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Abstract: This study investigates the relationship between sovereign credit rating transitions and 

domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings 

are central to sovereign risk assessment, their immediate influence on financial markets remains 

contested. This research adopts a multi-method analytical framework combining algebraic 

combinatorics and time-series econometrics. The methodology incorporates the construction of a 

directed credit rating transition graph, the partially ordered set representation of rating hierarchies, 

rolling-window correlation analysis, Granger causality testing, event study evaluation, and the 

formulation of a reward matrix with optimal rating path optimization. Empirical results indicate that 

credit rating announcements in Greece exert only modest short-term effects on the Athens Stock 

Exchange General Index, implying that markets often anticipate these changes. In contrast, sequential 

downgrade trajectories elicit more pronounced and persistent market responses. The reward matrix 

and path optimization approach reveal structured investor behavior that is sensitive to the 

cumulative pattern of rating changes. These findings offer a more nuanced interpretation of how 

sovereign credit risk is processed and priced in transparent and fiscally disciplined environments. By 

bridging network-based algebraic structures and economic data science, the study contributes a novel 

methodology for understanding systemic financial signals within sovereign credit systems. 

Keywords: Algebraic combinatorics; credit ratings; Athens Stock Exchange; directed graphs; posets; 

financial optimization; network theory; temporal analysis; stochastic processes; predictive modeling 

 

1. Introduction 

The increasing complexity and interconnectivity of global financial systems necessitate the 

development of novel analytical frameworks capable of elucidating both the structural and dynamic 

properties of financial phenomena. Once confined to the realm of pure mathematics, algebraic 

combinatorics has recently found fertile ground in the domains of data science [1, 2] and financial 

optimisation [3]. The evolution of combinatorics in financial modelling has progressed well beyond 

its early applications in elementary probability, giving rise to sophisticated combinatorial structures 

and algorithms that now underpin modern financial decision-making processes. Originally 

employed to compute probabilities—such as estimating the likelihood of specific portfolio outcomes 

through combinations of financial ratios—combinatorics has since expanded into data-intensive 

fields including big data analytics and machine learning, where combinatorial techniques play a 

pivotal role in scenario generation and pattern recognition [4].  

Among these tools, graph theory has emerged as a foundational methodology, offering a 

powerful framework for representing and analysing the intricate network of interactions that 

characterise financial systems [5]. Graph-theoretic models have been instrumental in quantifying 

systemic risk, analysing the propagation of financial contagion, and revealing latent market 

structures. Notably, models such as those proposed by [6], have proven particularly effective in 

capturing interbank exposures and the cascading effects of credit interdependencies. The formalism 
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of graph theory enables a rigorous exploration of financial network stability under conditions of 

systemic stress. 

In parallel, combinatorial optimisation has become integral to portfolio construction, asset 

allocation and risk assessment. Techniques such as integer programming and dynamic programming 

are frequently employed to solve high-dimensional optimisation problems in portfolio management 

[7], while discrete-time models like binomial trees and lattice structures continue to underpin option 

pricing and risk-neutral valuation methodologies [8]. Combinatorial methods have also contributed 

significantly to the optimisation of algorithmic trading systems and order book structures, thereby 

enhancing the operational efficiency and robustness of automated financial strategies. 

A particularly promising frontier lies at the intersection of combinatorics and machine learning, 

most notably through the development of graph neural networks (GNNs). GNNs have demonstrated 

strong capabilities in learning from graph-structured data, offering improved predictions of complex 

system behaviours and enabling the optimisation of intricate financial processes [9]. Recent advances 

in this area have further highlighted their potential to serve as scalable solvers for otherwise 

intractable combinatorial optimisation problems in financial contexts. 

Traditionally, the modelling of credit rating dynamics has relied on Markov chains, which are 

based on the assumption that future states depend exclusively on current states [10]. While useful for 

certain applications, Markovian approaches can obscure higher-order dependencies and overlook 

deeper structural features of rating movements [11]. To address these limitations, algebraic 

combinatorics has introduced more expressive mathematical representations, such as partially 

ordered sets or “posets”, chains, antichains, and lattices [12, 13]. These structures facilitate the 

classification of economic agents and the modelling of preference hierarchies, enabling a more 

nuanced understanding of financial systems. 

Emerging research has begun to apply poset-based methods to financial networks, offering new 

insights into how economic hierarchies can be formalised and analysed [14]. However, the direct 

application of algebraic combinatorics to model sovereign credit ratings and their empirical 

relationship with equity market performance remains an under-explored area. This gap underscores 

the need for integrative approaches that connect combinatorial mathematics with financial datasets 

to uncover latent structures and dynamics related to credit risk and investor sentiment. 

Motivated by this perspective, the present study investigates the impact of sovereign credit 

rating transitions on an equity market performance. Specifically, it explores the utility of algebraic 

combinatorics in modelling credit rating movements and their relationship with the Athens Stock 

Exchange General Index (ASE Index), a prominent financial benchmark for the Greek economy. 

Credit ratings, such as those issued by Moody’s, represent ordinal measures of creditworthiness and 

are widely recognised for their influence on borrowing costs, investment flows, and macroeconomic 

policymaking [15]. Changes in these ratings—including upgrades, downgrades, and shifts in 

outlook—can have pronounced effects on market dynamics [16], making their structural behaviour 

highly relevant for both risk management and economic forecasting. 

The ASE Index serves as a proxy for investor sentiment and macroeconomic confidence in 

Greece. Over the past three decades, the Greek economy has experienced substantial volatility, 

including a sovereign debt crisis, the implementation of austerity measures, and an extended period 

of economic stagnation and recovery [17]. The nation’s credit rating history, as documented by 

Moody’s, reflects this economic turbulence and thus offers a rich empirical basis for combinatorial 

modelling. By integrating algebraic structures with empirical financial data, this research aims to 

advance both the theoretical understanding and practical applications of combinatorics in the 

analysis of sovereign credit risk and its market consequences. 

The objective of this study is to investigate the relationship between sovereign credit rating 

transitions and domestic equity market performance, using Greece as a case study over the period 

2004–2024. For this reason, we employed a multi-method framework that includes directed graph 

modeling, rolling-window correlation analysis, Granger causality tests, event studies, and a reward 

matrix approach. The central goal is to assess whether rating changes convey new information to 
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markets or merely formalize expectations already priced in. Furthermore, we seek to identify whether 

market reactions are more strongly associated with isolated rating shifts or with cumulative transition 

paths. By integrating tools from network theory and econometric analysis, this research contributes 

to a more nuanced understanding of credit ratings’ informational value and market signaling power. 

The results are intended to inform policymakers, investors, and credit rating agencies on the 

structural dynamics of sovereign risk perception. 

Our findings reveal that sovereign credit rating transitions in Greece have a limited immediate 

impact on domestic equity market, suggesting that such announcements are often anticipated by 

investors. Granger causality tests show no strong predictive relationship between ratings and market 

movements, while the event study indicates modest abnormal returns around significant rating 

changes. However, the reward matrix and optimal path analysis highlight that sequential rating 

transitions, rather than isolated events, elicit more pronounced market responses. These results 

emphasize the importance of structural downgrade trajectories in shaping investor sentiment and 

risk assessment in mature financial systems. This research is among the first to apply algebraic 

combinatorics to empirically model sovereign rating dynamics and their equity market implications. 

The rest of the manuscript is organized as follows. Section 2 presents the data sources, ordinal 

transformation of Moody’s credit ratings, and the analytical framework. Section 3 reports the 

empirical results and Section 4 offers a discussion of the results, limitations and future research. 

Section 5 concludes the paper, summarizing the main contributions and highlighting methodological 

innovations. 

2. Materials and Methods 

This section outlines the analytical framework used to examine the dynamic interactions 

between sovereign credit ratings and financial market performance in Greece over the period 2004–

2024.  

2.1. Data Description and Preprocessing 

Moody’s Investors Service [18] assigns sovereign credit ratings to assess a government’s ability 

and willingness to meet its debt obligations in a timely manner. These ratings reflect the relative 

credit risk of sovereign issuers and are expressed on an ordinal scale ranging from Aaa, indicating 

the highest quality and lowest credit risk, to C, denoting extremely speculative obligations and high 

likelihood of default (Table 1). The rating process integrates both quantitative and qualitative 

assessments. Quantitatively, Moody’s considers macroeconomic indicators such as GDP growth, 

fiscal and current account balances, inflation, and external debt sustainability. Qualitatively, the 

agency evaluates institutional strength, policy credibility, governance effectiveness, and geopolitical 

risks. Ratings are determined by Moody’s Sovereign Risk Group through a structured framework 

that weighs economic strength, institutional quality, fiscal strength, and susceptibility to event risk. 

Importantly, sovereign ratings are not static but subject to continuous monitoring and periodic 

review. They may be placed on review for upgrade or downgrade, or assigned a rating outlook, 

indicating the likely direction of future changes. These ratings serve as critical inputs for global 

capital markets, influencing investor behavior, borrowing costs, and international policy decisions. 

Table 1. Moody's sovereign credit ratings. 

No. Rating Meaning 

1 Aaa Highest quality, minimal credit risk 

2 Aa1 High quality, very low credit risk (upper end of Aa) 

3 Aa2 High quality, very low credit risk (mid-range of Aa) 

4 Aa3 High quality, very low credit risk (lower end of Aa) 

5 A1 Upper-medium grade, low credit risk (upper end of A) 
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6 A2 Upper-medium grade, low credit risk (mid-range of A) 

7 A3 Upper-medium grade, low credit risk (lower end of A) 

8 Baa1 
Medium grade, moderate credit risk (upper end of Baa) – lowest investment 

grade 

9 Baa2 Medium grade, moderate credit risk (mid-range of Baa) 

10 Baa3 
Medium grade, moderate credit risk (lower end of Baa) – borderline 

investment grade 

11 Ba1 Speculative, substantial credit risk (upper end of Ba) 

12 Ba2 Speculative, substantial credit risk (mid-range of Ba) 

13 Ba3 Speculative, substantial credit risk (lower end of Ba) 

14 B1 Highly speculative, high credit risk (upper end of B) 

15 B2 Highly speculative, high credit risk (mid-range of B) 

16 B3 Highly speculative, high credit risk (lower end of B) 

17 Caa1 Poor standing, very high credit risk (upper end of Caa) 

18 Caa2 Poor standing, very high credit risk (mid-range of Caa) 

19 Caa3 Poor standing, very high credit risk (lower end of Caa) 

20 Ca Highly speculative, likely in or near default 

21 C Lowest rating, typically in default with little prospect for recovery 

Credit ratings are originally expressed in alphanumeric format (e.g., A1, Ba3), reflecting ordinal 

assessments of creditworthiness. For the purposes of this analysis, each rating was systematically 

converted into an integer scale ranging from 1 (corresponding to Aaa, the highest rating) to 21 

(corresponding to C, the lowest rating). This transformation facilitates quantitative analysis, enables 

the application of mathematical and statistical techniques, and supports the construction of graph-

based models. Let the set of Moody’s credit rating 𝑹𝒂𝒕𝒊𝒏𝒈_𝑳𝒂𝒃𝒆𝒍𝒕 = {𝑨𝒂𝒂, 𝑨𝒂𝟏, … , 𝑪} be mapped to 

a totally ordered numerical scale 𝑹𝒂𝒕𝒊𝒏𝒈_𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒕 = {𝟏, 𝟐, … , 𝟐𝟏} , where a bijective function 

𝒇: 𝑹𝒂𝒕𝒊𝒏𝒈_𝑳𝒂𝒃𝒆𝒍𝒕 → 𝑹𝒂𝒕𝒊𝒏𝒈_𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒕  assigns a unique integer to each rating level based on its 

credit quality, such that: 

𝑹𝒂𝒕𝒊𝒏𝒈_𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒕 = 𝒇(𝑹𝒂𝒕𝒊𝒏𝒈_𝑳𝒂𝒃𝒆𝒍𝒕), 𝒇: {𝑨𝒂𝒂, 𝑨𝒂𝟏, … , 𝑪} → {𝟏, 𝟐, … , 𝟐𝟏} (1) 

This transformation allows ordinal categorical ratings to be embedded in a numerical 

framework suitable for statistical analysis and graph construction. While the transformation of 

Moody’s alphanumeric credit ratings into an ordinal integer scale enables the application of 

quantitative methods, it is important to emphasize that this encoding preserves only the ordinal 

properties of the data, not its cardinal meaning. Specifically, the numerical values assigned to the 

rating categories (e.g., Aaa = 1, C = 21) reflect a strict ranking of creditworthiness, whereby lower 

integers correspond to higher credit quality. However, the intervals between successive ratings are 

not uniformly meaningful in a quantitative sense. For instance, the numerical difference between A3 

(encoded as 7) and Baa1 (encoded as 8) does not imply that the credit risk differential is equivalent 

to that between Ba1 (encoded as 11) and Ba2 (encoded as 12). As such, any statistical operations 

involving these values—such as correlation analysis or graph-based optimization—should be 

interpreted with due regard to their ordinal, rather than metric, nature. This distinction is essential 

to avoid misinterpretation of results as implying a linear or proportional relationship between rating 

levels and underlying credit risk. 

In the context of this study, Moody’s sovereign rating history for Greece provides a longitudinal 

dataset for modeling credit risk trajectories and their interaction with financial markets. We utilized 

daily data for the ASE Index and Greece’s sovereign credit ratings from Moody’s for the period 2004–

2024. Moody's credit rating for Greece underwent significant changes between 2004 and 2024, 
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reflecting the country's economic challenges and subsequent recovery. Table 2 provides a summary 

of the sovereign credit ratings for Greece over the study period. For analytical purposes, each 

assigned rating is assumed to remain constant on a daily basis until a formal change is recorded. 

Table 2. Moody’s Credit Ratings for Greece (2004–2024). 

Date Rating Outlook 

4 Nov 2002 A1 Stable 

25 Feb 2009 A1 Stable 

29 Oct 2009 A1 Negative Watch 

22 Dec 2009 A2 Negative 

22 Apr 2010 A3 Negative 

14 Jun 2010 Ba1 Stable 

16 Dec 2010 Ba1 Negative Watch 

7 Mar 2011 B1 Negative Watch 

1 Jun 2011 Caa1 Negative 

25 Jul 2011 Ca Negative 

2 Mar 2012 C Negative 

29 Nov 2013 Caa3 Stable 

1 Aug 2014 Caa1 Stable 

6 Nov 2020 Ba3 Stable 

17 Mar 2023 Ba3 Positive 

15 Sep 2023 Ba1 Stable 

14 Sep 2024 Ba1 Positive 

The ASE Index values are aligned with their respective rating dates to ensure temporal 

consistency (see supplementary material). 

2.2. Poset Representation of Rating Hierarchy 

We model the hierarchical nature of Moody’s credit ratings using a partially ordered set (poset). 

Formally, we define the set of ratings 𝑹  {𝒓₁, 𝒓₂, . . . , 𝒓ₙ} with a binary relation ≤ such that 𝒓ᵢ ≤  𝒓ⱼ if 

and only if 𝒓ᵢ is a better or equal rating than 𝒓ⱼ. The relation ≤ is reflexive, antisymmetric, and 

transitive, qualifying (𝑹, ≤) as a poset. We generate two Hasse diagrams: one illustrating the full 

theoretical rating structure and another limited to the subset of ratings assigned to Greece (2004-

2024). 

2.3. Credit Rating Transition Graph 

We construct a directed graph to represent rating transitions, where each node denotes a distinct 

Moody’s rating and directed edges indicate observed transitions between ratings. Let 𝐆 =  (𝐕, 𝐄) 

denote the directed graph, where 𝑽 = 𝑹𝒂𝒕𝒊𝒏𝒈_𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒕 represents the set of unique credit rating 

levels and 𝐄 ⊆  𝐕 ×  𝐕 is the set of observed transitions between consecutive ratings over time. Each 

directed edge (𝒊, 𝒋) ∈ 𝑬  corresponds to an observed transition from rating 𝒊  to rating   𝒋 , and is 

assigned a weight 𝒘𝒊𝒋 , defined as 𝒘𝒊𝒋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒄𝒄𝒖𝒓𝒆𝒏𝒄𝒆𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝒊 → 𝒋 . The 

adjacency matrix 𝑨 = [𝒂𝒊𝒋]of the graph is defined as:  

𝒂𝒊𝒋 = {
𝒘𝒊𝒋, 𝒊𝒇 (𝒊, 𝒋) ∈ 𝑬

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (1) 

2.4. Rolling Correlation Analysis 
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To investigate the co-movement between credit ratings and stock market performance, we 

compute rolling Pearson correlation coefficients using a 90 day window. Given the two time series 

𝑿𝒕 as the ASE Index values and 𝒀𝒕 as the numerical credit ratings (𝑹𝒂𝒕𝒊𝒏𝒈_𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒕), the rolling 

Pearson correlation over a window of 𝒌 days is computed as: 

𝝆𝒕 =
∑ (𝑿𝒊 − 𝑿̅)(𝒀𝒊 − 𝒀̅)𝒕

𝒊=𝒕−𝒌+𝟏

√∑ (𝑿𝒊 − 𝑿̅)𝟐𝒕
𝒊=𝒕−𝒌+𝟏 √∑ (𝒀𝒊 − 𝒀̅)𝟐𝒕

𝒊=𝒕−𝒌+𝟏

 
(2) 

For 𝒕 ≥ 𝒌, where 𝑿̅ and 𝒀̅ are the means of 𝑿 and 𝒀 over the window [𝒕 − 𝒌 + 𝟏, 𝒕] and 𝒌 =

𝟗𝟎 denotes the rolling window size of 90 days. 

2.5. Granger Causality Tests 

We conduct Granger causality tests to examine whether credit rating transitions possess 

statistically significant predictive power over subsequent market movements. To assess predictive 

relationships, we implement bidirectional Granger causality tests between credit ratings (𝒀𝒕) and ASE 

Index levels ( 𝑿𝒕 ). The standard form of the test involves estimating the following Vector 

Autoregression (VAR) models: 

𝑿𝒕 = 𝒂𝟎 + ∑ 𝒂𝒊𝑿𝒕−𝒊

𝒑

𝒊=𝟏
+ ∑ 𝜸𝒋𝒀𝒕−𝒋 + 𝜺𝒕

𝒑

𝒊=𝟏
  (3) 

𝒀𝒕 = 𝜷𝟎 + ∑ 𝜷𝒊𝒀𝒕−𝒊

𝒑

𝒊=𝟏
+ ∑ 𝝍𝒋𝑿𝒕−𝒋 + 𝜼𝒕

𝒑

𝒊=𝟏
 (4) 

where 𝒑 is the number of lags, 𝒂𝟎, 𝜷𝟎 are intercepts, 𝒂𝒊, 𝜷ᵢ are autoregressive coefficients, 𝜸ⱼ, 

𝝍ⱼ are cross-lag coefficients, and 𝜺ₜ, 𝜼ₜ are residuals. We assess the statistical significance of 𝜸ⱼ, and 

𝝍ⱼ via F-tests. If the model significantly reduces prediction error (measured by F-test), we conclude 

that 𝜲 Granger-causes 𝜰 and vice versa. 

2.6. Event Study of Rating Shocks 

To evaluate the market’s short-term reaction to rating events, we conduct an event study around 

transitions of two or more notches. For each event, we define a symmetric window of [−5, +5] trading 

days. Cumulative Abnormal Returns (CAR) are calculated as: 

𝑪𝑨𝑹[𝒕₁ ,𝒕₂] = ∑ (𝑹ₜ −  𝑬[𝑹ₜ])
𝒕𝟐 

𝒕=𝒕𝟏

 (5) 

where 𝒕₁  and 𝒕₂  define the event window, 𝑹ₜ  is the ASE Index return, and  𝑬[𝑹ₜ] is the 

expected return under a market-adjusted model. 

2.7. Reward Matrix Construction 

We quantify the market's valuation of rating transitions by constructing a reward matrix. Each 

cell 𝑹𝒊𝒋 represents the average change in the ASE Index associated with a transition from rating 𝒊 to 

rating 𝒋: 

𝐑𝐢𝐣 =  (
𝟏

𝐧𝐢𝐣
) ∑ (𝐗𝐭𝐤

− 𝐗𝐭𝐤−𝟏)
𝐧𝐢𝐣

𝒌=𝟏
 (6) 

where 𝒏𝒊𝒋 is the number of observed 𝒊 →  𝒋 transitions, 𝒕𝒌 is the time of the 𝒌-th transition, 

and 𝑿ₜ is the ASE Index. 

2.8. Optimal Rating Path Optimization 

In the context of this study, the optimal path cost function is employed to determine the most 

advantageous sequences of sovereign credit rating transitions based on their historical impact on the 

ASE Index. By analyzing past data on Greece’s credit rating changes and corresponding market 

reactions, the study constructs a reward matrix that captures the average ASE Index response to each 

observed rating transition. These rewards are then transformed into costs by negating the values, 
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allowing the problem to be framed as a shortest-path optimization in a directed graph. Each node 

represents a credit rating, and each directed edge between nodes reflects a historical transition 

weighted by the negative average market response. The total cost of a path is defined as the sum of 

the negative rewards along that sequence of transitions. This formulation enables the use of Dijkstra’s 

algorithm to identify rating trajectories—either upgrades or downgrades—that historically resulted 

in the most favorable or least adverse market outcomes. To our knowledge, this is the first application 

of Dijkstra’s algorithm to sovereign credit transitions in financial markets. The total cost of a path of 

rating transitions 𝑷 through the rating transition graph is:  

𝐂(𝐏) =  ∑ −𝑹𝒊𝒋

(i,j) ∈P

 (7) 

where (𝒊, 𝒋) is a directed edge from rating 𝒊 to rating 𝒋 and 𝑹𝒊𝒋  is the reward (the average 

observed change in the ASE Index when Greece was downgraded or upgraded from 𝒊 to 𝒋). The 

negative sign (–) converts the “reward” into a “cost” for use in shortest path algorithms (like 

Dijkstra’s algorithm). 

3. Results 

This section presents the empirical results obtained from the application of advanced analytical 

techniques to Moody’s sovereign credit ratings and the ASE Index from 2004 to 2024.  

3.1. Data Preprocessing 

The empirical analysis was based on a structured dataset containing Moody’s sov-ereign credit 

ratings for Greece and daily closing prices of the ASE Index from 2004 to 2024. The dataset included 

the date of observation, the ASE Index value, and the corresponding Moody’s credit rating. Since 

Moody’s ratings are ordinal but categorical, they were numerically encoded (Rating_Integer) on a 

scale from 1 (Aaa) to 21 (C), preserving their hierarchical credit quality (Appendix A.1). This 

preprocessing allowed for direct application of statistical and graph-theoretic methods.  

3.2. Poset Representation of Rating Hierarchy 

We used a poset to model Moody’s sovereign credit rating system (Appendix A.2), which is 

inherently ordinal in nature. Each credit rating level (e.g., Aaa, Aa1, Aa2, ..., C) reflects a distinct level 

of creditworthiness, forming a totally ordered subset within a poset structure. A graph is built where 

nodes represent rating levels and edges represent direct dominance (e.g., Aaa > Aa1 > Aa2, etc.). This 

results in a chain poset where each element is comparable to all others, reflecting the total order 

imposed by Moody's rating scale. The structure is visualized as a Hasse diagram, where each node is 

vertically positioned according to its ordinal rank. This method ensures visual clarity and emphasizes 

hierarchical relationships. Additionally, a second poset was constructed (Appendix A.3) using only 

the ratings assigned to Greece from 2004 to 2024, yielding a substructure of the full hierarchy. This 

captures the practical transitions observed in the empirical data, as opposed to the theoretical full 

spectrum. 
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Figure 1. (a) Poset (partially ordered set) representation of Moody’s credit rating hierarchy; (b) Poset (partially 

ordered set) representation of the Moody’s credit rating hierarchy for Greece (2004–2024). Nodes are vertically 

ordered by credit quality. Each node represents a rating category (e.g., Aaa, Aa1, ..., C). Edges show the strict 

ordering from higher to lower credit quality. 

The full poset confirms the strict hierarchy embedded in Moody's ratings, suitable for use in 

both theoretical and algorithmic modeling (e.g., lattice analysis, path optimization). The Greece-

specific poset includes only 8 of the 21 ratings, indicating that even during periods of fiscal instability, 

not all levels of credit quality were observed. The observed trajectory—from A1 down to C and 

gradual recovery to Ba1—demonstrates a significant range of credit deterioration and partial 

restoration, making it an insightful case for dynamic credit modeling. This subset structure also 

highlights the non-symmetric nature of real-world rating transitions.  

3.3. Credit Rating Transition Graph 

To model the dynamics of credit quality changes, a Moody’s Credit Rating Transition Graph 

was constructed using observed rating transitions for Greece from 2004 to 2024 (Appendix A.4). The 

underlying structure is a directed graph in which each node represents a unique credit rating 

(numerically encoded), and a directed edge between nodes indicates an observed transition from one 

rating to another on consecutive trading days. Edge weights correspond to the frequency of such 

transitions, capturing how often each downgrade or upgrade occurred in the historical period. Self-

transitions were excluded to emphasize actual rating movements. 
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Figure 2. Moody's Credit Rating Transition Graph for Greece (2004 – 2024). Nodes represent credit rating 

categories (e.g., A1, Ba2). Directed edges indicate observed transitions from one rating to another. Edge weights 

show how frequently each transition occurred. 

The resulting network revealed a sparse but informative structure, with most transitions 

occurring between adjacent rating levels, reflecting Moody’s tendency toward gradual rating 

changes. Notably, dense clustering was observed in the lower investment-grade and speculative-

grade ranges (e.g., transitions between Ba and B levels), underscoring periods of fiscal instability and 

market uncertainty. Greece’s credit rating trajectory between 2004 and 2024 stands in stark contrast 

to that of large advanced economies. While countries such as Germany, the United States, and France 

maintained relatively stable credit ratings—typically within the Aaa to A range—Greece experienced 

a dramatic sequence of downgrades, particularly during the European sovereign debt crisis (2009–

2012). These transitions took Greece from “A1” in the early 2000s to deep speculative-grade levels, 

reaching as low as “C” by 2012. Such abrupt and severe multi-notch downgrades are rare among 

large economies and underscore the structural vulnerabilities and fiscal imbalances specific to Greece 

during that period. In contrast, major economies exhibit infrequent and mostly incremental 

transitions, reflecting greater institutional stability, monetary policy credibility, and access to global 

capital markets. The high volatility in Greece’s credit path also produced a richer and more 

asymmetric transition network, characterized by longer downgrade chains and only partial recovery 

to “Ba1” by 2024. This divergence highlights the geopolitical and economic singularity of Greece in 

the eurozone and serves as a critical case study in sovereign risk propagation, investor behavior, and 

credit reassessment under systemic stress [19]. 

3.4. Rolling Correlation Analysis 

To investigate the co-movement between sovereign credit risk and market performance, a 

rolling Pearson correlation analysis was conducted between Moody’s credit ratings (numerically 

encoded) and the ASE Index over the period 2004–2024 (Appendix A.5). The ratings were 

transformed from categorical labels into ordinal integers (1 = Aaa to 21 = C), preserving their 

hierarchical structure. A rolling window of 90 trading days was employed to capture the time-

varying nature of the relationship. 
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Figure 3. The rolling 90-day Pearson correlation between Moody’s credit rating (numerically encoded) and the 

ASE Index. Negative values indicate that as ratings worsen (higher number), the ASE Index tends to decline. 

Positive values suggest the ASE Index may rise even as ratings worsen, indicating possible market decoupling. 

Gaps in the 90-day rolling correlation measure between Greece’s sovereign credit rating and the 

ASE Index arised primarily from data availability constraints. In particular, the sovereign rating is 

updated infrequently and often remains constant for long periods, so any 90-day interval during 

which the rating does not change yields an undefined correlation value. The Pearson correlation is 

not defined when one variable’s variance is zero [20]. These gaps imply that short-term relationships 

between credit ratings and market performance are only observable around periods of rating change, 

underscoring the need for caution in interpreting transient rating–market correlation patterns.  

The analysis revealed that the correlation fluctuated significantly over time, with several 

extended periods of negative correlation, particularly during the Greek sovereign debt crisis. These 

findings suggest that deteriorations in credit ratings were often associated with declines in the ASE 

Index, indicating that the market responded adversely to increased perceived sovereign risk. 

However, there were also episodes where the correlation weakened or turned positive, possibly 

reflecting periods of market resilience, lagged information effects, or divergence between credit 

assessments and equity investor sentiment. The dynamic behavior of the correlation underlines the 

importance of modeling credit-market interactions as a non-stationary process influenced by both 

economic fundamentals and financial expectations. 

3.5. Granger Causality Tests 

To assess the predictive relationship between sovereign credit risk and stock market 

performance, Granger causality tests were applied to the Moody’s credit ratings (numerically 

encoded) and the ASE Index using daily data from 2004 to 2024. The tests were conducted in both 

directions: (1) whether past credit ratings Granger-cause ASE Index movements (Appendix A.6), and 

(2) whether past ASE Index values Granger-cause changes in credit ratings (Appendix A.7). For this 

purpose, the ratings were transformed into ordinal integers (1 = Aaa to 21 = C), enabling their use in 

time-series regression models. A maximum lag length of 10 days was selected to capture short-run 

dynamics, and tests were based on the standard F-statistic comparing restricted and unrestricted 

autoregressive models. Table 3 presents the Granger causality tests results. 

Table 3. Granger Causality Test Results. 

Direction: Moody's Rating→ASE Index Direction: ASE Index→Moody's Rating 

Lag F-Statistic p-Value Lag F-Statistic p-Value 

1 1.5785 0.2090 1 1.2617 0.2614 

2 2.1484 0.1168 2 2.3130 0.0991 
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3 1.4660 0.2217 3 1.8638 0.1334 

4 1.1412 0.3351 4 1.4015 0.2307 

5 0.9182 0.4679 5 1.5578 0.1685 

6 1.4510 0.1911 6 1.2980 0.2543 

7 1.3839 0.2073 7 1.3286 0.2321 

8 1.2392 0.2714 8 1.3690 0.2047 

9 1.1370 0.3322 9 1.5315 0.1306 

10 1.0724 0.3796 10 1.3685 0.1882 

The results revealed that in both directions, the p-values were consistently above conventional 

significance thresholds (p > 0.05), indicating that neither variable Granger-caused the other within 

the observed lag structure. These findings suggest that, despite their theoretical interdependence, 

Moody’s ratings and ASE Index movements did not exhibit statistically significant short-term 

predictive power over one another during this period. This outcome may reflect multiple structural 

and institutional factors specific to the Greek context. First, investor anticipation appears to play a 

critical role: market participants likely incorporate publicly available fiscal data, macroeconomic 

trends, and political developments into their expectations well before formal rating announcements, 

reducing the marginal information content of such announcements. Second, the presence of external 

oversight—such as the European Commission, the European Central Bank, and the International 

Monetary Fund during Greece’s bailout programs—enhanced fiscal transparency and constrained 

discretionary policy shifts, further reducing uncertainty and market surprise. Third, Moody’s 

adopted a relatively cautious approach to sovereign rating changes in Greece, with infrequent and 

stepwise revisions, which limited the scope for abrupt shocks that might otherwise drive market 

reactions. Collectively, these factors suggest that in Greece’s case, credit ratings operated more as 

confirmatory signals than as leading indicators, with their effects largely anticipated and absorbed 

by financial markets prior to publication. 

Empirical evidence from the literature indicates that Granger causality between sovereign credit 

ratings and financial market indicators—such as stock indices or bond yields—does reach statistical 

significance (p < 0.05) in certain countries and contexts. This is particularly evident in emerging 

markets like Brazil, Turkey, South Africa, and India, where sovereign risk is higher and financial 

markets are more sensitive to credit rating changes [21]. In these cases, downgrades by credit rating 

agencies have been shown to Granger-cause declines in equity markets or currency depreciation, 

reflecting heightened investor reaction to perceived credit deterioration. Similarly, during periods of 

fiscal stress or crisis in advanced economies—such as Spain, Italy, and Ireland during the eurozone 

debt crisis—credit rating actions were found to have a statistically significant predictive impact on 

market performance. These findings implied that ratings can serve as informational catalysts in 

environments with elevated uncertainty or weak market transparency [22, 23].  

3.6. Event Study of Rating Shocks  

To examine the immediate market response to sovereign credit rating changes, an event study 

methodology was applied to the ASE Index around major Moody’s rating transitions for Greece 

between 2004 and 2024. Events were identified as discrete instances where Greece's credit rating 

shifted by two or more notches, capturing only the most significant upgrades or downgrades 

(Appendix A.8). For each event, a symmetric event window of ±5 trading days was constructed, and 

the ASE Index returns were normalized relative to the event date (t = 0). By aggregating returns across 

all such events, we computed the average abnormal price movement before and after rating 

announcements.  
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Figure 4. The average percentage change in the ASE Index surrounding major credit rating changes by Moody’s 

(defined as transitions of two or more notches). Day 0 represents the exact date of the rating announcement. The 

plotted curve captures the temporal pattern of market response, highlighting the behavior of the ASE Index in 

the days leading up to and following these significant rating events. 

The results revealed that the ASE Index tended to decline slightly in the days leading up to a 

downgrade and continued to underperform immediately after the event. However, the magnitude of 

the average market reaction was modest, suggesting that rating changes may have been anticipated 

or that their informational content was partially absorbed before formal announcements. The absence 

of sharp corrections post-event also points to a relatively efficient market reaction, where sovereign 

ratings serve more as confirmatory signals than as surprise shocks. These findings are consistent with 

literature [24, 25] suggesting limited short-term market impact of credit ratings in countries with 

relatively transparent fiscal environments. 

3.7. Reward Matrix  

To quantify the market response to changes in sovereign credit ratings, a reward matrix was 

constructed by analyzing daily transitions in Greece’s Moody’s credit ratings and the corresponding 

changes in the ASE Index over the period 2004–2024 (Appendix A.9). The methodology involved 

identifying all observed transitions between consecutive rating levels (e.g., from Ba2 to Ba3), and for 

each transition, calculating the change in the ASE Index from the day before to the day of the rating 

shift. These index changes were then aggregated and averaged to populate a 21×21 reward matrix, 

with rows representing the originating rating and columns representing the target rating. Transitions 

with insufficient or no observations were left blank to preserve data integrity. The resulting matrix 

(Figure 5) captures the average market "reward" (or penalty) associated with each rating adjustment. 

The rows represent the origin ratings (e.g., A1), while the columns correspond to the target ratings 

(e.g., Ba2). The color intensity and numerical values reflect the magnitude and direction of the 

market’s response—positive or negative—to each specific rating transition. This matrix constitutes 

the analytical basis for the optimal path analysis and provides empirical insight into the historical 

impact of various credit rating events on market performance. 
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Figure 5. Reward Matrix heatmap (average change in the ASE Index associated with each observed Moody’s 

rating transition). 

The analysis revealed that downgrades were generally associated with negative average changes 

in the ASE Index, while upgrades—although less frequent—tended to show modest positive 

reactions. The matrix is notably sparse, reflecting Moody’s tendency to move ratings gradually and 

the rarity of abrupt multi-notch transitions. The observed asymmetry in market responses to credit 

rating changes aligns with findings in the existing literature, which suggests that downgrades tend 

to exert stronger and more immediate effects on financial markets compared to upgrades [16, 23]. 

This phenomenon is often attributed to the informational asymmetry inherent in negative credit 

events, which are perceived as signals of increased uncertainty or deteriorating fiscal conditions. The 

sparsity of the reward matrix reflects Moody’s cautious approach to rating adjustments, consistent 

with [26], which highlight the agency's preference for incremental changes over abrupt multi-notch 

shifts. Such structural sparsity underscores the role of path dependency in sovereign credit risk 

assessments. By quantifying the average ASE Index responses to individual rating transitions, the 

reward matrix provides a data-driven foundation for understanding how the equity market 

historically priced sovereign credit risk, and it served as a critical input for the optimal path analysis 

of rating recovery or deterioration. 

3.8. Optimal Rating Path Optimization  

To identify the most advantageous sequences of sovereign credit rating changes from a market 

perspective, an optimal path analysis was conducted using the reward matrix derived from Moody’s 

rating transitions and corresponding ASE Index movements. Each cell in the reward matrix 

represented the average change in the ASE Index associated with a specific transition between two 

rating levels. This matrix was transformed into a directed graph, where nodes represented credit 
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ratings and edges represented observed transitions weighted by the negative of the reward (i.e., ASE 

Index gain or loss), enabling the use of shortest-path algorithms to find the route that maximized 

market value. Using Dijkstra’s algorithm, the analysis computed optimal rating improvement or 

deterioration paths by minimizing cumulative market cost (or equivalently, maximizing expected 

gain). For instance, the optimal downgrade path from A1 to Ba1 was found to be A1 → A2 → A3 → 

Ba1, with a cumulative expected ASE Index gain of +75.76 points (Appendix A.10). Similarly, the 

optimal upgrade path from C to Ba1 proceeded through a sequence of intermediate speculative 

ratings and resulted in a total expected gain of +31.50 points (Appendix A.11). To identify historically 

favorable rating trajectories, an exhaustive optimal path analysis was performed using Greece’s 

observed sovereign credit rating transitions and corresponding ASE Index responses between 2004 

and 2024 (Appendix A.12). The results of all reachable paths are presented in Table 4, including the 

full sequence of transitions and the total expected ASE gain for each path. These results reveal both 

upgrade and downgrade sequences with positive or negative market implications. The analysis 

highlights the critical role of path dependency in sovereign credit dynamics, and the optimal paths 

provide a practical reference for modeling rating-based market reactions or designing rating recovery 

strategies. 

Table 4. List of all reachable rating transitions (from one rating to another) along with their optimal paths and 

the expected ASE Index gains (Greece, 2004–2024). 

From To Path 

Expected ASE 

Index 

Gain/Loss 

A1 A2 A1 → A2 94.87 

A1 A3 A1 → A2 → A3 19.2 

A1 Ba1 A1 → A2 → A3 → Ba1 75.76 

A1 B1 A1 → A2 → A3 → Ba1 → B1 15.41 

A1 Ba3 A1 → A2 → A3 → Ba1 → B1 → Caa1 → Ba3 -6.12 

A1 Caa1 A1 → A2 → A3 → Ba1 → B1 → Caa1 -4.06 

A1 Ca A1 → A2 → A3 → Ba1 → B1 → Caa1 → Ca -21.17 

A1 Caa3 A1 → A2 → A3 → Ba1 → B1 → Caa1 → Ca → C → Caa3 -4.79 

A1 C A1 → A2 → A3 → Ba1 → B1 → Caa1 → Ca → C -19.7 

A2 A3 A2 → A3 -75.67 

A2 Ba1 A2 → A3 → Ba1 -19.11 

A2 B1 A2 → A3 → Ba1 → B1 -79.46 

A2 Ba3 A2 → A3 → Ba1 → B1 → Caa1 → Ba3 -100.99 

A2 Caa1 A2 → A3 → Ba1 → B1 → Caa1 -98.93 

A2 Ca A2 → A3 → Ba1 → B1 → Caa1 → Ca -116.04 

A2 Caa3 A2 → A3 → Ba1 → B1 → Caa1 → Ca → C → Caa3 -99.66 

A2 C A2 → A3 → Ba1 → B1 → Caa1 → Ca → C -114.57 

A3 Ba1 A3 → Ba1 56.56 

A3 B1 A3 → Ba1 → B1 -3.79 

A3 Ba3 A3 → Ba1 → B1 → Caa1 → Ba3 -25.32 

A3 Caa1 A3 → Ba1 → B1 → Caa1 -23.26 

A3 Ca A3 → Ba1 → B1 → Caa1 → Ca -40.37 

A3 Caa3 A3 → Ba1 → B1 → Caa1 → Ca → C → Caa3 -23.99 
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A3 C A3 → Ba1 → B1 → Caa1 → Ca → C -38.9 

Ba1 B1 Ba1 → B1 -60.35 

Ba1 Ba3 Ba1 → B1 → Caa1 → Ba3 -81.88 

Ba1 Caa1 Ba1 → B1 → Caa1 -79.82 

Ba1 Ca Ba1 → B1 → Caa1 → Ca -96.93 

Ba1 Caa3 Ba1 → B1 → Caa1 → Ca → C → Caa3 -80.55 

Ba1 C Ba1 → B1 → Caa1 → Ca → C -95.46 

B1 Ba1 B1 → Caa1 → Ba3 → Ba1 3.24 

B1 Ba3 B1 → Caa1 → Ba3 -21.53 

B1 Caa1 B1 → Caa1 -19.47 

B1 Ca B1 → Caa1 → Ca -36.58 

B1 Caa3 B1 → Caa1 → Ca → C → Caa3 -20.2 

B1 C B1 → Caa1 → Ca → C -35.11 

Ba3 Ba1 Ba3 → Ba1 24.77 

Ba3 B1 Ba3 → Ba1 → B1 -35.58 

Ba3 Caa1 Ba3 → Ba1 → B1 → Caa1 -55.05 

Ba3 Ca Ba3 → Ba1 → B1 → Caa1 → Ca -72.16 

Ba3 Caa3 Ba3 → Ba1 → B1 → Caa1 → Ca → C → Caa3 -55.78 

Ba3 C Ba3 → Ba1 → B1 → Caa1 → Ca → C -70.69 

Caa1 Ba1 Caa1 → Ba3 → Ba1 22.71 

Caa1 B1 Caa1 → Ba3 → Ba1 → B1 -37.64 

Caa1 Ba3 Caa1 → Ba3 -2.06 

Caa1 Ca Caa1 → Ca -17.11 

Caa1 Caa3 Caa1 → Ca → C → Caa3 -0.73 

Caa1 C Caa1 → Ca → C -15.64 

Ca Ba1 Ca → C → Caa3 → Caa1 → Ba3 → Ba1 32.97 

Ca B1 Ca → C → Caa3 → Caa1 → Ba3 → Ba1 → B1 -27.38 

Ca Ba3 Ca → C → Caa3 → Caa1 → Ba3 8.2 

Ca Caa1 Ca → C → Caa3 → Caa1 10.26 

Ca Caa3 Ca → C → Caa3 16.38 

Ca C Ca → C 1.47 

Caa3 Ba1 Caa3 → Caa1 → Ba3 → Ba1 16.59 

Caa3 B1 Caa3 → Caa1 → Ba3 → Ba1 → B1 -43.76 

Caa3 Ba3 Caa3 → Caa1 → Ba3 -8.18 

Caa3 Caa1 Caa3 → Caa1 -6.12 

Caa3 Ca Caa3 → Caa1 → Ca -23.23 

Caa3 C Caa3 → Caa1 → Ca → C -21.76 

C Ba1 C → Caa3 → Caa1 → Ba3 → Ba1 31.5 

C B1 C → Caa3 → Caa1 → Ba3 → Ba1 → B1 -28.85 

C Ba3 C → Caa3 → Caa1 → Ba3 6.73 

C Caa1 C → Caa3 → Caa1 8.79 

C Ca C → Caa3 → Caa1 → Ca -8.32 
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C Caa3 C → Caa3 14.91 

Among the optimal rating trajectories extracted from Greece’s sovereign credit history, notable 

examples include the downgrade sequence A1 → A2 → A3 → Ba1, which results in a substantial 

cumulative ASE Index gain of +75.76 points. The unexpected market gains observed along some 

downgrade trajectories likely reflect anticipatory investor behavior or policy interventions (e.g., 

EU/IMF support) that mitigated investor panic. This supports the hypothesis that context and 

credibility of fiscal policy shape the valuation of credit signals more than the notching itself. Similarly, 

the upgrade path C → Caa3 → Caa1 → Ba3 → Ba1 yields a positive expected ASE Index gain of +31.50 

points, highlighting that recovery transitions—though rare—can restore market confidence over time 

when accompanied by structural reforms.  

These findings align with the conclusions of the relevant literature [24], which show that markets 

react asymmetrically to downgrades and upgrades, with more severe effects concentrated around the 

speculative–investment grade threshold. Additionally, [22] emphasized that rating transitions during 

fiscal crises may carry less new information, particularly when they confirm trends already priced in 

by the investors. The Greece case reinforces these dynamics, as market reactions to rating shifts often 

depended not solely on the notching but on the broader economic context and the credibility of 

corrective measures. Thus, the optimal path analysis does not merely track credit changes but reveals 

the underlying market psychology that governs sovereign risk pricing. 

4. Discussion 

Credit rating announcements in Greece exhibit a limited immediate influence on the stock 

market, suggesting that investors often anticipate these events. This behavior implies a degree of 

informational efficiency and market maturity, whereby ratings serve more as confirmation than as 

news. Additionally, sudden downgrades do not appear to trigger significant market destabilization, 

reinforcing the notion that Greece’s financial ecosystem has evolved greater resilience and 

transparency since the crisis period. Notably, the analysis highlights that the most impactful market 

responses arise not from isolated rating shifts, but from sequential downgrade trajectories, 

underscoring the structural importance of cumulative perceptions in sovereign risk evaluation. 

These findings suggest several actionable pathways for policymakers. First, continued emphasis 

on transparency and predictability in fiscal reporting is crucial, as it enables markets to price in 

developments prior to formal credit rating changes. Second, advancing investor education initiatives 

may help market participants better understand the context and limitations of sovereign ratings, 

particularly in relatively stable economies. Finally, the development of early-warning systems based 

on reward matrix behavior and optimal downgrade paths could provide preemptive insights for 

regulatory authorities and institutional investors, enabling more agile and informed responses to 

emerging fiscal vulnerabilities. 

The application of algebraic combinatorics to sovereign credit dynamics not only enhances 

structural modeling but also aligns with key principles in behavioral finance and decision theory. In 

particular, the poset and transition graph representations capture how economic agents—such as 

investors or credit rating agencies—form expectations and update beliefs in response to ordinal 

information rather than cardinal precision. This resonates with the concept of bounded rationality, 

where agents rely on discrete heuristics and comparative judgments rather than precise calculations. 

Furthermore, the observed path-dependency in rating transitions mirrors prospect theory’s emphasis 

on reference-dependent evaluation: markets tend to react more strongly to deteriorations than to 

equivalent improvements. The combinatorial models developed in this study—especially the reward 

matrix and optimal transition paths—formalize such behavioral asymmetries by quantifying investor 

responses to sequences of credit events. Thus, algebraic structures serve not only as mathematical 

scaffolds but as conceptual analogues for understanding how cognitive biases and informational 

frictions shape sovereign risk pricing. 
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Despite the methodological contributions and empirical insights of this study, limitations should 

be acknowledged. First, while Moody’s credit ratings are treated as ordinal variables for quantitative 

analysis, the transformation into an integer scale does not capture the non-linear nature of credit risk 

differentials between rating levels. Second, the study focuses exclusively on Greece, which, while 

offering a unique case of sovereign credit volatility, may limit the generalizability of the findings to 

other economies with different institutional frameworks or market structures. Third, the reward 

matrix is constructed from historical transitions, and as such, it reflects past market behavior rather 

than predictive causality. Finally, the static structure of the rating transition graph does not account 

for potential temporal changes in investor behavior or credit rating agency methodologies over the 

two-decade study period. 

Future research may extend this methodology to corporate bond rating dynamics, banking stress 

test scenarios, or sovereign risk modeling in emerging markets with volatile credit histories. 

5. Conclusions 

This study provides an in-depth and methodologically integrated investigation into the 

relationship between sovereign credit rating transitions and domestic equity market performance, 

with Greece serving as a case study spanning the period 2004–2024. By combining techniques from 

network theory, econometrics, and financial event analysis, this research advances the understanding 

of the mechanisms through which credit ratings interact with market dynamics in the context of a 

fiscally volatile yet institutionally evolving economy. The central finding—that rating 

announcements exert limited immediate influence on equity markets—challenges the conventional 

assumption that sovereign credit ratings are primary drivers of investor behavior. 

While rolling-window correlation and Granger causality tests reveal no significant or stable 

predictive power of ratings on the ASE Index, this lack of short-term responsiveness must not be 

misinterpreted as irrelevance. Rather, the reward matrix and optimal rating path analyses 

demonstrate that markets respond more meaningfully to rating transitions that unfold in sequences, 

particularly those indicating sustained deterioration in creditworthiness. These patterns suggest that 

investors are more sensitive to the trajectory and persistence of sovereign risk signals than to single, 

abrupt announcements. This insight is critical for understanding how credit risk is interpreted and 

priced in environments where expectations are formed through multiple channels—including 

macroeconomic indicators, political developments, and institutional disclosures. 

The major focus and contribution of this paper lies in its methodological innovation. It 

introduces a framework that merges temporal analysis with topological modeling to explore credit 

rating transitions not only as discrete events but as elements of a broader structural process. The 

construction of directed graphs, poset representations of rating hierarchies, and the implementation 

of reward matrices constitute a novel approach to capturing the path-dependent and relational nature 

of sovereign rating dynamics. This framework departs from traditional linear models and offers a 

richer interpretive lens, suitable for detecting latent market patterns and long-run interdependencies. 

From a scientific quality perspective, the study maintains analytical rigor by grounding each 

methodological component in both empirical validity and theoretical relevance. The use of daily, real-

world data from Moody’s and the Athens Stock Exchange, coupled with the implementation of 

widely accepted statistical techniques, ensures both robustness and reproducibility. Furthermore, the 

integration of visual modeling with quantitative analysis allows for a multi-layered understanding 

that is both interpretable and generalizable, paving the way for applications beyond the Greek case. 

Overall, the study concludes that sovereign credit ratings retain symbolic and institutional 

relevance. Their immediate influence on market behavior—especially in mature or crisis-tempered 

economies like Greece—appears to be attenuated by the informational efficiency of investors. It is in 

the structural unfolding of transitions, rather than in isolated rating changes, that meaningful market 

responses are observed. This finding has important implications for credit rating agencies, 

policymakers, and investors, suggesting that attention should be directed toward the early detection 

of sequential downgrade trajectories rather than overreliance on headline rating shifts. As such, the 
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analytical tools and insights developed herein offer valuable contributions to the scientific literature 

on financial risk, market behavior, and credit assessment. 
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Appendix A 

Appendix A.1 - Python script “Data Loading and Preprocessing” 

import pandas as pd 

# Load the Excel file 

excel_path = "/mnt/data/moodys_ase_data.xlsx" 

xls = pd.ExcelFile(excel_path) 

# Display the sheet names to understand the structure 

sheet_names = xls.sheet_names 

sheet_names 

# Load the relevant sheet 

df = xls.parse('moodys_ase_data') 

# Display the first few rows to understand the structure of the data 

df.head() 

import numpy as np 

# Define the mapping from ratings to integers (based on the hierarchy provided) 

rating_order = [ 

    "Aaa", "Aa1", "Aa2", "Aa3", "A1", "A2", "A3", "Baa1", "Baa2", "Baa3", 

    "Ba1", "Ba2", "Ba3", "B1", "B2", "B3", "Caa1", "Caa2", "Caa3", "Ca", "C" 

] 

rating_to_int = {rating: i+1 for i, rating in enumerate(rating_order)} 

# Add the encoded numerical rating 

df['Rating_Int'] = df['Rating_Scale'].map(rating_to_int) 

# Drop rows with missing values if any 

df.dropna(subset=['Rating_Int', 'ASE_Index'], inplace=True) 

# Sort by date to ensure chronological order 

df['Date'] = pd.to_datetime(df['Date']) 

df.sort_values('Date', inplace=True) 

df.reset_index(drop=True, inplace=True) 

# Show processed data 

import ace_tools as tools; tools.display_dataframe_to_user(name="Processed Moody's and ASE Data", 

dataframe=df) 
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Appendix A.2 - Python script “Poset Representation” 

# Build the Poset representation of the Moody's credit rating hierarchy 

# This is a simple total order based on credit quality (1=Aaa to 21=C) 

poset_edges = [(i, i + 1) for i in range(1, 21)]  # 21 ratings, so 20 edges 

# Create a directed graph for visualization 

G_poset = nx.DiGraph() 

G_poset.add_edges_from(poset_edges) 

# Generate labels from integers to rating names 

labels = {i: int_to_rating[i] for i in range(1, 22)} 

# Plot the poset 

plt.figure(figsize=(8, 12)) 

pos = nx.spring_layout(G_poset, seed=42) 

nx.draw(G_poset, pos, with_labels=True, labels=labels, node_size=800, node_color='lightgreen', 

font_size=10, arrows=True) 

plt.title("Poset Representation of Moody's Credit Rating Hierarchy") 

plt.tight_layout() 

plt.show() 

# Create an academic-style Hasse diagram for the full Moody's rating hierarchy 

full_ratings = list(range(1, 22))  # Ratings from Aaa (1) to C (21) 

poset_edges_full = [(i, i + 1) for i in full_ratings if i + 1 in full_ratings] 

# Create graph 

G_poset_full = nx.DiGraph() 

G_poset_full.add_edges_from(poset_edges_full) 

labels_full = {i: int_to_rating[i] for i in full_ratings} 

# Academic-style layout: vertical hierarchy (highest quality at top) 

pos_hierarchy_full = {node: (0, -i) for i, node in enumerate(full_ratings)} 

# Save as PDF 

output_pdf_full_path = "/mnt/data/Poset_Moodys_Full_Hasse_Diagram.pdf" 

plt.figure(figsize=(5, 14)) 

nx.draw(G_poset_full, pos=pos_hierarchy_full, with_labels=True, 

        labels=labels_full, node_size=1200, node_color='white', 

        edge_color='black', font_size=12, font_weight='bold', 

        linewidths=1.5, edgecolors='black') 

plt.title("Hasse Diagram: Moody's Full Credit Rating Hierarchy", fontsize=13) 

plt.axis('off') 

plt.tight_layout() 

plt.savefig(output_pdf_full_path) 

plt.close() 

output_pdf_full_path 

Appendix A.3 - Python script “Poset Representation (Greece, 2004-2024)” 

# Extract the unique ratings observed for Greece during the period 

unique_ratings_greece = sorted(df['Rating_Int'].unique()) 

# Build the poset edges only for Greece's observed ratings 

poset_edges_greece = [(i, j) for i in unique_ratings_greece for j in unique_ratings_greece if j == i + 1] 

# Create graph 

G_poset_greece = nx.DiGraph() 

G_poset_greece.add_edges_from(poset_edges_greece) 

# Create labels from observed ratings 

labels_greece = {i: int_to_rating[i] for i in unique_ratings_greece} 

# Plot the poset 
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plt.figure(figsize=(6, 10)) 

pos = nx.spring_layout(G_poset_greece, seed=42) 

nx.draw(G_poset_greece, pos, with_labels=True, labels=labels_greece, node_size=800, 

node_color='lightcoral', font_size=10, arrows=True) 

plt.title("Moody's Credit Rating Poset for Greece (2004–2024)") 

plt.tight_layout() 

plt.show() 

# Recalculate the poset graph with proper node set 

G_poset_greece = nx.DiGraph() 

G_poset_greece.add_nodes_from(unique_ratings_greece) 

G_poset_greece.add_edges_from(poset_edges_greece) 

# Create labels again 

labels_greece = {i: int_to_rating[i] for i in unique_ratings_greece} 

# Plot the poset for Greece 

plt.figure(figsize=(6, 10)) 

pos = nx.spring_layout(G_poset_greece, seed=42) 

nx.draw(G_poset_greece, pos, with_labels=True, labels=labels_greece, node_size=800, 

node_color='lightcoral', font_size=10, arrows=True) 

plt.title("Moody's Credit Rating Poset for Greece (2004–2024)") 

plt.tight_layout() 

plt.show() 

# Use a hierarchical layout to give a cleaner representation 

pos_hierarchy = {node: (0, -i) for i, node in enumerate(sorted(unique_ratings_greece))} 

plt.figure(figsize=(5, 10)) 

nx.draw(G_poset_greece, pos=pos_hierarchy, with_labels=True, 

        labels=labels_greece, node_size=1200, node_color='white', 

        edge_color='black', font_size=12, font_weight='bold', 

        linewidths=1.5, edgecolors='black') 

plt.title("Hasse Diagram: Moody's Credit Rating Hierarchy for Greece (2004–2024)", fontsize=13) 

plt.axis('off') 

plt.tight_layout() 

plt.show() 

Appendix A.4 - Python script “Credit Rating Transition Graph” 

import networkx as nx 

import matplotlib.pyplot as plt 

from collections import Counter 

# Create transitions from consecutive days 

transitions = list(zip(df['Rating_Int'][:-1], df['Rating_Int'][1:])) 

# Count transition frequencies 

transition_counts = Counter(transitions) 

# Create a directed graph 

G = nx.DiGraph() 

for (src, dst), weight in transition_counts.items(): 

    if src != dst:  # Exclude self-transitions for clarity 

        G.add_edge(src, dst, weight=weight) 

# Set node labels from rating integers back to rating names 

int_to_rating = {v: k for k, v in rating_to_int.items()} 

labels = {node: int_to_rating[node] for node in G.nodes()} 

# Draw the graph 

plt.figure(figsize=(12, 8)) 
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pos = nx.spring_layout(G, seed=42) 

nx.draw(G, pos, with_labels=True, labels=labels, node_size=1000, node_color='lightblue', font_size=10, 

arrows=True) 

edge_labels = nx.get_edge_attributes(G, 'weight') 

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) 

plt.title("Moody's Credit Rating Transition Graph (2004–2024)") 

plt.tight_layout() 

plt.show() 

# Display the current column names to debug the issue 

df.columns 

# Re-map rating scale to integer again in case it wasn't saved 

df['Rating_Int'] = df['Rating_Scale'].map(rating_to_int) 

# Re-run the transition graph code 

transitions = list(zip(df['Rating_Int'][:-1], df['Rating_Int'][1:])) 

transition_counts = Counter(transitions) 

G = nx.DiGraph() 

for (src, dst), weight in transition_counts.items(): 

    if src != dst: 

        G.add_edge(src, dst, weight=weight) 

int_to_rating = {v: k for k, v in rating_to_int.items()} 

labels = {node: int_to_rating[node] for node in G.nodes()} 

plt.figure(figsize=(12, 8)) 

pos = nx.spring_layout(G, seed=42) 

nx.draw(G, pos, with_labels=True, labels=labels, node_size=1000, node_color='lightblue', font_size=10, 

arrows=True) 

edge_labels = nx.get_edge_attributes(G, 'weight') 

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) 

plt.title("Moody's Credit Rating Transition Graph (2004–2024)") 

plt.tight_layout() 

plt.show() 

# Redefine the mapping since the environment reset 

rating_order = [ 

    "Aaa", "Aa1", "Aa2", "Aa3", "A1", "A2", "A3", "Baa1", "Baa2", "Baa3", 

    "Ba1", "Ba2", "Ba3", "B1", "B2", "B3", "Caa1", "Caa2", "Caa3", "Ca", "C" 

] 

rating_to_int = {rating: i+1 for i, rating in enumerate(rating_order)} 

# Apply the mapping again 

df['Rating_Int'] = df['Rating_Scale'].map(rating_to_int) 

# Build the transition graph 

transitions = list(zip(df['Rating_Int'][:-1], df['Rating_Int'][1:])) 

transition_counts = Counter(transitions) 

G = nx.DiGraph() 

for (src, dst), weight in transition_counts.items(): 

    if src != dst: 

        G.add_edge(src, dst, weight=weight) 

int_to_rating = {v: k for k, v in rating_to_int.items()} 

labels = {node: int_to_rating[node] for node in G.nodes()} 

# Plot the graph 

plt.figure(figsize=(12, 8)) 

pos = nx.spring_layout(G, seed=42) 
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nx.draw(G, pos, with_labels=True, labels=labels, node_size=1000, node_color='lightblue', font_size=10, 

arrows=True) 

edge_labels = nx.get_edge_attributes(G, 'weight') 

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) 

plt.title("Moody's Credit Rating Transition Graph (2004–2024)") 

plt.tight_layout() 

plt.show() 

Appendix A.5 - Python script “Rolling Correlation Analysis” 

# Compute rolling Pearson correlation between Rating_Int and ASE_Index 

window_size = 90 

# Calculate rolling means 

rating_roll = df['Rating_Int'].rolling(window=window_size) 

ase_roll = df['ASE_Index'].rolling(window=window_size) 

# Calculate rolling correlation 

rolling_corr = rating_roll.corr(ase_roll) 

# Attach to dataframe for plotting 

df['Rolling_Corr'] = rolling_corr 

# Plot the correlation over time 

plt.figure(figsize=(14, 6)) 

plt.plot(df['Date'], df['Rolling_Corr'], label='Rolling 90-Day Pearson Correlation') 

plt.axhline(0, color='gray', linestyle='--') 

plt.title("Rolling 90-Day Correlation between Moody's Rating and ASE Index") 

plt.xlabel("Date") 

plt.ylabel("Correlation Coefficient") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

# Compute rolling correlation using explicit loop as workaround 

rolling_corr_values = [] 

for i in range(window_size, len(df)): 

    window_df = df.iloc[i-window_size:i] 

    corr = window_df['Rating_Int'].corr(window_df['ASE_Index']) 

    rolling_corr_values.append(corr) 

# Fill with NaN at the start to match original DataFrame length 

df['Rolling_Corr'] = [np.nan]*window_size + rolling_corr_values 

# Plot the correlation over time 

plt.figure(figsize=(14, 6)) 

plt.plot(df['Date'], df['Rolling_Corr'], label='Rolling 90-Day Pearson Correlation', color='blue') 

plt.axhline(0, color='gray', linestyle='--') 

plt.title("Rolling 90-Day Correlation between Moody's Rating and ASE Index") 

plt.xlabel("Date") 

plt.ylabel("Correlation Coefficient") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

# Re-import numpy 

import numpy as np 

# Re-run correlation analysis 
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rolling_corr_values = [] 

for i in range(window_size, len(df)): 

    window_df = df.iloc[i-window_size:i] 

    corr = window_df['Rating_Int'].corr(window_df['ASE_Index']) 

    rolling_corr_values.append(corr) 

df['Rolling_Corr'] = [np.nan]*window_size + rolling_corr_values 

# Plot the result 

plt.figure(figsize=(14, 6)) 

plt.plot(df['Date'], df['Rolling_Corr'], label='Rolling 90-Day Pearson Correlation', color='blue') 

plt.axhline(0, color='gray', linestyle='--') 

plt.title("Rolling 90-Day Correlation between Moody's Rating and ASE Index") 

plt.xlabel("Date") 

plt.ylabel("Correlation Coefficient") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

Appendix A.6 - Python script “Granger Causality Tests” 

from statsmodels.tsa.stattools import grangercausalitytests 

# Prepare the dataset for Granger causality 

# Drop NA values and keep only relevant columns 

granger_df = df[['Rating_Int', 'ASE_Index']].dropna() 

# Run Granger causality test for lags up to 10 

max_lag = 10 

granger_result = grangercausalitytests(granger_df, maxlag=max_lag, verbose=True) 

 

Appendix A.7 - Python script “Granger Causality Tests (reverse)” 

# Reverse the direction: test if ASE Index Granger-causes Rating_Int 

reversed_df = granger_df[['ASE_Index', 'Rating_Int']]  # switch column order 

# Run Granger causality test 

reversed_granger_result = grangercausalitytests(reversed_df, maxlag=max_lag, verbose=True) 

 

Appendix A.8 - Python script “Event Study of Rating Shocks” 

# Identify rating change events 

rating_changes = df[df['Rating_Int'].diff() != 0].copy() 

rating_changes['Prev_Rating_Int'] = df['Rating_Int'].shift(1) 

rating_changes.dropna(inplace=True) 

# Select large rating change events (e.g. change >= 2 levels) 

rating_changes['Change_Magnitude'] = (rating_changes['Rating_Int'] - 

rating_changes['Prev_Rating_Int']).abs() 

major_events = rating_changes[rating_changes['Change_Magnitude'] >= 2] 

# Set event window (e.g., ±5 days around the event) 

window = 5 

event_windows = [] 

# Collect ASE Index values around each major event 

for _, row in major_events.iterrows(): 
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    event_date = row['Date'] 

    window_df = df[(df['Date'] >= event_date - pd.Timedelta(days=window*2)) &  

                   (df['Date'] <= event_date + pd.Timedelta(days=window*2))].copy() 

    window_df = window_df.reset_index(drop=True) 

    event_windows.append(window_df) 

# Compute average ASE Index movement relative to event day (t=0) 

# Align all windows by relative time 

relative_index_changes = [] 

for window_df in event_windows: 

    event_day_index = window_df['ASE_Index'][window // 2]  # middle day is event 

    changes = (window_df['ASE_Index'] - event_day_index) / event_day_index * 100 

    relative_index_changes.append(changes.values) 

# Compute average across events 

average_effect = np.nanmean(relative_index_changes, axis=0) 

time_axis = np.arange(-window*2, window*2 + 1) 

# Plot event study results 

plt.figure(figsize=(10, 5)) 

plt.plot(time_axis, average_effect, marker='o') 

plt.axvline(0, color='red', linestyle='--', label='Rating Change Day') 

plt.title("Event Study: ASE Index Response to Major Moody's Rating Changes") 

plt.xlabel("Days from Rating Change") 

plt.ylabel("Average % Change in ASE Index") 

plt.grid(True) 

plt.legend() 

plt.tight_layout() 

plt.show() 

# Check lengths of time axis and average effect for alignment 

len(time_axis), len(average_effect) 

# Fix time axis to match average_effect 

adjusted_time_axis = np.linspace(-window, window, len(average_effect)) 

# Plot again with corrected axis 

plt.figure(figsize=(10, 5)) 

plt.plot(adjusted_time_axis, average_effect, marker='o') 

plt.axvline(0, color='red', linestyle='--', label='Rating Change Day') 

plt.title("Event Study: ASE Index Response to Major Moody's Rating Changes") 

plt.xlabel("Days from Rating Change") 

plt.ylabel("Average % Change in ASE Index") 

plt.grid(True) 

plt.legend() 

plt.tight_layout() 

plt.show() 

Appendix A.9 -Python script “Reward Matrix Construction” 

# Inspect reward matrix to see which transitions have valid (non-NaN) rewards 

non_empty_transitions = reward_matrix.stack().index.tolist() 

nodes_in_graph = set(i for i, j in non_empty_transitions).union(j for i, j in non_empty_transitions) 

# Create graph again only with valid transitions 

G_reward = nx.DiGraph() 

for i, j in non_empty_transitions: 

    reward = reward_matrix.loc[i, j] 

    cost = -reward 
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    G_reward.add_edge(i, j, weight=cost) 

 

Appendix A.10 - Python script Optimal Rating Downgrade Path (A1 to Ba1) 

# Attempt shortest path from A1 (5) to Ba1 (11) 

start_node = 5   # A1 

end_node = 11   # Ba1 

if start_node in G_reward and end_node in G_reward: 

    try: 

        shortest_path = nx.dijkstra_path(G_reward, source=start_node, target=end_node, 

weight='weight') 

        path_labels = [int_to_rating[r] for r in shortest_path] 

        total_reward = -sum(G_reward[u][v]['weight'] for u, v in zip(shortest_path[:-1], 

shortest_path[1:])) 

        print("Optimal Rating Downgrade Path (A1 to Ba1):") 

        print(" -> ".join(path_labels)) 

        print(f"Total Expected ASE Index Gain (Loss): {total_reward:.2f}") 

    except nx.NetworkXNoPath: 

        print("No downgrade path found from A1 to Ba1 based on available transitions.") 

else: 

    print("Start or end rating not in graph due to missing data.") 

# Print all available nodes (ratings) in the reward graph for reference 

available_ratings = [int_to_rating[n] for n in G_reward.nodes] 

available_ratings.sort(key=lambda r: rating_to_int[r])  # sort by credit quality 

available_ratings 

# Recalculate the reward matrix correctly by accumulating lists first 

# Initialize structure to collect ASE changes per transition 

reward_data = {(i, j): [] for i in range(1, 22) for j in range(1, 22)} 

# Populate reward data with actual ASE changes 

for i in range(1, len(df)): 

    prev_rating = df.loc[i-1, 'Rating_Int'] 

    curr_rating = df.loc[i, 'Rating_Int'] 

    if prev_rating != curr_rating: 

        ase_change = df.loc[i, 'ASE_Index'] - df.loc[i-1, 'ASE_Index'] 

        reward_data[(prev_rating, curr_rating)].append(ase_change) 

# Compute average reward matrix 

reward_matrix = pd.DataFrame(index=range(1, 22), columns=range(1, 22), dtype=float) 

for (i, j), changes in reward_data.items(): 

    if changes: 

        reward_matrix.loc[i, j] = np.mean(changes) 

# Build graph from non-empty entries 

G_reward = nx.DiGraph() 

for (i, j), changes in reward_data.items(): 

    if changes: 

        avg_reward = np.mean(changes) 

        G_reward.add_edge(i, j, weight=-avg_reward)  # negate for shortest path 

# Retry A1 (5) to Ba1 (11) 

start_node = 5 

end_node = 11 

if start_node in G_reward and end_node in G_reward: 

    try: 
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        shortest_path = nx.dijkstra_path(G_reward, source=start_node, target=end_node, 

weight='weight') 

        path_labels = [int_to_rating[r] for r in shortest_path] 

        total_reward = -sum(G_reward[u][v]['weight'] for u, v in zip(shortest_path[:-1], 

shortest_path[1:])) 

        print("Optimal Rating Downgrade Path (A1 to Ba1):") 

        print(" -> ".join(path_labels)) 

        print(f"Total Expected ASE Index Gain (Loss): {total_reward:.2f}") 

    except nx.NetworkXNoPath: 

        print("No downgrade path found from A1 to Ba1 based on available transitions.") 

else: 

    print("Start or end rating not in graph due to missing data.") 

 

Appendix A.11 - Python script Optimal Rating Upgrade Path (C to Ba1) 

# Define new start and end nodes: From C (21) to Ba1 (11) 

start_node = 21  # C 

end_node = 11    # Ba1 

if start_node in G_reward and end_node in G_reward: 

    try: 

        shortest_path = nx.dijkstra_path(G_reward, source=start_node, target=end_node, 

weight='weight') 

        path_labels = [int_to_rating[r] for r in shortest_path] 

        total_reward = -sum(G_reward[u][v]['weight'] for u, v in zip(shortest_path[:-1], 

shortest_path[1:])) 

        print("Optimal Rating Upgrade Path (C to Ba1):") 

        print(" -> ".join(path_labels)) 

        print(f"Total Expected ASE Index Gain: {total_reward:.2f}") 

    except nx.NetworkXNoPath: 

        print("No upgrade path found from C to Ba1 based on available transitions.") 

else: 

    print("Start or end rating not in graph due to missing data.") 

 

Appendix A.12 - Python script “Optimal Rating Path Optimization (all reachable paths)” 

# Collect all reachable upgrade paths and their expected ASE Index gains 

results = [] 

for start in G_reward.nodes: 

    for end in G_reward.nodes: 

        if start != end: 

            try: 

                path = nx.dijkstra_path(G_reward, source=start, target=end, weight='weight') 

                total_reward = -sum(G_reward[u][v]['weight'] for u, v in zip(path[:-1], path[1:])) 

                path_labels = " -> ".join(int_to_rating[r] for r in path) 

                results.append({ 

                    "From": int_to_rating[start], 

                    "To": int_to_rating[end], 

                    "Path": path_labels, 

                    "Expected ASE Index Gain": round(total_reward, 2) 

                }) 

            except nx.NetworkXNoPath: 
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                continue 

# Convert to DataFrame and display 

paths_df = pd.DataFrame(results) 

import ace_tools as tools; tools.display_dataframe_to_user(name="All Reachable Rating Paths", 

dataframe=paths_df) 
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