Pre prints.org

Article Not peer-reviewed version

A New Approach to Generate Line
Graphs of Undirected and Directed
Graphs

Samir Kumar Bandyopadhyay and Phalguni Mukherjee :

Posted Date: 9 June 2025
doi: 10.20944/preprints202506.0640.v1

Keywords: Adjacency matrix; incidence matrix; line graph; time complexity of algorithm

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4508727

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2025 d0i:10.20944/preprints202506.0640.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

A New Approach to Generate Line Graphs of
Undirected and Directed Graphs

Samir Kumar Bandyopadhyay ! and Phaguni Mukherjee 2*

! The Bhawanipur Education Society, Kolkata 700020, India
2 Department of Mathematics and Post Graduate Department of Environmental Science, Asutosh College, 92
S.P.Mukherjee Road, Kolkata 700 026, India

* Correspondence: phalguni.mukherjee@thebges.edu.in

Abstract: In this paper we have introduced a new matrix and developed two algorithms to generate
line graphs of undirected and directed graphs (digraph). The algorithms are tested for a large number
of random graphs and the outputs are appended at the end of the paper. It has been found that the
actual computing time is nearly 1% of the theoretical bound O(n?) of the algorithms.
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1. Introduction

Let G(V,E) be a simple undirected graph where V ={vi | i=1,2,...,n } is the set of vertices and E
={ei | i=1,2,...,m } the set of edges in G[West, 2000]. The line graph of G, denoted by L(G), is defined
by a simple undirected graph with m vertices and q = -m + ( 2 di 2)/2 edges where di denotes the
degree of the vertex vi . The vertices in L(G) correspond to the edges in G, and two vertices in L(G)
are adjacent if the corresponding edges in G have a vertex in common. If B is the incidence matrix of

G, it is known that the adjacency matrix of L(G) is BB (modulo 2) and the time complexity of

computing L(G) by this result is O(n5) [ Harary, 1994].

Line graph of a graph was independently discovered by many authors. Whitney was the first,
but he did not assign any name to it. But others gave it different names. Hoffman: line graphs;
Beineke: derived ; Kasteleyn : covering; Menon : adjoint. Ore: interchange graphs; Sabidussi:
derivative; Seshu and Reed: edge-to-vertex. Line graphs have lots of applications in electrical
engineering [ Harary, 1994], in communication networks [Krawczyk M et al, 2011], in
‘characterization of DNA sequences’ [ Kumar. V, 2010], in ‘Codes and designs’ [Fish.W et al, 2011]
in VLSI design [Tatsuo.O et al, 1979], to mention a few.

In this paper a new matrix called degree edge matrix of an undirected graph G has been used as
a data structure to develop an efficient algorithm to generate L(G) from G. An analogous
development for generating line graph of a digraph has also been done. The computing time of the
algorithms for generating line graphs of undirected graphs as well as directed graphs is O(n?)
[Chartrand. and Oellermann, 1993]. Both the algorithms have been coded to C programming [ ] and
tested for a large number of random graphs with varying densities. When the programs are run for
undirected as well as directed graphs, it has been found that the actual computing time in both the
cases is nearly 1% of the theoretical bound O(n).

In section 2, we have given relevant definitions with illustrations. In section 3, a new method is
developed with a new matrix to generate line graphs undirected graphs. In section 4, we have
suggested how we can minimize actual computing time. An algorithm for generating line graph of
an undirected graph is developed in this section. In section 5, an analogous development for
generating line graph of a digraph is given. Programmers in C corresponding to these two algorithms
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are written and tested for random graphs with varying densities. Finally, the outputs are appended
at the end of the paper.

2. Definitions:

Definition1. The edge matrix of G (n,m), denoted by E (G), is a (2 x m ) matrix defined by
E(G) =

where a column represents two end vertices of an edge of G.
The vertices of G are renamed as Vi and the edges as (Vlj'VZj) for (i=1,2;j=1,2,...,m).

J
Obviously, for a graph without self loops Vij  Voy F=12..,m

and without parallel edges E:ll'] i[“;lj] JiSj#Fk<m
2j 2]
Since G is undirected, without any loss of generality we can choose the end vertices of the edges

€ as Vi < Vp; forl< j< m.

]

Thus if we compare any two columns (say j the and k th) of E(G), then two possible cases may

arise:
(a) e; = M ey = V1k| have one vertex in common
by v2k
(b) e: = ey = V1k| have no vertex in common
] V2k

Thus the adjacency between the edges of G can be studied with the help of the edge matrix of
the graph.
Definition 2. The degree of an edge e = (u,v), denoted by d(e), is defined by
d(e)=d(u) +d(v) - 2.
Definition 3. The degree edge matrix of G (n,m), denoted by DE(G), is a (3 x m) matrix defined by

where the submatrix formed by the first two rows of DE(G) is the matrix E(G) and V3i is the degree

of the edge ¢ forj=1,2,.,m . The third row of DE(G) will be called the degree edge vector of G. In an

analogous way we can define the matrices EL(G) and DEL(G) as the Edge Matrix and Degree Edge
Matrix respectively of L(G).

3. A New Method to Generate Line Graph of an Undirected Graph

We now present a new method based on the edge matrix of a graph G as data structure to
generate line graph of an undirected graph. To explain the method we consider the following
examples.
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Here the number of edges is 5 and the degrees of the vertices are 2, 3, 2, and 3.

So the number of columns of EL(G) is q= -5 + ( 4+9+4+9)/2 = 8.

From the 1st and 2nd columns of E(G), we see e{ and e, are adjacent, hence they will be the

vertices of L( G). So the 1st column of EL(G) i ; for convenience writing i for e; etc.)

Again, the Ist and the 3rd columns of E(G) have an element (viz.2) in common,

the 2nd column of EL(G) will beL

Following this way we get the e
1122334

1
3
ge matrix of the line graph of G as

EL(G) =
23445455
Since E(G) completely”characterizes G, EL(G) does the same for L(G). The method of
constructing EL(G) from E(G) as mentioned above is better than the existing method because the time

complexity for computing EL(G) from E(G) is O(n4). This is due to the fact that the number of times
the inner loop executed in the worst case is

(m-1)+(m-2)+ - +2+1= m(m-1)/2= O(mZ) = O(n%).

4. Improvement of Actual Computing Time of Our Method

We can still make some improvement of the method mentioned in section 3 by slightly changing
the input data structure. In the above method we have compared the 1st column with (m-1) columns
(and the 2nd column with (m-2) columns and so on) without having any prior knowledge about the
adjacency of the 1st edge (respectively the 2nd edge and so on) with others. So if, for example, the 1st
edge is adjacent to p number of edges in G, we need not continue searching as soon as the comparison
between the first edge and the adjacent p edges are over. So the effective computing time in most of
the cases will decrease, although the theoretical bound of computing time remains the same.
Therefore, from practical point of view it is better to use DE(G) for generating EL(G) or DEL(G). An

algorithm for generating DEL(G) from DE(G) is given below.

Algorithm 1

Step 1 =1

Step 2 If v3j =0 then go to Step 10

Step 3 k=j +1

Step 4 If vk = 0 then go to Step?.

Step 5 If the j th and the k th columns of DE(G) have one element in

J

common, then i will be an edge in DEL(G) with degree

V3 + vak — 2 [* original degrees are taken */

v3j=v3j -1, vak = vak -1. /* degree edge vector updated formulae */

Step 6 If deg( j) = 0 then go to Step10

Step 7 k=k+1

Step 8 If k > m then print" Error ": goto Step 14
Step 9 Go to Step 4
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Step 10 =it

Step 11 If j = m then print" Error ": goto Step 14
Step 12 Go to Step 2

Step 13 Print DEL(G).

Step 14. Stop.

Following the algorithm given above we demonstrate below how the actual computing time
reduces for generating line graph from a given undirected graph.
Ilustration: 2 DE(G) of the graph as shown in shown in Figure 1 is given by

11223
DE(G) = 24344
33343

Since vz 0, vz, 0 and the corresponding columns have an element (here ‘1) in common, thus

[ ;]will be an edge of L(G) with degree d(1)+ d(2) - 2= 4. (original values of v3j are stored in a linear

array).
Illustration: 1 The edge matrix of G is
_ 11 2 2 3
BG = [2 4 3 4 4]

Figure 1.

To update the degrees of the corresponding edges of G [ i.e., the elements of the third row of
DE(G) ] we replace v31 by v3;-1 and v3, by v3, -1. We next compare the first column (provided v31-

1 0) and the third column (since v33 0) of DE(G). The moment the updated value of v3; becomes

zero, we move to the next column V3, 2 j m, provided its updated value is non-zero.

The degree of| _|in ELG = (deg of ej+deg of e, in DE(G)) -2 =3+3-2 =4.

1
2
In this way we get the degree edge matrix [DEL(G)] of the line graph of the above graph as
11122334
DEL(G)= | 23445455
44554545
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L(G)

Figure 2.

The degree edge vector of the graph G is (3,3,3,4,3). We depict below how the degrees of the
edges are changing when we implement Algorithm 1.

Degree edge vector Degree sum
(33343) 16
(22343) 14
(12243) 12
(02233) 10
01223) 8
00222) 6
(00112) 4

(00011) 2
(00000) 0

The algorithm stops when the Degree sum becomes 0.

5. Line Graph of Directed Graph:

The concept of line graph of a graph can be extended to that of a digraph in an analogous way.
But a difficulty arises in assigning a unique line digraph corresponding to a digraph, for there are
three possible ways of defining the adjacency between any two arcs of a digraph. In fact, each of the
following three types of adjacency (i) head-to-head, (ii) head-to-tail or tail-to-head and (iii) tail-to-tail
corresponds to a line digraph and consequently they differ significantly. The convention is to accept
“head-to-tail” adjacency for defining line graph of a digraph and we will stick to that. However, head-
to-head and tail-to-tail adjacency relations are used in digraphs corresponding to food webs. Head-
to head adjacency relation identifies species having common predators and thus the preys form
Common enemy or Resource graphs; while tail-to tail adjacency relation identifies species having
common preys and thus the predators form Competition or Consumer graphs [Mukherjee, 2010].
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Definition 4. The degree of an arc & =(Vij,V2j), denoted by deg(ej), is defined by the out degree of the

vertex b (i.e.,deg (ej)=clJr (VZj))'
Definition 5. The degree arc matrix of a digraph, denoted by DA(G), is defined by

DA(G) = V21 V22 ...... V2m

V3 1 V32 ..... V3m

where the j th column,l j m, denote the j th arc emanating from the vertex Vi and converging to
the vertex e and v3]-=deg(e]-). The third row of DA(G) will be called the degree arc vector of a
digraph G.

Thus to compare whether e; and e} are adjacent, we are to check whether V2j is identical with

]

vk If g and e} are adjacent, we shall update the degree of the arcs just by reducing the degree of §

by unity only (i.e,v3j is updated by v3]-—1, but v3) remains same).
In DAL(G), the degree of the arc [{( will be calculated from DAG as:
degree of the arc e) = out degree of vy .
The degree arc matrix is
1 1 2 3 4 4
DAG = 2 3 4 2 3 5
1 1 2 1 1 0

Here V31 0, so we compare between e and €. Since V91 Vqp, we next compare and see that

Vo1 =Vq3, henc 51,] is an arc of the line digraph with degree2 ( since v33=2).

Since vg1= 0 (updated value), we move to the second column and see that v3, 0. We now
compare ey with e [although deg(e;) =0 ].

Since vy V{1, we compare vy, with vz and find vyy vy3.

_ 2
Next we see Voo =Vqg - 30 4

In this way we construct DAL(G) of the given DA(G) as
1 2 3 3 4 5
DAL(G) = 3 4 5 6 3 4
2 1 1 0 2 1

Algorithm for DAL(G) will differ from that of DEL(G) in the following points.
(i) If ¢ is adjacent to e} then only deg(e]-) is updated.

s an arc of the line digraph with degreel.

(ii) To check whether e, is adjacent to e, the columns of DAG are to be considered from the first

)
column to the last column until (updated) V3]~ = 0. So k assumes the values 1,2,.....j-1, j+1,....m

Algorithm 2

Step 1 =1

Step 2 If v3j= 0 then go to Step 10

Step 3 k=1

Step 4 If k =j then go to Step?.

Step 5 If the j th and the k th columns of DA(G) have one element in common

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Then [{c }Niu be an arc in DAL(G) with degree deg(et).

deg(ej) = deg(ej) — 1 /* Degree arc vector updated formulae*/

Step 6 If deg( ej) = 0 then go to Step10

Step 7 k =kt

Step 8 If k > m then print" Error ": goto Step 14
Step 9 Go to Step 3

Step 10 =i+l

Step 11 If j = m then print" Error ": go to Step 14
Step 12 Go to Step 2

Step 13 Print DAL(G).

Step 14. Stop.
Ilustration: 4 Let us consider the digraph as shown in Figure 3:

The degree arc matrix of the above digraph is

11 2 3 4 4
DA(G) = 23 4 2 3 5
1t 2 1 1 O
Here vs1# 0, so we compare between e1 and e2. Since v21+vi2, we next compare and see that v -
vi3, hence 31, is an arc of the line digraph with degree 2 ( since vs=2).

We update the degree of the arc following Step 5. Since vsi= 0 (updated value), we move to the
second column and see that va# 0. We next compare e2 with e1 ( although deg(e1) = 0). Since v22« v,
we now compare v2 with vis and see that v22+vi3 and then find v2-vu.

So 41} will be an arc of the line digraph with degree 1.
In this way we construct DAL(G) from DA(G).
Ilustration: 3:  Let us consider the digraph:

2
A
4
\o .

1

Figure 3.
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1 2 3 3 4 5
So DAL(G) = 3 4 5 6 3 4

2 1 1 0 2 1

The degree arc vector of the digraph is ( 2,1,1,0,2,T). We demonstrate below how the degrees of
the arcs are changing when we implement Algorithm 2.

Degree arc vector Degree sum

(112110)
(012110)
002110)
(001110)
000110)
000010)

(000000) 0
The algorithm stops when the Degree sum becomes 0.

— N W e 0

Conclusion

The time complexity of computing the line graph of an undirected graph with n vertices and m

edges by Algorithm 1 is O(r14). This is due to the fact that the number of times the inner loop executed
in the worst case is

= (m-1)+(m-2)+ ... +2+1=m(m-1)/2=0(m?) = O(n?), [ since m= O(n?).]

We have run programs in C corresponding to Algorithm 1 and Algorithm 2 where the inputs
are the random graphs with varying threshold values. We have calculated the actual number of
comparisons taking place in our method and then compared it with the method given in [3]. Apart
from theoretical point of view, the outputs of the program show that our method is efficient from
computational aspects as well. It has been found that the actual computing time is nearly 1%

of the bound O(n*).
Appendix A
OUTPUT OF THE PROGRAM
SL. N THRESHOILD | DENSITY | OPERATIONS | OPERATIONS | (%) TIME
NO. (EXISTING) (ACTUAL) SAVING
1 0.67 0.2667 7776 39 99.4985
2 7 0.56 0.2143 16807 56 99.6668
3 8 0.34 0.2321 32768 80 99.7559
4 12 0.78 0.4167 248832 1221 99.5093
5 20 0.34 0.1684 3200000 1001 99.9687
6 24 0.45 0.2391 7962624 3787 99.9524
7 12 0.9 0.4773 248832 1591 99.3606
8 15 0.45 0.2476 759375 903 99.8811
9 18 0.88 0.4444 1889568 5157 99.7271
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10 8 0.99 0.4821 32768 414 98.7366
11 20 0.9 0.4474 3200000 7347 99.7704
12 15 0.88 0.4238 759375 2589 99.6591
13 12 0.87 0.4394 248832 1350 99.4575
14 18 0.34 0.1863 1889568 858 99.9546
15 22 0.45 0.2186 5153632 2284 99.9557
16 24 0.67 0.3514 7962624 7883 99.9010
17 16 0.9 0.4542 1048576 3694 99.6477
18 17 0.77 0.375 1419857 3098 99.7818
19 8 0.99 0.4821 32768 422 98.7122
20 6 0.44 0.2333 7776 25 99.6785
21 14 0.88 0.4231 537824 2066 99.6159
22 7 0.45 0.2143 16807 44 99.7382
23 3 0.98 0.5 243 8 96.7078
24 0.89 0.5 1024 32 96.8750
25 5 0.33 0.1 3125 3 99.9040
26 10 0.78 0.4333 100000 722 99.2780
27 13 0.88 0.4423 371293 1795 99.5166
28 19 0.33 0.1433 2476099 635 99.9744
29 19 0.99 0.4971 2476099 7655 99.6908
30 25 0.33 0.1367 9765625 1378 99.9859
31 25 0.68 0.35 9765625 8950 99.9084
32 21 0.5 0.231 4084101 2289 99.9440
33 22 0.86 0.4264 5153632 8980 99.8258
34 23 0.568 0.2747 6436343 4222 99.9344
35 25 0.22 0.1117 9765625 888 99.9909
36 6 0.67 0.1667 7776 14 99.8200
37 6 0.99 0.5 7776 160 97.9424
38 10 0.23 0.1 100000 24 99.9760
SL. N THRESHOILD | DENSITY | OPERATIONS | OPERATIONS (%) TIME
NO. (EXISTING) (ACTUAL) SAVING
39 10 0.61 0.3 100000 325 99.6750
40 10 0.89 0.4444 100000 750 99.2500
41 15 0.23 0.1 759375 153 99.9799
42 15 0.61 0.3238 759375 1557 99.7950
43 15 0.89 0.4667 759375 3137 99.5869
44 25 0.19 0.0933 9765625 698 99.9929
45 25 0.56 0.275 9765625 5496 99.9437
46 25 0.92 0.4417 9765625 4255 99.8540
47 7 0.23 0.0714 16807 7 99.9584
48 7 0.56 0.3333 16807 120 99.2860
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49 7 0.95 0.5 16807 280 98.3340
50 14 0.23 0.1319 537824 189 99.9649
51 14 0.56 0.2582 537824 773 99.8563
52 14 0.96 0.489 537824 2776 99.4838
53 21 0.23 0.1119 4084101 549 99.9866
54 21 0.67 0.3381 4084101 4817 99.8821
55 21 0.89 0.4262 4084101 7656 99.8125
56 8 0.23 0.125 32768 19 99.9420
57 8 0.61 0.3393 32768 202 99.3835
58 8 0.91 0.4821 32768 423 98.7091
59 16 0.23 0.1625 1048576 495 99.9528
60 16 0.67 0.3417 1048576 2070 99.8026
61 16 0.89 0.4083 1048576 2927 99.7209
62 26 0.36 0.1631 11881376 2109 99.9822
63 26 0.96 0.4785 11881376 19002 99.8401
64 0.23 0.1806 59049 87 99.8527
65 9 0.61 0.2639 59049 174 99.7053
66 9 0.92 0.4444 59049 520 99.1194
67 11 0.23 0.1364 161051 87 99.9460
68 11 0.65 0.3364 161051 587 99.6355
69 11 0.92 0.4455 161051 1050 99.3480
70 22 0.64 0.3203 5153632 5053 99.9020
71 22 0.96 0.4784 5153632 11281 99.7811
72 12 0.23 0.0909 248832 56 99.9775
73 12 0.36 0.1591 248832 159 99.9361
74 12 0.96 0.4924 248832 1714 99.3112
75 24 0.23 0.1359 7962624 1122 99.9859
76 24 0.61 0.3243 7962624 6743 99.9153
77 24 0.98 0.4837 7962624 15163 99.8096
78 13 0.23 0.0833 371293 53 99.9857
SL. N THRESHOILD | DENSITY | OPERATIONS | OPERATIONS (%) TIME
NO. (EXISTING) (ACTUAL) SAVING
79 13 0.64 0.3205 371293 975 99.7374
81 26 0.23 0.1138 11881376 1029 99.9913
82 26 0.64 0.32 11881376 8609 99.9275
83 26 0.98 0.4862 11881376 19634 99.8347
84 14 0.23 0.115454 537824 175 99.9675
85 14 0.56 0.2308 537824 606 99.8873
86 14 0.92 0.4725 537824 2596 99.5173
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87 28 0.23 1164 17210368 1342 99.9922
88 28 0.63 0.3122 17210368 10216 99.9406
89 28 0.91 0.4563 17210368 21896 99.8728
90 16 0.23 0.15 1048576 375 99.9642
91 16 0.65 0.3 1048576 1638 99.8438
92 16 0.96 0.4792 1048576 4110 99.6080
93 28 0.36 1799 17210368 3454 99.9799
94 28 0.96 0.4894 17210368 25118 99.8541
95 17 0.23 0.1287 1419857 393 99.9723
96 17 0.61 0.3309 1419857 2326 99.8362
97 17 0.92 0.4522 1419857 4467 99.6854
98 29 0.23 0.1182 20511149 1661 99.9919
99 29 0.63 0.3005 20511149 10349 99.9495
100 29 0.96 0.4766 20511149 26541 99.8706
101 18 0.23 0.1307 1889568 477 99.9748
102 18 0.61 0.317 1889568 2654 99.8595
103 18 0.92 0.4739 1889568 5852 99.6903
104 19 0.23 0.0848 2476099 214 99.9914
105 19 0.62 0.3216 2476099 3284 99.8674
106 19 0.95 0.4561 2476099 6442 99.7398
107 25 0.22 0.1117 9765625 888 99.9909
108 6 0.67 0.1667 7776 14 99.8200
109 6 0.99 0.5 7776 160 97.9424
110 6 0.19 0 7776 0 100.0000
111 10 0.23 0.1 100000 24 99.9760
112 10 0.61 0.3 100000 325 99.6750
113 10 0.89 0.4444 100000 750 99.2500
114 15 0.23 0.1 759375 153 99.9799
115 15 0.61 0.3238 759375 1557 99.7950
116 15 0.89 0.4667 759375 3137 99.5869
117 25 0.19 0.0933 9765625 698 99.9929
118 25 0.56 0.275 9765625 5496 99.9437
119 25 0.92 0.4417 9765625 4255 99.8540
120 7 0.23 0.0714 16807 7 99.9584
123 14 0.23 0.1319 537824 189 99.9649
124 14 0.56 0.2582 537824 773 99.8563
SL. N THRESHOILD | DENSITY | OPERATIONS | OPERATIONS (%) TIME
NO. (EXISTING) (ACTUAL) SAVING
125 14 0.96 0.489 537824 2776 99.4838
126 21 0.23 0.1119 4084101 549 99.9866
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127 21 0.67 0.3381 4084101 4817 99.8821
128 21 0.89 0.4262 4084101 7656 99.8125
129 8 0.23 0.125 32768 19 99.9420
130 8 0.61 0.3393 32768 202 99.3835
131 8 0.91 0.4821 32768 423 98.7091
132 16 0.23 0.1625 1048576 495 99.9528
133 16 0.67 0.3417 1048576 2070 99.8026
134 16 0.89 0.4083 1048576 2927 99.7209
135 26 0.36 0.1631 11881376 2109 99.9822
136 26 0.96 0.4785 11881376 19002 99.8401
137 9 0.23 0.1806 59049 87 99.8527
138 0.61 0.2639 59049 174 99.7053
139 9 0.92 0.4444 59049 520 99.1194
140 11 0.23 0.1364 161051 87 99.9460
141 11 0.65 0.3364 161051 587 99.6355
142 11 0.92 0.4455 161051 1050 99.3480
143 22 0.64 0.3203 5153632 5053 99.9020
144 22 0.96 0.4784 5153632 11281 99.7811
145 12 0.23 0.0909 248832 56 99.9775
146 12 0.36 0.1591 248832 159 99.9361
147 12 0.96 0.4924 248832 1714 99.3112
148 24 0.23 0.1359 7962624 1122 99.9859
149 24 0.61 0.3243 7962624 6743 99.9153
150 24 0.98 0.4837 7962624 15163 99.8096
151 13 0.23 0.0833 371293 53 99.9857
152 13 0.64 0.3205 371293 975 99.7374
153 13 0.89 0.4615 371293 1918 99.4834
154 26 0.23 0.1138 11881376 1029 99.9913
155 26 0.64 0.32 11881376 8609 99.9275
156 26 0.98 0.4862 11881376 19634 99.8347
157 14 0.23 0.115454 537824 175 99.9675
158 14 0.56 0.2308 537824 606 99.8873
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SL. N THRESHOILD | DENSITY | OPERATIONS | OPERATIONS (%) TIME
NO. (EXISTING) (ACTUAL) SAVING
159 14 0.92 0.4725 537824 2596 99.5173
160 28 0.23 1164 17210368 1342 99.9922
161 28 0.63 0.3122 17210368 10216 99.9406
165 16 0.96 0.4792 1048576 4110 99.6080
166 28 0.36 1799 17210368 3454 99.9799
167 28 0.96 0.4894 17210368 25118 99.8541
168 17 0.23 0.1287 1419857 393 99.9723
169 17 0.61 0.3309 1419857 2326 99.8362
170 17 0.92 0.4522 1419857 4467 99.6854
171 29 0.23 0.1182 20511149 1661 99.9919
172 29 0.63 0.3005 20511149 10349 99.9495
173 29 0.96 0.4766 20511149 26541 99.8706
174 18 0.23 0.1307 1889568 477 99.9748
175 18 0.61 0.317 1889568 2654 99.8595
176 18 0.92 0.4739 1889568 5852 99.6903
177 19 0.23 0.0848 2476099 214 99.9914
178 19 0.62 0.3216 2476099 3284 99.8674
179 19 0.95 0.4561 2476099 6442 99.7398
180 3 0.66 0.3333 243 1 99.5885
181 8 0.1234 0.0714 32768 8 99.9756
182 10 0.2513 1333 100000 56 99.9440
183 9 0.236 0.0972 59049 27 99.9543
184 16 0.369 2083 1048576 712 99.9321
185 18 0.1234 0.0621 1889568 74 99.9961
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