
inherently unsuited to large-scale data. For instance, relational databases (SQL), while efficient for 
smaller datasets and simpler queries, struggle when dealing with high-complexity joins or terabyte-
scale tables. At this point, only three options remain: 

1. Simplify the data model or queries. 
2. Scale up the hardware infrastructure. 
3. Migrate to a different database family—such as a document-oriented (NoSQL) system. 
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In practice, restructuring or hardware upgrades often cause service interruptions, particularly 
when the database was not properly designed from the outset. This underscores the importance of 
selecting the appropriate architecture early in the project lifecycle. 

 
Figure 5. Performance Scale-up to size _vs_ to complexity in different database families. 

Databases can broadly be categorized into two groups: Relational DBMS (RDBMS) and Not Only 
SQL (NoSQL) systems. A comparative summary is provided in Table 3. 

Table 3. Different databases technologies. 

 Subtype / Model Key Characteristics 
 

Use Cases 
 

Relational 
Databases  
(RDBMS) 

 

 
 

Traditional 
RDBMS 

• Structured schema (tables with 
rows and columns) 

• Uses SQL 
• Strong consistency with ACID 

(Atomicity, Consistency, Isolation, 
Durability) properties 

Banking systems, ERP, 
CRM, enterprise apps 

 
 

NewSQL 

• Combines ACID consistency of 
RDBMS with horizontal scalability 

• Maintains SQL interface 
• Built for modern, high-scale 

applications 

High-performance apps 
requiring strong consistency 

(e.g., fintech, gaming) 

 
OLAP/MOLAP 

• Optimized for analytical and BI 
queries 

• Pre-aggregated data cubes 
• High performance for historical 

data 
• Supports complex analytical 

calculations 

Business Intelligence (BI), 
data warehousing, 

reporting tools 

NoSQL 
Databases 

 
 

Key-Value 
Stores 

• Simple key-value pairs 
• Excellent read/write performance 

• Easy to scale horizontally 
• Flexible schema 

Caching, session data, real-
time systems 
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Column-Family 
Stores 

• Stores data by columns, not rows 
• Ideal for distributed large datasets 

• High availability and fault 
tolerance 

• Schema-less rows with flexible 
structure 

Analytics, time-series data, 
telemetry, log storage 

 
 

Document-
Oriented DBs 

• Stores semi-structured data in 
documents (JSON, BSON, XML) 

• Schema-less and flexible 
• Supports nested data structures 

• Good for modern app 
development 

Content management, 
product catalogs, APIs, 

evolving schema 
applications 

 
 

Graph 
Databases 

• Data represented as nodes and 
relationships 

• Efficient for traversing complex 
relationships 

• Schema flexibility 
• Optimized for relationship-based 

queries 

Social networks, 
recommendation systems, 

fraud detection 

4. Polyglot Persistence in Modern Archive Systems 
For this archival model, we focus on the versatility, schemaless nature, and aggregation 

capabilities of document-oriented databases. Their architecture supports scalability through 
replication, sharding, and clustering, depending on performance demands and availability 
requirements. Strategies for scaling read/write capacity and ensuring high availability are 
summarized in Table 4. 

If data size exceeds single-server capacity, two strategies are available: scaling up infrastructure 
or scaling out via clustering. Similarly, read performance can be improved through replication and 
caching, while write scalability benefits from partitioning and sharding. To mitigate SPOFs and 
ensure service resilience, especially in geographically distributed collaborations, combining 
clustering with cross-site replication is essential. Inter-datacenter distances of several hundred 
kilometers are generally sufficient to safeguard against regional failures and enable disaster recovery. 

A key principle here is polyglot persistence, which leverages multiple database types, each 
tailored to a specific data class. For example: 

 Relational databases (e.g., PostgreSQL, MariaDB) for structured data like observation 
proposals. 

 Document-oriented databases (e.g., MongoDB) for semi-structured metadata. 
 Column stores (e.g., Cassandra) for streaming telemetry. 
 Key-value stores (e.g., Voldemort) for fast-access logs. 
 Graph databases (e.g., Neo4j, Cosmos DB) for user interaction mapping. 
 Array or Functional query languages for analytical pipelines. 
This modular approach allows independent scaling of archive components and optimization of 

performance and cost. The main drawback lies in the complexity of managing diverse technologies 
and the associated manpower and training costs. 

Table 4. Common database problems and common solutions. 

 
Problem 

 
Limits & What to do 

 
Solutions 

 
 

Scale Data Size 
Approaching the maximum server 
capacity  ▻ Distribute tables and 

 
Clustering 
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databases across multiple machines 
(nodes) 

 
Scale Read Requests 

Approaching the maximum number 
of DB server requests  ▻ Reduce the 

number of requests made  ▻ 
Distribute request traffic among 

different replicas 

 
Chaching Layer and Replication 

 
Scale Write Requests 

Approaching the maximum number 
of write requests handled by a DB 

server  ▻  
Split writes among multiple 

instances  ▻  
Split table records across multiple 

shards/containers 

 
Data Partitioning and Sharding 

 
Provide High 
Availability 

 

Avoind SPOF ▻ Make services 
independent by crashes 

 
Data Replication 

5. Polyglot Persistence in a Data Lake Scenario 
In modern observatories, archives manage more than just raw scientific data. A Data Lake 

approach is adopted to incorporate a wide range of heterogeneous data products—proposals, 
schedules, weather station outputs, logs, alarms, analytics, and system monitoring. 

Different database systems are beĴer suited for handling different types: 
 Relational databases for structured data. 
 Object storage for unstructured or large datasets (e.g., images, videos, documents). 
 NOSQL databases for semi-structured data that doesn't fit into a rigid schema. 
 Graph databases for analyzing complex relationships and social semantic analytics. 
Polyglot persistence ensures that each data type is managed by the most appropriate database 

and storage technology, enabling long-term flexibility and integration across services. In Figure 6 it 
is reported a generic case-study of the archives commonly managed within an Astronomical 
Observatory Facility. 

 

 

Figure 6. Descriptive use of Polyglot Persistence to different kind of data. 

Polyglot persistence relies on a Unified Access Layer—a middleware abstraction that enables 
seamless querying, handling, and processing of heterogeneous datasets across diverse storage 
backends. This layer simplifies interaction with various database systems and protocols within a 
distributed archive. 

Different data types are best served by specialized database technologies: 
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 Structured Proposal Data can be easily managed by a Relational DBMS (e.g., MariaDB, 
PostgreSQL) 

 Logs and Alarms require high-throughput so a key-value stores (e.g., Voldemort) can 
well fit. 

 JSON-based Scientific Metadata can rely on a Document-oriented DBs (e.g., MongoDB)  
 Streaming Telemetry and Event Data may need a Column-family databases (e.g., 

Cassandra) approach 
 Tracking Accesses and Users Interactions could be managed by a Graph databases (e.g., 

Neo4j, Azure Cosmos DB)  
 Data Analytics/Pipelines can be easily stored by an Array or functional query systems 

approach 
By matching each data type to the most suitable database family, this model enables 

independent scaling of archive components and optimized performance. Object storage handles large 
unstructured datasets efficiently, while NoSQL systems provide high responsiveness for semi-
structured content. However, this flexibility comes at the cost of increased operational complexity 
and a steep learning curve for diverse technologies. 

Extending this model, a multi-observatory abstraction layer can integrate science-ready data 
products from multiple facilities into a unified archive, enabling MOLAP-based multiwavelength 
research with consistent access to distributed, heterogeneous datasets, optimized and standardizen 
by Virtual Observatory standards, see Figure 7. 

 

 

Figure 7. Datalake Extractor and Aggregator for Archive Middleware. 

6. Distributed Strategy for a Petascale Astronomical Observatory 
Consider a distributed observatory composed of mountaintop telescope arrays, multiple 

observing sites, and geographically dispersed data centers. Managing tens of petabytes of data 
annually and enabling broad scientific access—potentially to proprietary datasets—requires an 
archive system that is scalable, efficient, and responsive, see Figure 8. 
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Figure 8. The CTAARCHS is referred to a common approach for the data management, archival and handling 
of data in the red box. . 

As widely described the Database is central in an Archive Solution so taking into account a such 
distributed scenario, where data is generated on-site and transferred to off-site facilities for long-term 
storage and processing, the database architecture must mirror the data topology. A document-
oriented, schemaless database is optimal, given its flexibility and scalability. 

For CTAARCHS, several open-source databases were evaluated. While MongoDB and 
Couchbase were considered, RethinkDB was selected due to its native change-feed mechanism, 
which enables real-time triggers for any database event. This functionality supports near-automated 
archive operations, reducing human intervention and eliminating the need for resource-heavy 
polling systems (Fig. 9). 

Only Azure Cosmos DB offers similar changefeed support, but RethinkDB provided a more 
lightweight, open-source alternative with low complexity and ease of deployment.  

All other possible database solutions including the proprietary relational ones, do not have this 
functionality integrated and to develop similar functions it is necessary to imprint a standard polling 
mechanism, see Fig. 9, that consumes a lot of resources and performs several “not-needed” queries 
and consequent I/O traffic.  

 
Figure 9. Differences between standard polling  and changefeed. With the changefeed the client is triggered to 
execute something for each change in the result of pre-defined query. The polling strategy means to execute the 
query several times compare with the result of a previous query and if there are differences then trigger an action 
(+ sleep + redo!). 

The recommended configuration involves deploying at least two RethinkDB instances per data 
center, ensuring local availability, distributed processing, and high resilience (Fig. 10). 
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Figure 10. The Database topology cluster of 2 nodes for each datacenter clusterred together. In the figure are 
shown 5 different datacenters. 

7. FAIR Principles and VO Integration in Polyglot Persistence 
In modern Polyglot Persistence / Data Lake environments handling heterogeneous data types, 

the FAIR principles—Findable, Accessible, Interoperable, and Reusable—serve as foundational 
guidelines for enabling data discoverability and reuse. These principles, combined with the Open 
Archives Initiative (OAI), support metadata standardization and cross-repository interoperability. 

To ensure scientific data is interoperable and accessible at the final stage, adherence to Virtual 
Observatory (VO) standards is essential. These standards, defined by the International Virtual 
Observatory Alliance (IVOA), require metadata to be exposed via TAP services and formaĴed as 
VO-Tables. This enables seamless integration with VO tools for accessing and analyzing high-level 
science products such as multi-wavelength catalogs, spectra, and images. Execution workflows are 
brokered via standardized APIs (e.g., OpenAPI, REST) and submiĴed to local resource managers 
such as Slurm, as shown in Figure 11. 

Note: In this paper, depending by the context we use as VO notation both to the Virtual 
Observatory (for public data access) and Virtual Organization (for managing access rights and 
group policies).  

 
Figure 11. IVOA standards and implementation schema. 

8. CTAARCHS Implementation 
8.1. Modular Design and Data Transfer Workflow 

CTAARCHS provides flexible access to its archive functionalities through multiple modular 
access interfaces: 

 Command-Line Interface (CLI): Executable Python scripts with standardized 
input/output. 

 Python Library: Core actions encapsulated in run_action() functions, enabling seamless 
integration into external applications. 
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 REST API: Web-based access via HTTP methods (POST, GET, PUT/PATCH, DELETE), 
allowing CRUD operations through scripts or clients (e.g., CURL, Requests). 

 Containerized Deployment: Distributed as a Docker container (AMASLIB_IO) to ensure 
platform compatibility and ease of deployment in Kubernetes (K8s) environments. 

8.2. On-Site-Off-Site Data Transfer System 
In typical observatory setups, raw data is generated on-site and archived off-site. To facilitate 

this, CTAARCHS implements a dedicated Data Transfer System (DTS) with optimized bandwidth, 
error handling, and transfer resumption via client-server architecture and RPC communication. 

The on-site storage is treated as a passive element, exposed only to authorized services via 
secure authentication protocols. This avoids performance boĴlenecks and long-term maintenance 
overhead. Data management and archiving responsibilities reside with off-site data centers, 
integrated into a broader Grid/Cloud/Edge/Fog infrastructure, each with its own Virtual 
Organization (VO). See Fig. 12 for architecture. 

 
Figure 12. The generic diagram of the file-Transfer from On-Site to Off-Site. 

8.2.1. Prerequisites 
To enable automated data transfer from observatory sites to archival facilities, the following 

prerequisites must be met: 
A. Remote Access to On-Site Storage:  On-site storage must be remotely accessible via 

secure, standardized protocols (e.g., HTTPS or XRootD), with appropriate ports opened between 
datacenters. This can be achieved through object storage systems or secure web-accessible file 
directories. 

B. File Monitoring and Triggering: On-site storage must monitor a designated _new_data/ 
directory to detect new files and trigger transfer actions. A lightweight Python watchdog script can 
monitor for symbolic links—created upon file completion—and initiate transfer, then remove or 
relocate the link upon success. 

C. Off-Site Download Mechanism: Off-site datacenters must run an RPC service hosting 
the Aria2c downloader. Aria2c supports high-throughput parallel downloads, chunking, resume 
capability, and integrity verification via checksums. A web UI provides real-time monitoring and 
automatic retries. 
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Note: While tools like GridFTP or GFAL2 are alternatives, CERN FTS is discouraged due to its 
complexity, dependency on on-site RSE configuration, and notable failure rates (~10%). Aria2c 
provides superior control, reliability, and easier integration for this use case. 

8.2.2. Typical Workflow 
1) Data Generation: Telescope systems write data to local storage; upon completion, a 

symbolic link is placed in _totransfer/. 
2) Trigger Detection: A local Python client monitors the directory and detects new links. 
3) Transfer Initialization: 

a) The symbolic link is resolved to a URI. 
b) The target off-site datacenter is selected based on policy rules (e.g., time-based, data level, 

or project ID). 
c) The client invokes an RPC command to the off-site Aria2c service, initiating parallel 

downloads. 
d) Transfer progress is tracked, and completion is confirmed via RPC status queries. 
e) Upon success, the symbolic link is removed. 
4) Post-Transfer Actions: Additional use cases, such as replication or data ingestion, can be 

triggered automatically on the off-site side. 

8.3. Dataset Ingestion 
The ingestion process must adhere to the Open Archival Information System (OAIS) model, 

which requires that only verified and validated data products be archived. This mandates a 
structured, pre-ingestion validation phase, where data integrity and metadata completeness are 
confirmed before registration and for ingesting datasets minimal Data Product Acceptable 
Requirements (DPAR) are applicable (i.e. checksum, fits header format and content vieriefied). These 
verification steps can not be postponed to an on the fly registration since the file catalog can be 
affected only when the data-product is ready to be registered/stored, even for temporary data, see 
Figure 13. 

 
Figure 13. Generic Ingestion UC and Replica if ingestion is successful and data policy needs a replica for the 
corresponding data product. 

8.3.1. Prerequisites 
A. The _toingest/ storage-pool directory must be POSIX-accessible, even if hosted on object 

storage. 
B. Python environment must include fitsio (or astropy), json, rucio, and rethinkdb libraries. 
C. The external storage endpoints called Remote Storage Elements (RSEs) must be 

accessible via standard A&A protocols (e.g., IAM tokens or legacy credentials). 
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D. A write-enabled RethinkDB node must be reachable on the local network. 

8.3.2. Typical Workflow 
1) Data Staging: Data products from Data Producers (pipelines, simulations, or DTS) are 

placed in _toingest/. 
2) SIP Creation: A Software Information Package (SIP) is generated, including checksums 

to verify file integrity. 
3) Metadata Validation: FITS headers are parsed and validated to ensure required metadata 

fields are present, correctly typed, and semantically consistent. 
4)  1 Storage Upload: 
a) Files are uploaded to an Object Storage path (e.g., dCache FS) using RUCIO or equivalent 

tools. 
b) If already present on the storage, only a move to a final archive path is needed. 
c) Upload status is monitored; once confirmed, metadata (e.g., scope, dataset, RSE) is added 

to a corresponding JSON record. 
Alternative: Use gfal2 to upload directly, guided by storage protocol seĴings in the ReThinkDB 

StoragePool collection. 
5) Database Registration: Finalized JSON is ingested into the RethinkDB archive, changing 

file status to "ingested" and completing the Archive Information Package (AIP) creation. 
6) Trigger Replication: Upon new entry detection (via RethinkDB’s changefeed), the 

MAKE_REPLICA process is automatically launched. 

8.4. Replica Management in CTAARCHS: Automation and Policy Enforcement 
As part of the data ingestion process (point n.6), automated replication ensures compliance with 

redundancy and long-term preservation policies. Triggered via a change-feed from the ReThinkDB 
file catalog, the replication logic references a DATA_POLICY_REPLICATION table to determine the 
required number of copies per data type and storage level. 

If no policy rule is found, the data product is assumed to be for temporary processing only. 
Policies define replication support types (e.g., hot, cold, or hot+cold) and preservation intent. This 
mechanism fulfills key archival use cases such as tracking preservation state and monitoring 
physical data locations across distributed storage resources. 

8.4.1. Replication Status Levels 

 Ingested: One off-site catalog record exists. 
 Archived: At least one replica stored across another RSE. 
 Preserved: Includes a backup on cold storage. 
Each replication rule specifies the data type, number of required replicas, and preferred 

storage configuration. Example: 
Any record of the DATA_POLICY_REPLICATION table is called “Replication Rule”, here is an 

example: 
{  "ruleid": "1" ,  "rulename": "AMAS_dl0-raw" ,  "datatype": "dl0.raw" , “replica_lev”: “2”, 

"rule": "preserve” , “supports”: “hot+cold”, “timeseries”: [ {“RSE1”: “jan-mar” }, {“RSE2”: “apr-jun” 
},{“RSE3”: “jul-sep” },{“RSE4”: “oct-dec” } ] } 

{  "ruleid": "1" ,  "rulename": "AMAS_dl0-fits" ,  "datatype": "dl0.fits" , “replica_lev”: “3”, 
"rule": "preserve” , “supports”: “any”} 

{  "ruleid": "2" ,  "rulename": "AMAS_dl1-fits" ,  "datatype": "dl1[a-c].fits" , “replica_lev”: “1”, 
"rule": "ingest” , “supports”: “any”} 

{  "ruleid": "3" ,  "rulename": "AMAS_dl3-fits" ,  "datatype": "dl3.fits" , “replica_lev”: “3”, 
"rule": "ingest” , “supports”: “any”} 

A generic UML of the Make_Replica is shown in the Fig. 14. 

8.4.2. Prerequisites 
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A. All target RSEs must be reachable over secure protocols (e.g., HTTPS, xrootd), and 
relevant ports must be open across data centers. 

B. The ReThinkDB cluster must support read/write access from local clients. 
C. Each off-site RSE must run an ARIA2c RPC daemon for parallel downloads and transfer 

monitoring. 

8.4.3. Typical Workflow 
0)    Data coming from Data Producers generates a change in the DB cat. 

1) Ingestion completion updates the file catalog, triggering the replication process via the 
changefeed. 

2) The client fetches the file’s URI (2a), matches it against the replication policy (2b), and evaluates 
eligible RSEs based on latency, throughput, and availability (2c). 

3) It initiates parallel data transfers using ARIA2c RPC (3a) and monitors each transfer (3c). 
4) On success, the checksum is verified, a new replica record is added to the file’s JSON metadata, 

and the replica count is updated. 

 
Figure 14. The detailed operation of Make Replica task. 

8.5. Dataset Search 
Once a data product is ingested—regardless of its archival status ("ingested", "archived", or 

"preserved")—its metadata becomes searchable through the ReThinkDB catalog. This enables 
external users to retrieve dataset identifiers and associated replica information, see Figure 15. 
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Figure 15. Generic search for a Dataset use case UML. 

8.5.1. Prerequisite 
A. Read-only access to the ReThinkDB cluster must be available from at least one node in 

the local network. 

8.5.2. Typical Workflow 
1) A user submits a query via the archive interface, specifying metadata fields of interest. 
2) The interface maps the request to searchable metadata intervals. 
3) It then queries the ReThinkDB cluster through a local node. 
4) The database returns a list of matching data products in JSON format, including URIs and 

identifiers. 
5) This list is delivered to the user for potential retrieval. 

Note: This process is typically followed by the “Retrieve” use case. 

8.6. Dataset Retrieval 
Once a dataset is ingested into the archive, regardless of its status (ingested, archived, or 

preserved), external users can query the RethinkDB metadata catalog to retrieve corresponding 
datasets and their available replicas. This process involves querying the catalog for metadata, 
translating the request into predefined searchable metadata intervals, and executing the query via a 
local node connection. The database returns a JSON file list containing URIs and identifiers of data 
products matching the query criteria, which are then provided to the user, see Fig. 16 for a generic 
workflow. 
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Figure 16. Generic UML for local data product retrieval. 

8.6.1. Prerequisites 
A. Remote Storage elements (RSEs) must be accessible across data centers via secure 

protocols (e.g., HTTPS, XRootD), with required ports open. Resources may be object storage pools or 
directories exposed via HTTPS with encryption and authentication. 

B. The RethinkDB cluster must be accessible in read-write mode from at least one node 
within the local network. 

8.6.2. Typical Workflow 
1) A Data Consumer provides a JSON list of requested data products to the retrieval interface. 
2) The system queries the local RethinkDB node 
3) The database returns a list of replica URIs for each product 
4) The interface verifies the existence of each replica 
5) Valid URIs are downloaded in parallel 

5bis) if no URI from the replica list is available the system calls the RUCIO catalog to get DID 
(filename+scope) and find in the RUCIO catalog 

6) The parallel download starts for any available URI 
7) Retrieved files are stored in a user-specified local or remote directory. 

8.7. Search and Retrieve Integration/Concatenation 
Search and Retrieve are often combined as a single use case, chaining Python methods to locate 

metadata and then download the associated data products efficiently, see fig. n.17.  

 
Figure 17. Find & Retrieve concatenation, as expressend by the pipe-concatenation of two python functions 
exported by CTAARCHS py-library. 

The search.py utility interfaces with the RethinkDB cluster to locate data products based on 
metadata queries. Depending on the execution context, results may point to internal POSIX paths, 
external URIs, or RUCIO-based identifiers (RSE + LFN + SCOPE). 
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The advanced AMAS Search Interface exposes a REST API via a dedicated web server, 
supporting fast and complex metadata-based queries across distributed data centers. Users can 
execute searches from any location or pipeline stage, provided they have network access. 

A typical query can be executed with a simple curl command, specifying key-value filters such 
as date, run number, or filename, see Figure 18. 
LIST=$(curl "https://amas-rest/search?key=DATE&val=2025-01-15:2025-02-

26&key=RUN&val=846:895&key=FILE&val=20250120_MA01_OffFixed") 

echo $LIST 

{ 

  "files": [ 

    "https://amas.oa-roma.inaf.it/static/data/Miniarray/.../20250120_MA01_OffFixed-60-

015_Fixed_00000849_I_001761_1001.lv0.fits.gz", 

    "... more URIs ..."], 

  "nfiles": 9 

} 

 
Figure 18. AMAS REST API in action. 

The dataset search returns a JSON-formaĴed file list containing URIs pointing to RSE storage 
locations. Access typically requires user authentication. 

The retrieve.py interface reads this list (e.g., from STDIN), then downloads the corresponding 
files to a user-specified directory. It connects to the local RethinkDB node using read-only credentials 
to fetch replica metadata. 

To optimize performance, the system dynamically selects the most efficient replica for each file 
using a "down-cost" algorithm. This decision is based on several site-specific parameters: 

 Cost(i): Estimated retrieval cost from site i 
 Latency(i): Time to initiate transfer 
 FileSize: Total size of the file 
 Throughput(i): Nominal data rate 
 Workload(i): Current system load (0 = idle, 1 = saturated) 
 Distance(i): Network or geographic distance 
These parameters are used to minimize download time and network usage. Workload reflects 

real-time system strain, while throughput, latency, and distance help assess the optimal retrieval 
path—especially important in geographically distributed storage systems or under regulatory 
constraints. Distance could be affected by latency or used explicitly if needed for geo-pinning or 
regulatory concerns. 

 

The optimal replica for download is dynamically selected by computing the retrieval cost (Costᵢ) 
in real time. The replica with the lowest cost is chosen, and its URI is returned. Final access requires 
authentication and authorization. 

Latencyᵢ is easily measured via network ping; Throughputᵢ and Distanceᵢ are typically available 
from infrastructure documentation. Estimating Workloadᵢ, however, is more complex and can be 
approximated by comparing the MeasuredThroughputᵢ—from a small test download—to the 
NominalThroughputᵢ. 
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if latency > threshold or throughput < expected * 0.5: 

       Workload_i = 0.8              # heavy 

elif throughput < expected * 0.8: 

       Workload_i = 0.5              # moderate 

else: 

       Workload_i = 0.1              # low 

 
Figure 19. Few lines of code to connect and retrieve data from a RethinDB node using a simple filtering search. 

The interfaces are readily accessible via the amas-api_1.0.2 docker image.  
With Docker installed, users can deploy the environment using the following minimal setup: 
docker load -i amas-api_1.0.2.tar;  

docker run -it amas-environment bash;  

./venv/bin/python ./search.py 

8.8. Monitor Integrity, Reports and Alarms 
RethinkDB enables usage statistics, logging, and failover reporting. Entry-level metrics integrate 

easily with monitoring tools such as Grafana or NetData via customizable dashboards. Data transfer 
performance, tracked through the aria2c WebUI, can be logged in the replicas collection. These 
records support straightforward analytics and visualization, see Figure 20. 

 
Figure 20. Different Monitoring and Alarm systems. 

9. Deployment of CTAARCHS at CIDC and AMAS 
Deploying a data center requires careful planning to ensure efficiency, scalability, and security. 

At the CTA Italy Data Center (CIDC), deployment of the ASTRI and Miniarray Archive System 
followed a structured strategy aligned with observatory goals and technical constraints. Emphasis 
was placed on building a secure, scalable infrastructure, minimizing risks while supporting 
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operational demands. Initial phases included logical and physical design—rack layouts, network 
topology, cooling, and power—supported by the Tier-2 facility at INFN Frascati, where CIDC is 
currently hosted, see Figure 21. 

 
Figure 21. The INFN-LNF LHC tier2 where CIDC is located. 

9.1. Hardware Resources 
The CTAARCHS implementation is based on the AMAS archive system, supporting the ASTRI-

Horn prototype and the nine-telescope ASTRI Miniarray at Teide Observatory, Tenerife. AMAS 
represents the complete off-site infrastructure for these projects and serves as the technical 
deployment of CTAARCHS. 

Built on the CTAARCHS/AMAS IaaS, the CTA Italy Data Center (CIDC) forms one of four 
designated off-site data centers for the CTAO Project (see Fig. 22). Hardware requirements for 
computing and storage are defined annually by each project office and reflected in a procurement 
plan for 2025–2026. 

Software services follow a Continuous Integration/Delivery (CI/CD) model, with the exception 
of the archive system, which must be accessible from project initiation. Archive deployment is 
coordinated with collaboration partners and adapted through a virtualized abstraction layer. 

 
Figure 22. The Hardware topology of AMAS. 

The AMAS implementation of CTAARCHS relies on shared hardware located in mainly three 
sites:  

1. INAF – OAR, Astronomical Observatory of Rome 
2. INAF – SSDC, ASI Science Data Center 
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3. INFN – LNF, National Laboratoies of Frascati  
In total AMAS hardware list consists in a federated distributed “hot” storage of 6PB (directly 

upgradable to 10PB), around 10PB (directly upgradable up to 100PB) of “cold” storage (Fiber Channel 
Tape Library); an HPC@OAR consisting in about 800-cores (8.8 kHS06) with ~1TB RAM and a grid 
HTC@LNF consisting of about 1400-cores (15.4 kHS06) with ~2.5TB of RAM. In SSDC are foreseen 
only minimal services and resources not listed here for sharing MWL data. 

9.2. The Setup 
Datacenters can join the CTAARCHS environment by registering to access repositories of 

Docker containers, virtual machines, and Kubernetes (K8s) orchestration for various services. 
The K8s clusters at INAF-OAR and INFN-LNF sites share resources within the ReDB 

“resource_pools” collection, managing storage, computing, services, and user registrations. The 
distributed RethinkDB cluster spans multiple sites—OAR (DC1), LNF (DC2), and SSDC (DC3, 
pending activation)—as illustrated in Fig. 10. 

9.3. Users Interfaces 
Main common archive users are basically:  
 Pipeline/Simul (for low level data products)  
 Science User  (for higher level data products) 
 BDMS-user and admin (for high level operation on archives) 

9.4. Pipeline / Simulation Users Access and Interface 
Users access data via different tools and workflows. Simulation and Pipeline users employ 

Workload Management Systems (WMS) like DIRAC or PANDA to run DAGs on grid computing 
or HPC queues (e.g., Condor, Slurm), interacting with off-site Object Storage. The latest approach 
envisions a Kubernetes-based Computing Element Service (CES) to orchestrate queues and manage 
virtual organizations and authorization. However, current WMS like DIRAC and PANDA are not 
yet adapted for Kubernetes. 

Simulation users typically write output directly to Object Storage for asynchronous ingestion, 
while Pipeline users first query the archive for input datasets using metadata searches, then process 
data close to storage locations to minimize transfers (this task is describein in the “Search” use case). 
All I/O operations must strictly follow use cases (UC) without customization; if a WMS cannot 
comply, it must be adapted or replaced, rather than altering the archive design. 

9.5. Unconventionl Challenges 
International collaborations face challenges due to political mandates to use pre-existing systems 

or software deloped by IKC and used for other datamodels and/or scientific scenarios. For instance 
RUCIO Data Management System and/or DIRAC for Workload Management System impose to 
CTAARCHS several limitations. These software often become single points of failure (SPOF) in a no-
SPOF infrastructure, forcing inefficient archive adaptations and violating OAIS principles that 
mandate strict separation between data producers, consumers, and archive submodules through 
standard interfaces. Modify the Archive requirements to adapt to these limitations becomes 
detrimental to the continuation of a good collaboration.  

For example, RUCIO suffers from SPOF in its centralized PostgreSQL catalog and is complex for 
multi-institutional sharing due to its fixed CERN-centric data model, leading to storage overhead and 
high operational costs. A natural antagonist of RUCIO is the OneData, which is a distributed data 
management system too, designed to integrate diverse storage resources, facilitating seamless data 
access and sharing across institutions. Differently by RUCIO, OneData offers a storage federation 
model based on a distribute document-oriented database model, being based on distributed, 
document-oriented DB cluster (i.e. CouchBase) it offers a storage federation that beĴer supports 
metadata management, open data, and collaboration, aligning with Open Science goals (see Table 5). 
Choosing storage federation technology to serve an astronomical observatory community  should 
prioritize technical effectiveness and use case fit over political or economic pressures. 
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Table 5. Comparison of RUCIO and OneData storage federation softwares. 

 
Feature 

 

 
RUCIO 

 

 
OneData 

 
  

Main Use Case 
Scientific data management of CERN 

experiments (e.g., ATLAS) 
Distributed data access and sharing. 

  
SPOF? 

  
Yes (Centralized Relational Catalog) No (Distributed DB Catalog) 

  
Data Sharing 

Requires data duplication for cross-
institution sharing 

Supports federated access without data 
duplication 

  
Integration 
Flexibility 

  

Limited: Specialized for scientific 
workflows and fixed Data models 

Advanced: Designed for integration with 
different workflows and Data models 

  
Metadata  

Management 
  

Basic Support 
Advanced metadata handling with 

multiple formats 

  
Open-Data 

Support 
  

Limited 
Strong support with integration to open 

data standards, IVOA, etc 

Finally because of the several points of failure involved with RUCIO environment it is clear that 
NO PERSISTENT ARCHIVAL SERVICE can be dependent by a potentially unstable archival 
software without the possibility to have a “plan-B” ready and usable.  

So we need to deprecate the wide use of RUCIO as central storage system for a good archive and 
we auspicate to relegate it only as marginal common interface because it is optimized for different 
storage elements protocols.  

Throughout this work, the term RSE (Remote Storage Element) is used generically to denote 
any remote storage resource accessible via standard protocols, independent of the RUCIO 
framework. 

9.6. Database and DataModel Interfaces 
Intermediate and end users may require direct access to metadata for scientific analysis or 

simulation output. To support this, a dedicated read-only user role enables querying across all data 
levels. For FITS files, primary headers are indexed within the data model, allowing advanced search 
capabilities. A sample data model and query interface are provided in the appendix (see Fig. 23), with 
customizable code available for tailored use cases. 

The code sample is similar to those used for the Find & Query interface Client but can be 
espressly customized on demand. See Fig. n.23. 
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Figure 23. Sample code to obtain the FULL metadata content of an DB entry once selected and filtered the dataset 
in the “data” structure are stored ALL metadata coming from the json record. Using any kind of python function 
it is possible to scan and filter again the “data” json-structure. 

RethinkDB supports the creation of secondary indexes on metadata fields, enabling faster 
queries as datasets grow. This feature is simple to implement, with no strict limits on the number of 
indexes, making it highly effective for optimizing search performance over time.  

r.table("DLFITS").index_create("dateobs").run(conn) #CREATE INDEX 

r.table("DLFITS").index_wait("dateobs").run(conn)    #WAIT COMPLETITION 

# Query using the index 

r.table("DLFITS").get_all("2024-12-06", index="dateobs").run(conn) 

9.7. Web Archive Portal for the End-user and Other Interfaces 
Science users—primarily researchers accessing high-level data products—interact with the 

archive via a dedicated web portal. These users are considered as Data Consumer and are planned to 
retrieve level-3 datasets in read-only mode to conduct analyses or run customizable pipelines. Data 
dissemination relies on the distributed database, with pipeline execution triggered by change-feed 
mechanisms monitoring the level-3 collection (see Fig. 24). 
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Figure 24. Standard interface from Bulk (<=dl3) Archival to Science (>=dl3) archival. This interface triggers the 
ingestion/process up to dl3. 

9.7.1. Prerequisites 
A. Python environment must include fitsio (via Astropy), json, rethinkdb, and rucio libraries. 
B. Bulk and Science RSEs must be accessible via supported authentication methods: IAM 

tokens (preferred), legacy grid certificates (deprecated), or credentials. 
C. The ReThinkDB cluster must be accessible in read-only mode via at least one local node. 
D. The Science Database may reside within ReThinkDB or any compatible RDBMS. 

9.7.2. Typical Workflow 
0)   A pipeline processes data and ingests new DL3 products into the archive. 

1) Detection of new DL3 entries triggers the get&process action. 
2) The associated URI is fetched from the source RSE and transferred to the Science RSE. 
3) DL3 metadata are extracted from ReThinkDB and written to the Science DB. 
4) Optional automated workflows convert DL3 to DL4 and DL5 products. 

Note: Since higher-level science data (DL3–DL5) involve smaller volumes, they may be handled 
via lightweight solutions such as local Airflow DAGs and executed on dedicated clusters (see Fig. 
25). 

 
Figure 25. Simple processing to pass from DL0 to Science Data. 

Community LDAP or VPN access enables shared resource usage and supports defining Airflow 
pipeline steps. The Search and Retrieve Python APIs remain functional but require read-only access 
to the ReThinkDB cluster. Alternatively, REST-API endpoints can be used to bypass direct database 
access (see Fig. 26). 
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Figure 26. A simple Airflow implementation for higher level processing. 

The low level processing, for huge amount of data can be easily shared and distributed among 
DPPN datacenters, while the science processing can be easily concentrated in one site using a 
dedicated slurm queue and an AIRFLOW DAG authomatic processing. 

The output Science RSE can benefit of a localized access dedicated only to scientific end-users 
passing through Web Portal to browse and access proprietary “proposals” data or trhough a web -
Gateway facility sharing a user-defined policy repository buckets on Cloud-based Storage utility like 
Min-IO. 

Note: A scientific end-user data access can not rely on complicated grid-based data I/O access 
like IAM (grid-based certificates/tokens for authentication) required for low-level big-data 
processing.  So a cloud based approach like amazon-AWS (i.e. A customized MinIO facility) gives 
the end user a very simple access customized on a common LDAP authenticaiton (login+password) 
and permits access to proprietary data products using standard posix and REST api access, as well 
as mount and share local storage areas for analysis and collaboration within research groups. 

A simple implementation for High Energy Astronomical Archives has been realized for the 
ASTRI Project in the AMAS, ASTRI and Miniarry Archive System, containing the Proposal 
Hangling System, a Observing Scheduler and Planner a Data Web-base Access for any scientific data-
levels and also for logs/alarms, housekeeping, data quality checks and quicklook visualizator. The 
common usage foresee the end-user to access through a collaboration VPN access and share local-
cluster facility, using Find/Search queries and data-Retrieval and using a user/defined namespace 
local bucket shared on a MinIO insfrastructure Interface.  

The bulk data processing is distributed among 3 different nodes and the archive system is 
distributed too; the science processin instead is principally driven through an AIRFLOW facility 
running on  the top of a SLURM HPC queue in the OAR cluster.  

As shown storage and computing resources are build on AAAS (Astronomical Archive As a 
Service) paradigm applied to Astronomical use-case; the resulting infrastructure is easily  
horizontally scalable as well upgradable without out-of services when needed. See Fig. n. 27 for 
current implementations. 
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Figure 27. AMAS web Portal implementation Database Browsing, Web Interfaces and AMAS implementation 
of MinIO - Amazon AWS Cloud Storage System and plots of AMAS Data-Quality Check. 

10. Conclusions and Recommendations 
The definition of Archive Solutions to be adopted in wide-range Scientific Collaborations is a 

crucial step for the success of a project, especially in the astronomical fields where, differently by 
nuclear and sub-nuclear particle experiments, the number of end-users is several orders of magnitude 
greater. 

Although political choices can be made and pushed on the basis of pre-existing economic and 
technological contributions, choosing the best technologies to assemble the most efficient system for 
the project’s use cases is the most important obstacle to overcome and depends extremely on the 
project management capabilities of the different teams (working groups) identified to assemble the 
different modules/packages. 

In our CTAARCHS we present a feasible and versatile implementation of all Archival and Data 
Management ecosystem needed for an astronomical observatory use-case, with a set of possibilities 
or alternate scenarios and equally valid technological choices. 

10.1. Software Resources & Repositories 
In this section are summarized a small list of CTAARCH Software Packages, Modules, Resources 

and Repositories included third parites Packages. 

10.2. CTAARCH & AMAS 
– Homepage: https://amas.oa-roma.inaf.it   
– Repo: https://www.ict.inaf.it/gitlab/AMAS/  
– Docker API: https://www.ict.inaf.it/gitlab/AMAS/dockerAPI/  
– Py-API: https://www.ict.inaf.it/gitlab/AMAS/pyAPI 
– REST-API: https://amas-rest.oa-roma.inaf.it  

10.3. RethinkDB 
– Homepage: https://rethinkdb.com  
– Repo: https://hub.docker.com/_/rethinkdb/   
– Py-API: https://rethinkdb.com/docs/install-drivers/python/  

10.4. Minio 
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– Homepage: https://min.io/  
– Repo: https://min.io/download?view=aistor   
– Client: https://min.io/docs/minio/linux/reference/minio-mc.html  

10.5. Airflow 
– Homepage: https://airflow.apache.org/ 
– Repo: https://airflow.apache.org/docs/apache-airflow/stable/installation/index.html 
– REST-API: https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html  
–  

HTCondor 
– Homepage: https://htcondor.org/ 
– Repo: https://github.com/htcondor  
– REST: https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html and 
https://github.com/htcondor/htcondor-restd  

OneData 
– Homepage: https://onedata.org/#/home  
– Repo: https://onedata.org/#/home/api/stable/onezone and https://github.com/onedata/getting-
started  
– RESTful: https://docs.webmethods.io/on-premises/webmethods-onedata/en/10.7.0/onedata-
webhelp/index.html#page/onedata-webhelp/to-rest_services_13.html 

10.6. Rucio 
– Homepage: https://rucio.cern.ch/  
– Repo: https://github.com/rucio/rucio  
– REST-API: https://rucio.cern.ch/documentation/html/rest_api_doc.html  

10.7. Django 
– Homepage: https://www.djangoproject.com/  
– Repo: https://github.com/django/django  
– REST-API: https://www.django-rest-framework.org/  

PanDA 
– Homepage: https://panda-wms.readthedocs.io/en/latest/  
– Repo: https://github.com/PanDAWMS 
– PyAPI/REST: https://panda-wms.readthedocs.io/en/latest/client/rest.html 

10.8. Dirac 
– Homepage: 
https://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/WorkloadManagement/  
– Repo: https://github.com/DIRACGrid  
– Py-API: https://dirac.readthedocs.io/en/latest/UserGuide/GettingStarted/UserJobs/DiracAPI/  
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The following abbreviations are used in this manuscript: 
ACID Atomicity, Consistency, Isolation and Durability 
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AMAS ASTRI and Miniarray Archive System 
ASTRI Astrofisica con Specchi a Tecnologia Replicante Italiana 

CAP 
Theorem: Consistency (data Consistency), Availability (data Accessibility) and 
Partitioning (partition Tollerance) 

CLI Command Line Interface 

CTAARCHS 
Cloud-Based Technology for Archiving Astronomical Reseach Contents & 
Handling System 

CTAO Cherenkov Telescope Array Observatory 
DBMS DataBase Management System 
DPAR Data Product Acceptable Requirements 
DPPN Datacenters, like DC 
FAIR Findable, Accessible, Shared and Reusable 
IKC In-Kind Contribution 
MWL Multi WaveLenght 
NOSQL Not Only SQL 
RDBMS Relational DBMS 
REST API REpresentional State Transfer Application Programming Interface 
RSE Remote Storage Element 
SQL Structured Query Language 
WMS Workload Management System 

Appendix  
Data Model Example (DL0 Fits-Data) 

The datamodel can be searchable and filtered in any keyword. The selection/filtering can be 
easily speedup by sorting keyword indexes. In principle each data-product and data-level has its own 
Data Model defined by a dedicated JSON Schema File. In this appendix an example of a DL0 Fits 
JSON entry.  
{ 

    "aaid": "17447020150367122", 

    "aipvers": "AMAS_1.0.0", 

    "archive": { 

        "PFN": "20250227_MA01_Crab_W0.50p090_00001063_R_002086_1003.lv0.fits.gz", 

        "PFNP": "/archive/MINIARRAY/PHYSICAL/pass_0.0.1/20250227/00001063/dl0/varlg/v2", 

        "archdate": "2025-04-15 07:26:55.036728", 

        "archtime": 1744702015, 

        "checksum": "3ac92bdc", 

        "container": "20250415", 

        "dataset": "fits-data", 

        "filesize": 14747749, 

        "paths": { 

            "RSE": "astriFS", 

            "replicaflag": 0, 

            "type": "web-https", 

            "uid": "17447020150367122", 

            "uripath": "https://amas.oa-

roma.inaf.it/static/data/Miniarray/pass_0.0.1/20250227/00001063/dl0/varlg/v2/20250227_MA01_Crab_W0.50p090_00001063_R_

002086_1003.lv0.fits.gz" 

        }, 

        "replicas": { 

            "replica": [ 

                { 

                    "number": "0", 

                    "rdata": "2025-04-15 07:26:55.036728", 

                    "rid": "17447020150367122", 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 June 2025 doi:10.20944/preprints202506.0847.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0847.v1
http://creativecommons.org/licenses/by/4.0/


 30 of 35 

 

                    "rtype": "web-https", 

                    "spool": "AMAS", 

                    "uri": "https://amas.oa-

roma.inaf.it/static/data/Miniarray/pass_0.0.1/20250227/00001063/dl0/varlg/v2/20250227_MA01_Crab_W0.50p090_00001063_R_

002086_1003.lv0.fits.gz" 

                } 

            ] 

        }, 

        "scope": "MA01" 

    }, 

    "author": "Stefano Gallozzi", 

    "camera": "{'name': 'ASTRIMA', 'origin': 'ASTRIDPS', 'creator': 'adas preprocessing v1.1', 'npdm': 37, 'modeid': 'R', 'datatype': 'fits-

data'}", 

    "daqmode": "R", 

    "datadesc": "lv0_var_lg", 

    "datatype": "1003", 

    "dateobs": "2025-02-27", 

    "event": { 

        "obsdate": "2025-02-27" 

    }, 

    "file_version": 1, 

    "filename": "20250227_MA01_Crab_W0.50p090_00001063_R_002086_1003.lv0.fits.gz", 

    "fsize": 14747749, 

    "header": { 

        "Primary": { 

            "ALT_PNT": -999, 

            "AZ_PNT": -999, 

            "BITPIX": 16, 

            "CHECKSUM": "g5XEj3XBg3XBg3XB", 

            "COMMENT": [ 

                "= 'FITS (Flexible Image Transport System) format is defined in ''Astron'" 

            ], 

            "CREATOR": "adas preprocessing v1.1.1", 

            "DAQ_ID": "002086", 

            "DAQ_MODE": "R", 

            "DATAFORMAT": "v1.0", 

            "DATALEVEL": "lv0", 

            "DATAMODE": "10", 

            "DATASUM": "0", 

            "DATE": "2025-02-28T07:34:30", 

            "DATE-END": "2025-02-27T21:10:49", 

            "DATE-OBS": "2025-02-27T20:29:41", 

            "DEC_OBJ": 22.0174, 

            "DEC_PNT": 21.517, 

            "EQUINOX": "2000.0", 

            "EXTEND": true, 

            "FILENAME": "20250227_MA01_Crab_W0.50p090_00001063_R_002086_1003.lv0.fits", 

            "FILEVERS": 1, 

            "INSTRUME": "CAMERA", 

            "MJDREFF": 0.00080074, 

            "MJDREFI": 58849, 

            "NAXIS": 0, 

            "NTEL": 1, 

            "OBJECT": "Crab", 

            "OBS_DATE": "20250227", 
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            "OBS_MODE": "W0.50p090", 

            "ORIGIN": "ASTRIDPS", 

            "ORIG_ID": "00", 

            "PROG_ID": "001", 

            "RADECSYS": "FK5", 

            "RA_OBJ": 83.6324, 

            "RA_PNT": 83.632, 

            "RUN_ID": "00001063", 

            "SBL_ID": "002", 

            "SIMPLE": true, 

            "SUBMODE": "02", 

            "TELAPSE": "2468", 

            "TELESCOP": "ASTRI-MA", 

            "TEL_ID": "01", 

            "TIMEOFFS": 0, 

            "TIMESYS": "TT", 

            "TIMEUNIT": "s", 

            "TSTART": "162851381", 

            "TSTOP": "162853849" 

        } 

    }, 

    "id": "f9c92d8e-e2a8-4c8b-bba9-7d6209317676", 

    "infomail": "stefano.gallozzi@inaf.it", 

    "latest_version": 1, 

    "object": "Crab", 

    "obsid": 2086, 

    "obsmode": "W0.50p090", 

    "packtype": "fits-data", 

    "programid": 111, 

    "proposal": { 

        "carryover": "Y", 

        "category": "EXT/RP", 

        "cycle": { 

            "name": "cycle2024/1", 

            "period": "[ 2023-05-01,2023-05-05 ]", 

            "type": "semester" 

        }, 

        "obsprog": { 

            "arrayconf": { 

                "acq_mode": "wobble", 

                "acq_submode": "2.5", 

                "telmatrix": { 

                    "confname": "fulla_ma", 

                    "on_off": "[ 1,0,0,0,0,0,0,0,0 ]", 

                    "type": "array" 

                }, 

                "trigger": "S2" 

            }, 

            "constraints": { 

                "maxMIF": "0.7", 

                "maxZA": "60.0 [deg]", 

                "minAT": "0.7", 

                "minET": "100 [hrs]", 

                "minMD": "100 [deg]", 

                "minZA": "0.0 [deg]" 
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            }, 

            "progid": "1", 

            "target": { 

                "coord": "[ 83.6329, 22.014 ]", 

                "dec": 22.014, 

                "diameter": "7.0 [arsec]", 

                "epoch": "J2000", 

                "magnitude": "8.4 [ABmag]", 

                "name": "Crab_Nebula", 

                "rad": 83.6329, 

                "tooflag": "0", 

                "type": "wcs" 

            } 

        }, 

        "piname": "Giovanni Pareschi", 

        "propdate": "2023-11-21", 

        "propid": "2", 

        "proplink": "https://amas.oa-roma.inaf.it/proposals/2/", 

        "proptype": "SCI", 

        "reqtime": "300 [hrs]" 

    }, 

    "runid": 1063, 

    "schema": "https://amas.oa-roma.inaf.it/static/aipMADLFITSschema", 

    "schemavers": "FITS_v0.0.1", 

    "telescope": { 

        "altitude": "2390 [m]", 

        "diamS1": "4.6 [m]", 

        "diamS2": "1.5 [m]", 

        "geo": { 

            "coord": [ 

                28.30015, 

                -16.50965 

            ], 

            "type": "gps" 

        }, 

        "optconf": "DM", 

        "telid": "01", 

        "telname": "MA01", 

        "type": "AIC" 

    }, 

    "timestamp": "2025-02-28 09:31:54+00:00" 

} 

Json Object Schemas  
Here is an example of a JSON Schema for the “archive” Object: 

{ 

  "$schema": "https://json-schema.org/draft/2020-12/schema", 

  "title": "Archive Object Schema", 

  "type": "object", 

  "properties": { 

    "archive": { 

      "type": "object", 

      "properties": { 

        "PFN": { "type": "string" }, 

        "PFNP": { "type": "string" }, 
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        "archdate": { "type": "string", "format": "date-time" }, 

        "archtime": { "type": "integer" }, 

        "checksum": { "type": "string" }, 

        "container": { "type": "string" }, 

        "dataset": { "type": "string" }, 

        "filesize": { "type": "integer" }, 

        "paths": { 

          "type": "object", 

          "properties": { 

            "RSE": { "type": "string" }, 

            "replicaflag": { "type": "integer" }, 

            "type": { "type": "string" }, 

            "uid": { "type": "string" }, 

            "uripath": { "type": "string", "format": "uri" } 

          }, 

          "required": ["RSE", "replicaflag", "type", "uid", "uripath"] 

        }, 

        "replicas": { 

          "type": "object", 

          "properties": { 

            "replica": { 

              "type": "array", 

              "items": { 

                "type": "object", 

                "properties": { 

                  "number": { "type": "string" }, 

                  "rdata": { "type": "string", "format": "date-time" }, 

                  "rid": { "type": "string" }, 

                  "rtype": { "type": "string" }, 

                  "spool": { "type": "string" }, 

                  "uri": { "type": "string", "format": "uri" } 

                }, 

                "required": ["number", "rdata", "rid", "rtype", "spool", "uri"] 

              } 

            } 

          }, 

          "required": ["replica"] 

        }, 

        "scope": { "type": "string" } 

      }, 

      "required": [ 

        "PFN", "PFNP", "archdate", "archtime", "checksum", "container", 

        "dataset", "filesize", "paths", "replicas", "scope" 

      ] 

    } 

  }, 

  "required": ["archive"] 

} 

And a valid “archive” property for that schema: 
    "archive": { 

        "PFN": "20250227_MA01_Crab_W0.50p090_00001063_R_002086_1003.lv0.fits.gz", 

        "PFNP": "/archive/MINIARRAY/PHYSICAL/pass_0.0.1/20250227/00001063/dl0/varlg/v2", 

        "archdate": "2025-04-15 07:26:55.036728", 

        "archtime": 1744702015, 

        "checksum": "3ac92bdc", 
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        "container": "20250415", 

        "dataset": "fits-data", 

        "filesize": 14747749, 

        "paths": { 

            "RSE": "astriFS", 

            "replicaflag": 0, 

            "type": "web-https", 

            "uid": "17447020150367122", 

            "uripath": "https://amas.oa-

roma.inaf.it/static/data/Miniarray/pass_0.0.1/20250227/00001063/dl0/varlg/v2/20250227_MA01_Crab_W0.50p090_00001063_R_

002086_1003.lv0.fits.gz" 

        }, 

        "replicas": { 

            "replica": [ 

                { 

                    "number": "0", 

                    "rdata": "2025-04-15 07:26:55.036728", 

                    "rid": "17447020150367122", 

                    "rtype": "web-https", 

                    "spool": "AMAS", 

                    "uri": "https://amas.oa-

roma.inaf.it/static/data/Miniarray/pass_0.0.1/20250227/00001063/dl0/varlg/v2/20250227_MA01_Crab_W0.50p090_00001063_R_

002086_1003.lv0.fits.gz" 

                } 

            ] 

        }, 

        "scope": "MA01" 

    }, 
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