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Article

A Unified Proof of the Extended, Generalized, and
Grand Riemann Hypothesis
Weicun Zhang

University of Science and Technology Beijing, Beijing 100083, China; weicunzhang@ustb.edu.cn

Abstract

The Extended Riemann Hypothesis (for Dedekind zeta function), the Generalized Riemann Hypothesis
(for Dirichlet L-function), and the Grand Riemann Hypothesis (for modular form L-function, auto-
morphic L-function, and etc.) are proved within a unified framework based on the divisibility in the
symmetrical functional equations of the completed L-functions represented as Hadamard products.

Keywords: Extended Riemann Hypothesis; Generalized Riemann Hypothesis; Grand Riemann
Hypothesis; L-functions; Hadamard product; functional equation

1. Introduction
The Riemann Hypothesis (RH) is proved in Ref.[1] based on a new expression of the completed

zeta function ξ(s), which was obtained through pairing the conjugate zeros ρi and ρ̄i in the Hadamard
product expression, with consideration of the multiplicities of zeros, i.e.

ξ(s) = ξ(0)∏
ρ

(1 − s
ρ
) = ξ(0)

∞

∏
i=1

(1 − s
ρi
)(1 − s

ρ̄i
) = ξ(0)

∞

∏
i=1

( β2
i

α2
i + β2

i
+

(s − αi)
2

α2
i + β2

i

)mi

where ξ(0) = 1
2 , ρi = αi + jβi, ρ̄i = αi − jβi, with 0 < αi < 1, βi ̸= 0, 0 < |β1| ≤ |β2| ≤ · · · , and mi ≥ 1

is the multiplicity of ρi.
It should be noted that in this article and Ref.[1], j is used to denote the imaginary unit (j2 = −1),

while i serves as a natural number index.
Lemma 8 is the key lemma to the proof of the RH in Ref.[1]. The key points include the divisibility

contained in a variant of the functional equation ξ(s) = ξ(1 − s) and the uniqueness of the multiplicity
mi of zero ρi (although it is unknown). According to Lemma 8, we finally obtain

ξ(s) = ξ(1 − s) ⇔ αi =
1
2

, 0 < |β1| < |β2| < |β3| < · · · , i = 1, 2, 3, . . .

Here we give the details of Lemma 8 as the base of subsequent discussions.
Lemma 8 [1]: Given two entire functions represented as absolutely convergent (on the whole

complex plane) infinite products of polynomial factors

f (s) =
∞

∏
i=1

(
1 +

(s − αi)
2

β2
i

)mi
(1)

and

f (1 − s) =
∞

∏
i=1

(
1 +

(1 − s − αi)
2

β2
i

)mi
(2)

where s is the complex variable, ρi = αi + jβi and ρ̄i = αi − jβi are the complex conjugate zeros of the
completed zeta function ξ(s), 0 < αi < 1 and βi ̸= 0 are real numbers, 0 < |β1| ≤ |β2| ≤ |β3| ≤ · · · ,
mi ≥ 1 is the multiplicity of quadruplets of zeros (ρi, ρ̄i, 1 − ρi, 1 − ρ̄i).
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Then we have

f (s) = f (1 − s) ⇔


αi =

1
2

0 < |β1| < |β2| < |β3| < · · ·
i = 1, 2, 3, · · ·

(3)

The other related lemmas in Ref.[1] are also provided in the following.
Lemma 1 [1]: Non-trivial zeroes of ζ(s), noted as ρ = α + jβ, have the following properties

1) The number of non-trivial zeroes is infinity;
2) β ̸= 0;
3) 0 < α < 1;
4) ρ, ρ̄, 1 − ρ̄, 1 − ρ are all non-trivial zeroes.

Lemma 2 [1]: The zeros of ξ(s) coincide with the non-trivial zeros of ζ(s).
Lemma 3 [1]: Let m(x), g1(x), ..., gn(x) ∈ R[x], n ≥ 2. If m(x) is irreducible (prime) and divides

the product g1(x) · · · gn(x), then m(x) divides one of the polynomials g1(x), ..., gn(x).
Lemma 4 [1]: Let f (x), m(x) ∈ R[x]. If m(x) is irreducible and f (x) is any polynomial, then either

m(x) divides f (x) or gcd(m(x), f (x)) = 1.
Lemma 5 [1]: Let f (x) = ∏∞

i=1 gi(x) (the infinite product is absolutely convergent in the whole
complex plane), gi(x) ∈ R[x], be an entire function. If gi(x) are irreducible polynomials with the same
degree as m(x), m(x) ∈ R[x] is irreducible and m(x) | f (x), then m(x) divides one of the polynomials
g1(x), g2(x), . . ..

Lemma 6 [1]: Let f (s) be a non-zero entire function, and let s0 be a zero of f (s). Then the
multiplicity of s0 is a finite positive integer.

Lemma 7 [1]: Let f (s) be a non-zero entire function, and let s0 be a zero of f (s). Then the
multiplicity of s0 is unique.

Lemma 9 [1]: The infinite product ∏∞
i=1

(
β2

i
α2

i +β2
i

)mi
converges to a non-zero constant, given the

conditions: 0 < αi < 1, βi ̸= 0, ∑∞
i=1

1
β2

i
< ∞, and mi ≥ 1 is the multiplicity of zero αi + jβi.

Remark: Lemmas 1-4 are the well-known results summarized from related journal papers, or
textbooks/monographs. Lemmas 5-9 are proved in Ref.[1].

Motivated by Lemma 8, we have the following theorems 1-4, in which Theorem 4 is a unified
basis for the proofs of the Extended Riemann Hypothesis, the Generalized Riemann Hypothesis, and
the Grand Riemann Hypothesis.

2. Four Theorems
As pointed in Ref.[2] (on page 57), we can enumerate the nontrivial zeros of the zeta function in

order of the increasing absolute value of their imaginary parts, where zeros whose imaginary parts
have the same absolute value are arranged arbitrarily. Thus we remove the default ordering of |βi|,
|β1| ≤ |β2| ≤ · · · , as condition hereafter for simplicity.

Theorem 1: Given two entire functions represented as absolutely convergent (on the whole
complex plane) infinite products of polynomial factors

F(s) =
∞

∏
i=1

(
1 +

(s − αi)
2

β2
i

)mi
(4)

and

F(k − s) =
∞

∏
i=1

(
1 +

(k − s − αi)
2

β2
i

)mi
(5)

where s is a complex variable, ρi = αi + jβi and ρ̄i = αi − jβi are the complex conjugate zeros of F(s),
0 < αi < k, k > 0, and βi ̸= 0 are real numbers, mi ≥ 1 is the multiplicity of quadruplets of zeros
(ρi, ρ̄i, k − ρi, k − ρ̄i), ∑∞

i=1
1

|ρi |2
< ∞.
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Then we have

F(s) = F(k − s) ⇒

 αi =
k
2 , i = 1, 2, 3, · · ·

0 < |β1| < |β2| < |β3| < · · ·
(6)

Proof. According to the definition of divisibility of entire functions [3,4] (or more specifically the
definition that a polynomial divides an entire function expressed as infinite product of polynomial
factors [1]), the functional equation F(s) = F(k − s) implies that each polynomial factor on either side
divides the infinite product on the opposite side, i.e.,

F(s) = F(k − s) ⇒


(

1 + (s−αi)
2

β2
i

)
| F(k − s)(

1 + (k−s−αi)
2

β2
i

)
| F(s)

i = 1, 2, 3, · · ·

(7)

where "|" is the divisible sign.

Since 1 + (s−αi)
2

β2
i

(with discriminant ∆ = −4 · 1
β2

i
< 0) and 1 + (k−s−αi)

2

β2
i

(with discriminant

∆ = −4 · 1
β2

i
< 0) are irreducible over the field R, then by Lemma 5, Eq.(7) yields:


(

1 + (s−αi)
2

β2
i

)
|
(

1 + (k−s−αl)
2

β2
l

)
(

1 + (k−s−αi)
2

β2
i

)
|
(

1 + (s−αl)
2

β2
l

)
i = 1, 2, 3, · · · ; l = 1, 2, 3, · · ·

(8)

For the special kind of polynomials in Eq.(8), "divisible" means "equal", which can be verified by
comparing the like terms in equation

(
1 +

(s − αi)
2

β2
i

)
= k′

(
1 +

(k − s − αl)
2

β2
l

)
, k′ ̸= 0 ∈ R (9)

to get k′ = 1. Further, due to the uniqueness of the multiplicity mi, the only solution to Eq.(8) is i = l,
otherwise, new duplicated zeros with αl = k − αi, k − αl = αi, β2

i = β2
l , l ̸= i would be generated to

change mi. Therefore we have from Eq.(8):

(
1 +

(s − αi)
2

β2
i

)
=

(
1 +

(k − s − αi)
2

β2
i

)
, i = 1, 2, 3, · · · (10)

By comparing the like terms in Eq.(10), we obtain αi =
k
2 . Further, to ensure the uniqueness of mi while

αi =
k
2 , we need limit the βi values to be distinct, i.e., 0 < |β1| < |β2| < |β3| < · · · .
That completes the proof of Theorem 1.

Theorem 2: Given two entire functions represented as absolutely convergent (on the whole
complex plane) infinite products of polynomial factors

G(s) =
∞

∏
i=1

( β2
i

α2
i + β2

i
+

(s − αi)
2

α2
i + β2

i

)mi

=
∞

∏
i=1

(
1 − s

ρi

)mi
(

1 − s
ρ̄i

)mi

=
∞

∏
i=1

(
1 − s

ρi

)
(11)
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and

G(k − s) =
∞

∏
i=1

( β2
i

α2
i + β2

i
+

(k − s − αi)
2

α2
i + β2

i

)mi

=
∞

∏
i=1

(
1 − k − s

ρi

)mi
(

1 − k − s
ρ̄i

)mi

=
∞

∏
i=1

(
1 − k − s

ρi

)
(12)

where s is a complex variable, ρi = αi + jβi and ρ̄i = αi − jβi are the complex conjugate zeros of G(s),
0 < αi < k, k > 0, and βi ̸= 0 are real numbers, mi ≥ 1 is the multiplicity of quadruplets of zeros
(ρi, ρ̄i, k − ρi, k − ρ̄i), ∑∞

i=1
1

|ρi |2
< ∞.

Then we have

G(s) = G(k − s) ⇒

 αi =
k
2 , i = 1, 2, 3, · · ·

0 < |β1| < |β2| < |β3| < · · ·
(13)

Proof. According to Theorem 1 and Lemma 9, we have

F(s) = F(k − s)

⇔
∞

∏
i=1

( β2
i

α2
i + β2

i

)mi
F(s) =

∞

∏
i=1

( β2
i

α2
i + β2

i

)mi
F(k − s)

⇔
∞

∏
i=1

( β2
i

α2
i + β2

i
+

(s − αi)
2

α2
i + β2

i

)mi
=

∞

∏
i=1

( β2
i

α2
i + β2

i
+

(k − s − αi)
2

α2
i + β2

i

)mi

⇔
G(s) = G(k − s)

(14)

Then we know that

G(s) = G(k − s) ⇒

 αi =
k
2 , i = 1, 2, 3, · · ·

0 < |β1| < |β2| < |β3| < · · ·
(15)

That completes the proof of Theorem 2.

Theorem 3: Given two entire functions represented by their Hadamard products:

Λ(λ, s) = eA(λ)+B(λ)s
∞

∏
i=1

(
1 − s

ρi

)
e

s
ρi (16)

and

Λ(λ, k − s) = eA(λ)+B(λ)(k−s)
∞

∏
i=1

(
1 − k − s

ρi

)
e

k−s
ρi (17)

where s is a complex variable, λ denotes a mathematical object (e.g., Dirichlet character, modular
form, automorphic representation), λ is the dual of λ, ρi = αi + jβi and ρ̄i = αi − jβi are the complex
conjugate zeros of Λ(λ, s), 0 < αi < k, k > 0, and βi ̸= 0 are real numbers, ∑∞

i=1
1

|ρi |2
< ∞.

Then we have

Λ(λ, s) = ε(λ)Λ(λ, k − s) ⇒

 αi =
k
2 , i = 1, 2, 3, · · ·

0 < |β1| < |β2| < |β3| < · · ·
(18)
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where ε(λ) is a complex number of absolute value 1, called the "root number" of L-function L(λ, s).

Remark: For more details about ε(λ), see Ref.[5] on page 94.

Proof. First, we have

Λ(λ, s) = eA(λ)+B(λ)s
∞

∏
i=1

(
1 − s

ρi

)
e

s
ρi

= eA(λ)+B(λ)s
∞

∏
i=1

(
1 − s

ρi

)(
1 − s

ρ̄i

)
e

2αi s

α2
i +β2

i

= eA(λ)+B(λ)se
s·∑∞

i=1
2αi

α2
i +β2

i

∞

∏
i=1

(
1 − s

ρi

)(
1 − s

ρ̄i

)
(19)

Noticing that ∑∞
i=1

2αi
α2

i +β2
i
< 2k · ∑∞

i=1
1

|ρi |2
< ∞, then we have ∑∞

i=1
2αi

α2
i +β2

i
= c, c ∈ R, c ̸= 0. With further

consideration of the multiplicity mi ≥ 1 of each zero, we obtain

Λ(λ, s) = eA(λ)+[B(λ)+c]s
∞

∏
i=1

(
1 − s

ρi

)mi
(

1 − s
ρ̄i

)mi
(20)

Accordingly

Λ(λ, k − s) = eA(λ)+[B(λ)+c](k−s)
∞

∏
i=1

(
1 − k − s

ρi

)mi
(

1 − k − s
ρ̄i

)mi

Then we conclude that Theorem 3 is true according to Theorem 2, considering eA(λ)+[B(λ)+c]s and
ε(λ)eA(λ)+[B(λ)+c](k−s) have no zeros, thus both of them have no effect on the complex zeros related
divisibility in the functional equation Λ(λ, s) = ε(λ)Λ(λ, k − s).

That completes the proof of Theorem 3.

In the following Theorem 4, we make further efforts to lay a foundation for the study of completed
L-functions that possess both real and complex zeros, denoted by ρ ∈ Zreal (ℑ(ρ) = 0) and ρ ∈ Zcomplex

(ℑ(ρ) ̸= 0), respectively. When these two zero sets have no common elements, we express their
disjointness by: Zreal ∩ Zcomplex = ∅.

The reason we need to consider this case is that, so far, we cannot rule out the existence of
exceptional zeros (or Landau-Siegel zeros), although their numbers are very limited even if they do
exist.

Denote the set of real zeros in the critical strip as

Zreal = {an ∈ R | 0 < an < k, n = 1, 2, . . . , N}

where N is a finite natural number. This finiteness follows from the Identity Theorem, which implies
that any non-zero entire function cannot have infinitely many zeros in a bounded region.

Theorem 4: Given two entire functions represented by their Hadamard products:

Λ(λ, s) = eA(λ)+B(λ)s ∏
ρ

(
1 − s

ρ

)
e

s
ρ

= eA(λ)+B(λ)s ∏
ρ∈Zreal

(
1 − s

ρ

)
e

s
ρ ∏

ρ∈Zcomplex

(
1 − s

ρ

)
e

s
ρ

= eA(λ)+[B(λ)+c]s
N

∏
n=1

(
1 − s

an

)
e

s
an

∞

∏
i=1

(
1 − s

ρi

)(
1 − s

ρ̄i

)
(21)
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and

Λ(λ, k − s) = eA(λ)+B(λ)(k−s) ∏
ρ

(
1 − k − s

ρ

)
e

k−s
ρ

= eA(λ)+B(λ)(k−s) ∏
ρ∈Zreal

(
1 − k − s

ρ

)
e

k−s
ρ ∏

ρ∈Zcomplex

(
1 − k − s

ρ

)
e

k−s
ρ

= eA(λ)+[B(λ)+c](k−s)
N

∏
n=1

(
1 − k − s

an

)
e

k−s
an

∞

∏
i=1

(
1 − k − s

ρi

)(
1 − k − s

ρ̄i

)
(22)

where s is a complex variable, c = ∑∞
i=1

2αi
α2

i +β2
i
, λ denotes a mathematical object, λ is the dual of λ,

ρi = αi + jβi and ρ̄i = αi − jβi are the complex conjugate zeros of Λ(λ, s), 0 < αi < k, 0 < an < k,
k > 0, and βi ̸= 0 are real numbers, ∑∞

i=1
1

|ρi |2
< ∞, Zreal ∩ Zcomplex = ∅.

Then we have

Λ(λ, s) = ε(λ)Λ(λ, k − s) ⇒


αi =

k
2 , i = 1, 2, 3, · · ·

0 < |β1| < |β2| < |β3| < · · ·
an = k

2 , n = 1

(23)

i.e., all the zeros (both real and complex) of Λ(λ, s) lie on the critical line.

Proof. By Theorem 3, to determine the distribution of the complex zeros of Λ(λ, s), we only need

to show that the newly added parts ∏ρ∈Zreal

(
1 − s

ρ

)
e

s
ρ and ∏ρ∈Zreal

(
1 − k−s

ρ

)
e

k−s
ρ do not affect

the complex zeros related divisibility in the functional equation Λ(λ, s) = ε(λ)Λ(λ, k − s), which

is an obvious fact since the given condition Zreal ∩ Zcomplex = ∅ means that ∏ρ∈Zreal

(
1 − s

ρ

)
e

s
ρ

and ∏ρ∈Zreal

(
1 − k−s

ρ

)
e

k−s
ρ are co-prime according to Ref.[3] (on pages 174, 208) and Ref.[4] (see its

THEOREM 4).
Thus, we conclude by Theorem 3 that

Λ(λ, s) = ε(λ)Λ(λ, k − s) ⇒

 αi =
k
2 , i = 1, 2, 3, · · ·

0 < |β1| < |β2| < |β3| < · · ·
(24)

Next, we consider the real zeros of Λ(λ, s).
By canceling the complex non-trivial zeros related polynomial factors on both sides of Λ(λ, s) =

ε(λ)Λ(λ, k − s), we have

eA(λ)+[B(λ)+c]s
N

∏
n=1

(
1 − s

an

)
e

s
an = ε(λ)eA(λ)+[B(λ)+c](k−s)

N

∏
n=1

(
1 − k − s

an

)
e

k−s
an (25)

Further Eq.(25) is equivalent to

eA(λ)+[B(λ)+c′ ]s
N

∏
n=1

(
s − an

)
= ε(λ)eA(λ)+[B(λ)+c′ ](k−s)

N

∏
n=1

(
s − (k − an)

)
(26)

where c′ = c + ∑N
n=1

1
an

.
Suppose the multiplicity of zero s = an is mn (mn ≥ 1) that is finite and unique although unknown.

Then Eq.(26) becomes

eA(λ)+[B(λ)+c′ ]s
T

∏
t=1

(
s − at

)mt
= ε(λ)eA(λ)+[B(λ)+c′ ](k−s)

T

∏
t=1

(
s − (k − at)

)mt
(27)
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where ∑T
t=1 mt = N.

Considering (s − at) and (s − (k − at)) are irreducible over R, then by Lemma 3, Eq.(27) means
(s − at) | (s − (k − am)

(s − (k − at)) | (s − am)

t = 1, 2, 3, · · · , T; m = 1, 2, 3, · · · , T

(28)

The only solution to Eq.(28) is t = m, at =
k
2 , t = 1, · · · , T, otherwise the uniqueness of mt would

be violated with at + am = k, t ̸= m. To avoid changing the multiplicity of mt while at =
k
2 , we need to

limit T = 1. Thus we get

Λ(λ, s) = ε(λ)Λ(λ, k − s) ⇒ at =
k
2

, t = 1 (29)

where zero s = a1 = k
2 with multiplicity m1 = N .

Putting Eq.(24) and Eq.(29) together, we proved Eq.(23).
That completes the proof of Theorem 4.

Remark: As pointed out in Ref.[5] (on page 102), if ρi = αi + jβi is a zero of Λ(λ, s), then
ρ̄i = αi − jβi is a zero of Λ(λ̄, s). Therefore, to use Theorem 4 while λ ̸= λ̄, we need to construct a
new symmetric functional equation Λ(λ̄, s)Λ(λ, s) = ε(λ)ε(λ)Λ(λ, k − s)Λ(λ̄, k − s) to ensure that the
conjugate zeros appear together. For more details, see the proofs of Theorem 5 and Theorem 7.

Actually, Theorem 4 provides a unified proof framework for the Extended Riemann Hypothesis,
the Generalized Riemann Hypothesis, and the Grand Riemann Hypothesis.

3. The Applications of Theorem 4
We will make use of Theorem 4 to prove the Extended Riemann Hypothesis (for Dedekind zeta

function), the Generalized Riemann Hypothesis (for Dirichlet L-function), and the Grand Riemann
Hypothesis (for modular form L-Function, automorphic L-function, and etc.).

To facilitate the subsequent discussion, we give the details of the Extended Riemann Hypothesis,
the Generalized Riemann Hypothesis, and the Grand Riemann Hypothesis. In the following contents,
the critical line means: R(s) = 1

2 , or more generally, R(s) = k
2 , k > 0 is a constant real number.

The Generalized Riemann Hypothesis: The nontrivial zeros of Dirichlet L-functions lie on the
critical line.

The Extended Riemann Hypothesis: The nontrivial zeros of Dedekind zeta functions lie on the
critical line.

The Grand Riemann Hypothesis: The nontrivial zeros of all L-functions lie on the critical line.
Another version of Grand Riemann Hypothesis: The nontrivial zeros of all automorphic L-

functions lie on the critical line.

To begin with, we provide a general property of L-functions, which was labeled Lemma 5.5 in
Ref.[5] on page 101.

Lemma 5.5 [5]: Let L( f , s) be an L-function. All zeros ρ of Λ( f , s) are in the critical strip 0 ≤ σ ≤ 1.
For any ϵ > 0, we have

∑
ρ ̸=0,1

|ρ|−1−ϵ < +∞.

where, Λ( f , s) is the completed L-function corresponding to L( f , s), σ is the real part of ρ, and f is
identical to λ in this paper as a symbol representing a mathematical object (e.g., Dirichlet character,
modular form, automorphic representation).

Another general property of L-functions is as follows.
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The zeros of Λ( f , s) are precisely the non-trivial zeros of L( f , s), as the trivial zeros of L( f , s) are
canceled by the poles of the Gamma factors in the completion process (see Ref.[5] on page 96 for more
details).

Thus, we can discuss the non trivial zeros of L-functions based on the zeros of the corresponding
completed L-functions.

3.1. Dirichlet L-Function

Definition: The Dirichlet L-function associated with a Dirichlet character χ modulo q is defined
for ℜ(s) > 1 by the series:

L(χ, s) =
∞

∑
n=1

χ(n)
ns (30)

For the principal character χ0 (where χ0(n) = 1 if gcd(n, q) = 1 and χ0(n) = 0 otherwise), the
L-function is related to the Riemann zeta function by:

L(χ0, s) = ζ(s)∏
p|q

(
1 − 1

ps

)
(31)

Completed L-function: The completed Dirichlet L-function is defined as:

Λ(χ, s) =
( q

π

) s+a
2 Γ

(
s + a

2

)
L(χ, s) (32)

where a = 0 if χ(−1) = 1 (even character) and a = 1 if χ(−1) = −1 (odd character).
Functional Equation: The completed Dirichlet L-function satisfies the functional equation:

Λ(χ, s) = W(χ)Λ(χ, 1 − s) (33)

where W(χ) is the Gauss sum:

W(χ) =
τ(χ)

ia√q
(34)

and τ(χ) = ∑
q
n=1 χ(n)e2πin/q is the Gauss sum associated with χ.

Hadamard Product: For non-principal characters χ, the completed L-function Λ(χ, s) is an entire
function and has the Hadamard product:

Λ(χ, s) = eA(χ)+B(χ)s ∏
ρ

(
1 − s

ρ

)
es/ρ (35)

where the product is over all zeros ρ of Λ(χ, s), and A(χ) and B(χ) are constants depending on χ.
Next we prove the Generalized Riemann Hypothesis.
Theorem 5: The nontrivial zeros of the above-described Dirichlet L-functions lie on the critical

line.
Remark: We only need to prove that all the zeros of the completed Dirichlet L-function Λ(χ, s)

have real part 1
2 , i.e., all the zeros of Λ(χ, s) lie on the critical line.

Proof. We conduct the proof in two cases.
CASE 1: χ = χ̄ (self-dual)
It suffices to verify that the properties of Λ(χ, s) with χ = χ̄ match the conditions of Theorem

4 with λ = χ, ε(λ) = W(χ), k = 1. Eq.(35) is equivalent to Eq.(21) by separating all zeros into
two sets Zreal and Zcomplex. Actually, to restrict χ = χ̄ is to guarantee that the conjugate zeros of
Λ(χ, s) appear in pairs, and then the quadruplets of non-trivial zeros (ρi, ρ̄i, 1 − ρi, 1 − ρ̄i) with their
multiplicities appear together according to Eq.(33). The condition ∑∞

i=1
1

|ρi |2
< ∞ can be assured by

Lemma 5.5, considering that ∑∞
i=1

1
|ρi |2

is a subseries of ∑ρ ̸=0,1
1

|ρ|2 ; The condition Zreal ∩ Zcomplex = ∅
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holds because Zreal and Zcomplex are mutually exclusive sets, i.e., if ρ ∈ Zreal, then ℑ(ρ) = 0; if
ρ ∈ Zcomplex, then ℑ(ρ) ̸= 0.

Therefore, by Theorem 4 with λ = χ, ε(λ) = W(χ), k = 1, we know that both the real (if exists)
and the complex zeros of Λ(χ, s) with χ = χ̄ lie on the critical line.

CASE 2: χ ̸= χ̄

In this case, the conjugate non-trivial zeros do not appear together in Eq.(35), because if ρ is a zero
of Λ(χ, s), then ρ̄ is a zero of Λ(χ̄, s).

Thus, we need to extend Eq.(33) to another form, i.e.,

Λ(χ̄, s) = W(χ̄)Λ(χ, 1 − s) (36)

Combining (36) with (33), we get a new functional equation

Λ(χ̄, s)Λ(χ, s) = W(χ̄)W(χ)Λ(χ, 1 − s)Λ(χ̄, 1 − s) (37)

Both sides of Eq.(37) are the products of entire functions, thus they are still entire functions. And we
know that the conjugate zeros of Λ(χ̄, s)Λ(χ, s) appear in pairs, and then the quadruplets of non-trivial
zeros (ρi, ρ̄i, 1 − ρi, 1 − ρ̄i) with their multiplicities appear together according to Eq.(37). Further, based
on Eq.(35), we have

Λ(χ, s)Λ(χ̄, s) = eA(χ)+A(χ̄)+[B(χ)+B(χ̄)+c]s ∏
ρ∈Zreal

(
1 − s

ρ

)
e

s
ρ

∞

∏
i=1

(
1 − s

ρi

)(
1 − s

ρ̄i

)
(38)

where c = ∑∞
i=1

2αi
α2

i +β2
i
.

The condition ∑∞
i=1

1
|ρi |2

< ∞ and condition Zreal ∩ Zcomplex = ∅ hold for the same reasons as in
CASE 1.

Therefore, by Theorem 4, we know that both the real (if exists) and the complex zeros of
Λ(χ, s)Λ(χ̄, s) (thus of Λ(χ, s)) with χ ̸= χ̄ lie on the critical line.

Combining CASE 1 and CASE 2, we conclude that Theorem 5 holds as a specific case of Theorem
4 with k = 1 and λ = χ.

3.2. Dedekind Zeta Function

Definition: For a number field K with ring of integers OK, the Dedekind zeta function is defined
for ℜ(s) > 1 by:

ζK(s) = ∑
a

1
N(a)s (39)

where the sum is over all non-zero ideals a of OK, and N(a) is the norm of the ideal.
Completed Zeta Function: The completed Dedekind zeta function is defined as:

ΛK(s) = |DK|s/2
(

π−s/2Γ
( s

2

))r1(
(2π)−sΓ(s)

)r2 ζK(s) (40)

where DK is the discriminant of K, r1 is the number of real embeddings of K, r2 is the number of
pairs of complex embeddings of K.

Functional Equation: The completed Dedekind zeta function satisfies:

ΛK(s) = ε(K)ΛK(1 − s) (41)

where ε(K) = 1 for all number fields K, showing the symmetry of the functional equation.
Hadamard Product: The completed Dedekind zeta function has a simple pole at s = 1 with

residue 2r1 (2π)r2 hK RK

wK
√

|DK |
, where hK is the class number, RK is the regulator, and wK is the number of roots

of unity in K. The function s(s − 1)ΛK(s) is entire and has the Hadamard product:
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s(s − 1)ΛK(s) = eAK+BKs ∏
ρ ̸=0,1

(
1 − s

ρ

)
es/ρ (42)

where the product is over all zeros ρ of ΛK(s) except ρ = 0 and ρ = 1, and AK and BK are
constants depending on K.

For more details of the completed Dedekind zeta function, please be referred to Ref.[5] (Chapter
5.10) and Ref.[6] (Section 10.5.1).

Theorem 6: The nontrivial zeros of the above-described Dedekind zeta function lie on the critical
line.

Remark: We only need to prove that all the zeros of ΛK(s) have real part 1
2 , i.e., all the zeros of

ΛK(s) lie on the critical line.

Proof. It suffices to show that the properties of ΛK(s) match the conditions of Theorem 4 with λ = K,
ε(λ) = 1, k = 1.

Actually, Eq.(41) and Eq.(42) guarantee that

eAK+BKs ∏
ρ ̸=0,1

(
1 − s

ρ

)
es/ρ = eAK+BK(1−s) ∏

ρ ̸=0,1

(
1 − 1 − s

ρ

)
e1−s/ρ (43)

where ∏
ρ ̸=0,1

(
1 − s

ρ

)
es/ρ = ∏

ρ∈Zreal\{0,1}

(
1 − s

ρ

)
es/ρ ∏

ρ∈Zcomplex

(
1 − s

ρ

)
es/ρ.

And we know that the conjugate zeros of Λk(s) appear in pairs, and then the quadruplets of
non-trivial zeros (ρi, ρ̄i, 1 − ρi, 1 − ρ̄i) with their multiplicities appear together according to Eq.(41).
The condition ∑∞

i=1
1

|ρi |2
< ∞ and condition Zreal ∩Zcomplex = ∅ hold for the same reasons as in CASE

1 in the proof of Theorem 5.
Therefore, by Theorem 4 we know that both the real (if exists) and the complex zeros of ΛK(s)

lie on the critical line, i.e., Theorem 6 holds as a specific case of Theorem 4 with λ = K, ε(λ) = 1,
k = 1.

In the following contents, we prove the Grand Riemann Hypothesis for modular form L-Functions
and automorphic L-functions, respectively. After that we will make a summarization, and conclude
that the Grand Riemann Hypothesis holds for all L-functions satisfying some general properties.

3.3. Modular Form L-FUNCTION

Definition: For a modular form f (z) = ∑∞
n=1 ane2πinz of weight k for a congruence subgroup Γ,

the associated L-function is defined for ℜ(s) > k+1
2 by:

L( f , s) =
∞

∑
n=1

an

ns (44)

Completed L-function: For a cusp form f of weight k for Γ0(N) (level N is any positive integer)
with Nebentypus character χ, the completed modular form L-function is defined as:

Λ( f , s) = Ns/2(2π)−sΓ(s)L( f , s) (45)

Functional Equation: For a normalized Hecke eigenform f of weight k for Γ0(N) with Nebentypus
character χ, the completed modular form L-function satisfies:

Λ( f , s) = ε( f )Λ( f , k − s) (46)

where ε( f ) = ±1 is the epsilon factor, which is the eigenvalue of f under the Atkin-Lehner
involution, and f is the modular form with Fourier coefficients an.
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Hadamard Product: For a cusp form f , the completed L-function Λ( f , s) is an entire function of
order 1 and has the Hadamard product:

Λ( f , s) = eA( f )+B( f )s ∏
ρ

(
1 − s

ρ

)
es/ρ (47)

where the product is over all zeros ρ of Λ( f , s), and A( f ) and B( f ) are constants depending on f .
For more details of the completed modular form L-function, please be referred to Refs.[5,7].

We have the following result about the non-trivial zero distribution of modular form L-Functions.

Theorem 7: The non-trivial zeros of the above-described modular form L-Functions lie on the
critical line.

Remark: We only need to prove that all the zeros of Λ( f , s) have real part k
2 , i.e., all the zeros of

Λ( f , s) lie on the critical line.

Proof. We conduct the proof in two cases.
CASE 1: f = f (self-dual)
It suffices to show that the properties of Λ( f , s) with f = f match the conditions of Theorem 4

with λ = f . Eq.(47) is equivalent to Eq.(21) by separating all zeros into two sets Zreal and Zcomplex.
Actually, to restrict f = f̄ is to guarantee that the conjugate zeros of Λ( f , s)) appear in pairs. Then the
quadruplets of non-trivial zeros (ρi, ρ̄i, k − ρi, k − ρ̄i) with their multiplicities appear together according
to Eq.(46). The condition ∑∞

i=1
1

|ρi |2
< ∞ and condition Zreal ∩ Zcomplex = ∅ hold for the same reasons

as in CASE 1 in the proof of Theorem 5.
Therefore, by Theorem 4, we know that both the real (if exists) and the complex zeros of Λ( f , s)

with f = f lie on the critical line.
CASE 2: f ̸= f
To deal with this case f ̸= f̄ , we need first to extend Eq.(46) to another form, i.e.,

Λ( f̄ , s) = ε( f̄ )Λ( f , k − s) (48)

Combining (48) with (46), we get a new functional equation

Λ( f̄ , s)Λ( f , s) = ε( f )ε( f̄ )Λ( f , k − s)Λ( f̄ , k − s) (49)

Obviously, both sides of Eq.(49) are the products of entire functions, thus they are still entire functions.
And we know that the conjugate zeros of Λ( f̄ , s)Λ( f , s) appear in pairs, and then the quadruplets of
non-trivial zeros (ρi, ρ̄i, k − ρi, k − ρ̄i) with their multiplicities appear together according to Eq.(49).
Further, based on Eq.(47), we have

Λ( f , s)Λ( f̄ , s) = eA( f )+A( f̄ )+[B( f )+B( f̄ )+c]s ∏
ρ∈Zreal

(
1 − s

ρ

)
e

s
ρ

∞

∏
i=1

(
1 − s

ρi

)(
1 − s

ρ̄i

)
(50)

where c = ∑∞
i=1

2αi
α2

i +β2
i
.

The condition ∑∞
i=1

1
|ρi |2

< ∞ and condition Zreal ∩ Zcomplex = ∅ hold for the same reasons as in
CASE 1 in the proof of Theorem 5.

Therefore, by Theorem 4, we know that both the real (if exists) and the complex zeros of
Λ( f , s)Λ( f̄ , s) (thus of Λ( f , s)) with f ̸= f lie on the critical line.

Combining CASE 1 and CASE 2, we conclude that Theorem 7 holds as a specific case of Theorem
4 with λ = f .
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3.4. Automorphic L-Function

Definition: For an automorphic representation π of GLn(AQ) (AQ is the adele ring over the field
of rational numbers Q, see Ref.[7] on page 5 for more details), the associated L-function is defined for
ℜ(s) > 1 by:

L(π, s) = ∏
p

Lp(πp, s) (51)

where Lp(πp, s) is the local L-factor at the prime p. For unramified πp with Satake parameters
{α1,p, . . . , αn,p},

Lp(πp, s) =
n

∏
i=1

(
1 −

αi,p

ps

)−1
(52)

Completed L-function: The completed automorphic L-function is defined as:

Λ(π, s) = Qs/2
π

n

∏
i=1

Γ(i)
∗ (s + µi,π) · L(π, s) (53)

where Qπ is the conductor of π, µi,π are complex numbers determined by the i-th local component of
π∞, and

Γ(i)
∗ (s) =

 ΓR(s) = π− s
2 Γ( s

2 ), for real representations.

ΓC(s) = (2π)−sΓ(s), for complex representations.
(54)

Functional Equation: The completed automorphic L-function satisfies:

Λ(π, s) = ε(π)Λ(π̃, 1 − s) (55)

where π̃ is the contragredient representation of π and ε(π) is the epsilon factor, a complex number
of absolute value 1.

Hadamard Product: For a cuspidal automorphic representation π, the completed L-function
Λ(π, s) is an entire function of order 1 and has the Hadamard product:

Λ(π, s) = eA(π)+B(π)s ∏
ρ

(
1 − s

ρ

)
es/ρ (56)

where the product is over all zeros ρ of Λ(π, s), and A(π) and B(π) are constants depending on
π.

For more details of the completed automorphic L-function, please be referred to Refs.[5,7].
We have the following result about the non-trivial zero distribution of automorphic L-Functions.
Theorem 8: The non-trivial zeros of the above-described automorphic L-Functions lie on the

critical line.
Remark: We only need to prove that all the zeros of Λ(π, s) have real part 1

2 , i.e., all the zeros of
Λ(π, s) lie on the critical line.

Proof. The proof procedures of Theorem 8 is similar to that of Theorem 7 with k = 1 and f replaced
by π, f replaced by π̃. Thus the proof details are omitted for simplicity.

Actually, from the above proofs of Theorem 5, Theorem 6, and Theorem 7, we can note that each
proof does not depend on the specific definition of the L-function L(λ, s), but rather relies on the
following general properties of the corresponding completed L-function Λ(λ, s):
P1: Symmetric functional equation between Λ(λ, s) and Λ(λ̄, k − s): Λ(λ, s) = ε(λ)Λ(λ̄, k − s);
P2: Hadamard product expression of entire function Λ(λ, s) or sm0(k − s)m1 Λ(λ, s), m0 ≥ 1, m1 ≥ 1
are the multiplicities (orders) of poles s = 0, s = k, respectively;
P3: The zeros of Λ(λ, s) are precisely the non-trivial zeros of L(λ, s);
P4: Zero distribution related items: 1) the concurrence of quadruplets of complex non-trivial zeros
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with their multiplicities; 2) the property stated in Lemma 5.5; 3) the disjointness of real and complex
non-trivial zero sets.

Therefore we conclude that the Grand Riemann Hypothesis holds for all kinds of L-functions
satisfying properties P1, P2, P3, and P4, i.e., If only the completed L-function Λ(λ, s) satisfies the
requirements of P1, P2, P3, and P4, the non-trivial zeros of the corresponding L-Function L(λ, s) lie on
the critical line.
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