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Simple Summary: Understanding how brain cells function and change over time is key to diagnosing 

and treating neurological disorders such as Alzheimer’s, schizophrenia, and depression. In recent 

years, scientists have gathered vast amounts of data on brain activity—tracking how genes switch on 

or off, how DNA is organized, and how brain cells interact. This article explores how researchers are 

using advanced computer techniques like artificial intelligence and machine learning to integrate and 

interpret this information. These tools can reveal hidden patterns in brain function, identify early 

signs of disease, and guide the development of new treatments. The article also addresses major 

challenges, including ensuring that results apply across diverse populations and making computer 

models more transparent so that doctors and patients can trust and understand their predictions. By 

combining biology with cutting-edge computing, this work moves us closer to precise, personalized 

brain healthcare and opens new avenues for tackling complex brain diseases. 

Abstract: Neuronal function and plasticity are shaped by complex gene regulatory networks that 

influence identity, adaptation, and disease susceptibility (1). Advances in transcriptomics, 

epigenomics, and high-resolution imaging have revealed the interplay of transcriptional regulation, 

chromatin remodeling, and non-coding RNAs. AI-driven approaches are crucial for integrating 

multi-omics data, uncovering gene expression dynamics and causal interactions. This review 

explores emerging research on spatiotemporal gene regulation, multi-omics integration, and AI-

driven therapies, highlighting innovative methodologies that bridge molecular insights with 

translational applications for precision-targeted neurological interventions. 

Keywords: Neuronal Gene Expression; Multi-Omics Integration; Artificial Intelligence; Graph 

Neural Networks; Explainable AI (XAI) 

 

 

Graphical Abstract: Integrating machine learning techniques—including neural networks, time-

series models, dimensionality reduction, and clustering—with large-scale neuroscience and gene 

expression data has significantly improved our ability to model neuronal activity, map 
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transcriptional patterns, and characterize cellular heterogeneity, driving the discovery of therapeutic 

targets and informing precision medicine in neurology. 

1. Introduction 

Neurons exhibit remarkable complexity in morphology and function [34], requiring highly 

specialized and dynamic gene expression programs to regulate synapse formation, 

neurotransmission, and plasticity while maintaining cellular homeostasis. Advances in single-cell 

RNA sequencing (scRNA-seq) and spatial transcriptomics, combined with computational tools such 

as machine learning (ML), have revolutionized our ability to decode neuronal gene regulation, 

revealing spatiotemporal expression patterns at unprecedented resolution. 

Expanding multi-omics datasets have further refined our understanding of neuronal function. 

The Tabula Sapiens project [31], a multi-tissue single-cell transcriptomic atlas spanning over 500,000 

human cells, complements the mouse-focused Tabula Muris [30], enabling cross-species comparisons 

that uncover conserved neuronal pathways and functional divergence. The Allen Brain Observatory 

[32], incorporating high-resolution imaging and electrophysiological data from over 100,000 neurons, 

provides a direct link between gene activity and neuronal firing patterns, bridging the gap between 

molecular and functional neuroscience. 

Epigenomic datasets have also significantly advanced the field. The Roadmap Epigenomics 

Projet [27], with its spatially resolved histone modification maps, allows for in-depth exploration of 

epigenetic regulation in neuronal subtypes. The Human Cell Atlas [24-25], now integrating 

transcriptomic and epigenomic datasets, facilitates a systems-level investigation of neuronal 

differentiation and plasticity. Together, these resources provide a critical foundation for deciphering 

the intricate interplay between gene regulation, neuronal identity, and disease-associated 

dysregulation. 

2. Integrative Statistical and Computational Approaches in Neurobiology 

Statistical and computational frameworks are essential for deciphering the complex regulatory 

networks that govern neuronal function. By integrating biological datasets, these approaches reveal 

novel insights into gene expression dynamics, neuronal identity, and therapeutic opportunities. This 

review highlights key computational techniques and their applications in neurobiology. 

3. Dimensionality Reduction and Biological Insights 

High-dimensional genomic datasets, such as single-cell transcriptomics, require dimensionality 

reduction techniques to filter noise while preserving biologically relevant structures. These methods 

facilitate pattern discovery, subtype identification, and regulatory network characterization in 

neuronal systems. 

Principal Component Analysis (PCA) [9] is a widely used linear transformation technique that 

projects high-dimensional data into lower-dimensional space while retaining global variance. PCA 

has been instrumental in identifying regulatory elements in methylation datasets from the Roadmap 

Epigenomics Project, uncovering genomic regions linked to neuronal plasticity and synaptic 

remodeling. 

However, non-linear relationships in gene expression often limit PCA’s effectiveness. To address 

this, Uniform Manifold Approximation and Projection (UMAP) [15] constructs a topological 

representation of data, capturing complex gene expression patterns with higher sensitivity than PCA, 

though at a greater computational cost. UMAP-driven analyses of the Tabula Muris dataset have 

successfully clustered neuronal subtypes, refining our understanding of cell-type-specific regulatory 

mechanisms. 

UMAP, for instance, was one of the techniques used in a study of mice traumatic brain injury. 

snRNA-seq was used to sequence hippocampal nuclei followed by quality checks and dimensionality 

and noise reduction, providing a valuable dataset for future studies on brain trauma [36]. A similar 
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dataset with a similar analysis, but for exercise, noticed significant crosstalk between NF-kB, Wnt/β-

catenin, Notch, and retinoic acid pathways after exercise in the Cornu Ammonis region [17] 

4. Feature Selection in Functional Genomics 

Feature selection refines AI models by prioritizing biologically relevant variables, such as key 

genes and enhancers, which drive neuronal function. By reducing noise and focusing on the most 

informative features, this approach enhances the interpretability and accuracy of computational 

predictions. 

A widely used technique, Recursive Feature Elimination (RFE) [7], iteratively removes the least 

important features and retrains the model, refining it to include only those variables that contribute 

significantly to biological outcomes. A modified version of RFE, called dynamic RFE (dRFE) was 

applied recently to 17 different -omics datasets for binary classification and showed significant 

improvements over standard RFE [8]. 

It is sometimes the case that we have a model which automatically penalizes certain parameters 

if it deems that the feature associated with them is less relevant. LASSO regression imposes 

constraints on model parameters by enforcing sparsity, automatically selecting the most relevant 

genes for analysis. This technique along with particle swarm optimization has shown a 96% accuracy 

in early Alzheimer’s diagnosis vs healthy controls [5].  

Note also, for example, a modified version of LASSO regression is at the heart of the widely used 

DRIAD (Drug Repurposing in AD) ML framework [23]. These findings offer potential targets for 

early therapeutic intervention, illustrating how AI-driven feature selection can pinpoint molecular 

signatures with translational relevance. 

5. Temporal Analysis of Neuronal Regulation 

Temporal analyses of gene expression and chromatin states provide crucial insights into 

neurodevelopment, synaptic plasticity, and disease progression. In schizophrenia, for instance, stage-

specific disruptions in synaptic signaling have been linked to symptom severity and treatment 

response [19]. 

A classical approach, Autoregressive Integrated Moving Average (ARIMA), models gene 

expression time-series data by integrating autoregression, stationarity adjustments, and moving 

averages. ARIMA has been applied to predict schizophrenia symptom severity and outpatient 

remission rates [26]. However, its linear assumptions limit its ability to capture complex, nonlinear 

genomic patterns.  

Integrating these temporal models with multi-omics data and explainable AI frameworks could 

enhance disease tracking and precision medicine strategies. Dynamic Time Warping (DTW) [18] is a 

time-series technique that aligns sequences non-linearly to account for variations in speed and timing. 

In neuropsychiatric research, DTW has been used to map symptom trajectories in bipolar disorder 

[16] and depression [2], capturing individualized disease progression. Applied to transcriptomic 

datasets, DTW has revealed conserved gene expression pathways across datasets like PPMI, 

highlighting shared regulatory mechanisms in neurodegeneration. These analyses emphasize the 

temporal complexity of neuronal regulation, offering insights into disease staging and personalized 

interventions in precision medicine 
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6. Network Analysis for Gene Regulation 

Gene regulatory networks (GRNs) exhibit a natural graph-like structure, where genes function 

as nodes and regulatory interactions define weighted edges. Graph neural networks (GNNs) [12], an 

extension of standard neural networks, have emerged as powerful tools for modeling GRNs, 

capturing complex dependencies between genes, proteins, and non-coding elements. Unlike 

traditional correlation-based approaches, GNNs leverage hierarchical relationships and contextual 

dependencies, allowing for deeper insights into transcriptional regulation. Recent applications have 

used GNNs have been used to illustrate disease-related neural development and differential 

mechanisms [33] to infer causal regulatory pathways [11], and to inferring novel GRNs [6]. 

 

Figure 2. Illustration of ML-driven analysis of brain -omics and phenotypic data with iterative model refinement 

and explainable AI (XAI). Created with BioRender. Goswami, A. (2025) https://BioRender.com/xapiapw. 

7. Hidden Markov Models 

Beyond machine learning, Hidden Markov Models (HMMs) provide powerful frameworks for 

neurogenomics. Markov models, which predict future states based on current conditions, have been 

used to decode gene expressions in epilepsy [21], analyze temporal brain activity in bipolar disorder 

[37], and track emotional regulation in schizophrenia, [28]. 

8. Explainable AI for Model Interpretability 

Explainable AI (XAI) is a set of tools to understand the set of contingent factors leading to a 

model’s prediction. For our purposes, these tools address the "black box" nature of deep learning by 

identifying biologically meaningful features driving predictions. Techniques like SHAP (Shapley 

Additive Explanations) [3,14], a game theoretic approach to model predictions has seen promising 

use in identifying candidate autism genes and in transcriptomic analysis.  

9. Case Studies Demonstrating Biological Applications 

Huntington’s Disease: Predictive Stratification A machine learning pipeline for the Enroll-HD 

cohort integrated gradient-boosted decision trees (XGBoost, CatBoost, LightGBM) and Support 

Vector Machines (SVMs) to predict age of onset (AAO) and saw effectiveness against the well-known 

Langbehn formula [20].  

Alzheimer’s Disease: Early Biomarker Discovery: Support vector machines have been 

successfully used as an explainable AI tool in accurately diagnosing and predicting Alzheimer’s with 

outcomes comparable to traditional methods in the National Alzheimer’s Coordinating Center 

dataset [1].  
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Schizophrenia: Biomarkers from f-MRI imaging: Graph neural networks (GNNs) have been 

effectively applied to resting-state f-MRI data, achieving an accuracy of 0.82 in distinguishing 

individuals with schizophrenia from healthy controls, outperforming or matching most existing 

methods [33].  

10. Limitations 

Despite significant advancements, three key challenges persist in the field. 

Multi-Omics Data Integration: Harmonizing multi-omics datasets is complicated by batch effects 

[35], differences in resolution, and data sparsity [10], which hinder cross-study reproducibility. While 

the emergence of large, standardized datasets has mitigated these challenges, further improvements 

in data harmonization and preprocessing pipelines remain crucial. 

Lack of Experimental Validation & Model Interpretability: Many deep learning-based predictions 

lack experimental validation, limiting their translational impact. Additionally, their black-box nature 

poses challenges for clinical adoption, as regulatory approval and clinical trust require 

interpretability. Advances in explainable AI (XAI), such as SHAP and LIME (Local Interpretable 

Model-Agnostic Explanations) [22], are improving model transparency but require broader 

implementation. 

Dataset Bias & Generalizability: Existing datasets often underrepresent diverse populations, 

introducing biases that limit the generalizability of findings [13]. Addressing this issue requires 

greater diversity in sample collection, an effort increasingly supported by large-scale consortia 

collaborations. 

11. Conclusion 

The integration of multi-omics data, computational modeling, and AI has revolutionized our 

understanding of neuronal gene regulation, plasticity, and disease. Advances in single-cell and 

spatial transcriptomics, alongside epigenomic profiling, have revealed neuronal identity and 

function, while AI-driven approaches have identified key regulatory elements, biomarkers, and 

therapeutic targets. 

However, challenges in data integration, validation, and model interpretability hinder clinical 

translation. Standardized multi-omics pipelines, explainable AI (XAI), and diverse datasets are 

needed for generalizability. 

Future directions include hybrid AI models, high-resolution neuronal atlases, and deeper 

computational integration into precision medicine. Interdisciplinary collaboration will be key to 

advancing AI-driven diagnostics and therapies for brain disorders. 
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Figure 3. An illustration of the various ML techniques available for analyzing brain -omics data. Created in 

BioRender. Goswami, a. (2025) https://BioRender.com/xapiapw. 

Table 1. 

Datasets 

Dataset Name Data Type Purpose 
Scale and 

Resolution 
Key Application 

Allen Brain Atlas 

(Vries, Siegle, & 

Koch, 2023) 

Imaging, 

transcriptomics 

Mapping 

neuronal activity 

More than 

100,000 

neurons, 

cellular 

resolution 

Understanding 

cortical structure 

functions 

Tabula Muris ( 

(The Tabula 

Muris 

Consortium, 

2020)) 

Single-cell RNA-

seq 

Clustering 

neuronal 

subtypes 

Approx. 

100,000 cells, 

single-cell 

resolution 

Exploring immune-

neuronal 

interactions 

Human Cell 

Atlas (Rood, et 

al., 2025) 

(Rozenblatt-

Rosen, 

Multi-omics 

Integrating 

transcriptomics 

& epigenomics 

More than ten 

million cells, 

single cell & 

spatial 

resolution 

Tracking 

developmental 

trajectories 
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Stubbington, 

Regev, & 

Teichmann, 

2017) 

Roadmap 

Epigenomics 

(Satterlee, et al., 

2019) 

Epigenomics 
Studying histone 

modifications 

Genome-

wide, high-

resolution 

Identifying histone 

plasticity markers 

Computational Techniques 

Methodology Function 
Example Use 

Case 
Dataset Used Strength 

LASSO 

Regression  

Feature selection 

with sparsity 

Identifying early 

Alzheimer’s 

biomarkers 

Alzheimer’s 

Disease 

National 

Initiative 

Select the most 

relevant gene 

markers (Cui, et al., 

2021) 

Graph Neural 

Networks 

Modeling gene 

regulatory 

networks 

Infer regulatory 

pathways 

Dream5 

network 

initiative 

dataset 

Captures complex 

interactions (Feng, 

Jiang, Yin, & Sun, 

2023) 

SHAP 
Identifying key 

biological features 

Understanding 

transcriptional 

mechanisms in 

ASD 

Various 

Improves AI model 

interpretability 

(Castro-Martinez, 

Vargas, Diaz-

Beltran, & Esteban, 

2024) 

Challenges in Multi-omics Analysis 

Challenge Issue Suggested Approach Impact on Research 

Batch Effects 
Bias in multi-omics 

integration 

Standardizing data 

pipelines 

Improves 

reproducibility 

Data Sparsity 
Incomplete feature 

representation 

Robust imputation 

methods 

Enables deduction of 

rare neuronal 

subtypes 

Deep learning models 
Lack of interpretability 

in AI models 

Implementation of 

explainable AI 

frameworks 

Enhances AI-driven 

biomarker 

validation. 
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