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Simple Summary: Understanding how brain cells function and change over time is key to diagnosing
and treating neurological disorders such as Alzheimer’s, schizophrenia, and depression. In recent
years, scientists have gathered vast amounts of data on brain activity —tracking how genes switch on
or off, how DNA is organized, and how brain cells interact. This article explores how researchers are
using advanced computer techniques like artificial intelligence and machine learning to integrate and
interpret this information. These tools can reveal hidden patterns in brain function, identify early
signs of disease, and guide the development of new treatments. The article also addresses major
challenges, including ensuring that results apply across diverse populations and making computer
models more transparent so that doctors and patients can trust and understand their predictions. By
combining biology with cutting-edge computing, this work moves us closer to precise, personalized
brain healthcare and opens new avenues for tackling complex brain diseases.

Abstract: Neuronal function and plasticity are shaped by complex gene regulatory networks that
influence identity, adaptation, and disease susceptibility (1). Advances in transcriptomics,
epigenomics, and high-resolution imaging have revealed the interplay of transcriptional regulation,
chromatin remodeling, and non-coding RNAs. Al-driven approaches are crucial for integrating
multi-omics data, uncovering gene expression dynamics and causal interactions. This review
explores emerging research on spatiotemporal gene regulation, multi-omics integration, and Al-
driven therapies, highlighting innovative methodologies that bridge molecular insights with
translational applications for precision-targeted neurological interventions.

Keywords: Neuronal Gene Expression; Multi-Omics Integration; Artificial Intelligence; Graph
Neural Networks; Explainable AI (XAI)
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Graphical Abstract: Integrating machine learning techniques—including neural networks, time-
series models, dimensionality reduction, and clustering—with large-scale neuroscience and gene
expression data has significantly improved our ability to model neuronal activity, map
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transcriptional patterns, and characterize cellular heterogeneity, driving the discovery of therapeutic
targets and informing precision medicine in neurology.

1. Introduction

Neurons exhibit remarkable complexity in morphology and function [34], requiring highly
specialized and dynamic gene expression programs to regulate synapse formation,
neurotransmission, and plasticity while maintaining cellular homeostasis. Advances in single-cell
RNA sequencing (scRNA-seq) and spatial transcriptomics, combined with computational tools such
as machine learning (ML), have revolutionized our ability to decode neuronal gene regulation,
revealing spatiotemporal expression patterns at unprecedented resolution.

Expanding multi-omics datasets have further refined our understanding of neuronal function.
The Tabula Sapiens project [31], a multi-tissue single-cell transcriptomic atlas spanning over 500,000
human cells, complements the mouse-focused Tabula Muris [30], enabling cross-species comparisons
that uncover conserved neuronal pathways and functional divergence. The Allen Brain Observatory
[32], incorporating high-resolution imaging and electrophysiological data from over 100,000 neurons,
provides a direct link between gene activity and neuronal firing patterns, bridging the gap between
molecular and functional neuroscience.

Epigenomic datasets have also significantly advanced the field. The Roadmap Epigenomics
Projet [27], with its spatially resolved histone modification maps, allows for in-depth exploration of
epigenetic regulation in neuronal subtypes. The Human Cell Atlas [24-25], now integrating
transcriptomic and epigenomic datasets, facilitates a systems-level investigation of neuronal
differentiation and plasticity. Together, these resources provide a critical foundation for deciphering
the intricate interplay between gene regulation, neuronal identity, and disease-associated
dysregulation.

2. Integrative Statistical and Computational Approaches in Neurobiology

Statistical and computational frameworks are essential for deciphering the complex regulatory
networks that govern neuronal function. By integrating biological datasets, these approaches reveal
novel insights into gene expression dynamics, neuronal identity, and therapeutic opportunities. This
review highlights key computational techniques and their applications in neurobiology.

3. Dimensionality Reduction and Biological Insights

High-dimensional genomic datasets, such as single-cell transcriptomics, require dimensionality
reduction techniques to filter noise while preserving biologically relevant structures. These methods
facilitate pattern discovery, subtype identification, and regulatory network characterization in
neuronal systems.

Principal Component Analysis (PCA) [9] is a widely used linear transformation technique that
projects high-dimensional data into lower-dimensional space while retaining global variance. PCA
has been instrumental in identifying regulatory elements in methylation datasets from the Roadmap
Epigenomics Project, uncovering genomic regions linked to neuronal plasticity and synaptic
remodeling.

However, non-linear relationships in gene expression often limit PCA’s effectiveness. To address
this, Uniform Manifold Approximation and Projection (UMAP) [15] constructs a topological
representation of data, capturing complex gene expression patterns with higher sensitivity than PCA,
though at a greater computational cost. UMAP-driven analyses of the Tabula Muris dataset have
successfully clustered neuronal subtypes, refining our understanding of cell-type-specific regulatory
mechanisms.

UMAP, for instance, was one of the techniques used in a study of mice traumatic brain injury.
snRNA-seq was used to sequence hippocampal nuclei followed by quality checks and dimensionality
and noise reduction, providing a valuable dataset for future studies on brain trauma [36]. A similar
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dataset with a similar analysis, but for exercise, noticed significant crosstalk between NF-kB, Wnt/[3-
catenin, Notch, and retinoic acid pathways after exercise in the Cornu Ammonis region [17]

4. Feature Selection in Functional Genomics

Feature selection refines AI models by prioritizing biologically relevant variables, such as key
genes and enhancers, which drive neuronal function. By reducing noise and focusing on the most
informative features, this approach enhances the interpretability and accuracy of computational
predictions.

A widely used technique, Recursive Feature Elimination (RFE) [7], iteratively removes the least
important features and retrains the model, refining it to include only those variables that contribute
significantly to biological outcomes. A modified version of RFE, called dynamic RFE (dRFE) was
applied recently to 17 different -omics datasets for binary classification and showed significant
improvements over standard RFE [8].

It is sometimes the case that we have a model which automatically penalizes certain parameters
if it deems that the feature associated with them is less relevant. LASSO regression imposes
constraints on model parameters by enforcing sparsity, automatically selecting the most relevant
genes for analysis. This technique along with particle swarm optimization has shown a 96% accuracy
in early Alzheimer’s diagnosis vs healthy controls [5].

Note also, for example, a modified version of LASSO regression is at the heart of the widely used
DRIAD (Drug Repurposing in AD) ML framework [23]. These findings offer potential targets for
early therapeutic intervention, illustrating how Al-driven feature selection can pinpoint molecular
signatures with translational relevance.

5. Temporal Analysis of Neuronal Regulation

Temporal analyses of gene expression and chromatin states provide crucial insights into
neurodevelopment, synaptic plasticity, and disease progression. In schizophrenia, for instance, stage-
specific disruptions in synaptic signaling have been linked to symptom severity and treatment
response [19].

A classical approach, Autoregressive Integrated Moving Average (ARIMA), models gene
expression time-series data by integrating autoregression, stationarity adjustments, and moving
averages. ARIMA has been applied to predict schizophrenia symptom severity and outpatient
remission rates [26]. However, its linear assumptions limit its ability to capture complex, nonlinear
genomic patterns.

Integrating these temporal models with multi-omics data and explainable Al frameworks could
enhance disease tracking and precision medicine strategies. Dynamic Time Warping (DTW) [18] is a
time-series technique that aligns sequences non-linearly to account for variations in speed and timing.
In neuropsychiatric research, DTW has been used to map symptom trajectories in bipolar disorder
[16] and depression [2], capturing individualized disease progression. Applied to transcriptomic
datasets, DTW has revealed conserved gene expression pathways across datasets like PPMI,
highlighting shared regulatory mechanisms in neurodegeneration. These analyses emphasize the
temporal complexity of neuronal regulation, offering insights into disease staging and personalized
interventions in precision medicine
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6. Network Analysis for Gene Regulation

Gene regulatory networks (GRNs) exhibit a natural graph-like structure, where genes function
as nodes and regulatory interactions define weighted edges. Graph neural networks (GNNs) [12], an
extension of standard neural networks, have emerged as powerful tools for modeling GRNSs,
capturing complex dependencies between genes, proteins, and non-coding elements. Unlike
traditional correlation-based approaches, GNNs leverage hierarchical relationships and contextual
dependencies, allowing for deeper insights into transcriptional regulation. Recent applications have
used GNNs have been used to illustrate disease-related neural development and differential
mechanisms [33] to infer causal regulatory pathways [11], and to inferring novel GRNs [6].
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Figure 2. Illustration of ML-driven analysis of brain -omics and phenotypic data with iterative model refinement
and explainable AI (XAI). Created with BioRender. Goswami, A. (2025) https://BioRender.com/xapiapw.

7. Hidden Markov Models

Beyond machine learning, Hidden Markov Models (HMMs) provide powerful frameworks for
neurogenomics. Markov models, which predict future states based on current conditions, have been
used to decode gene expressions in epilepsy [21], analyze temporal brain activity in bipolar disorder
[37], and track emotional regulation in schizophrenia, [28].

8. Explainable AI for Model Interpretability

Explainable AI (XAI) is a set of tools to understand the set of contingent factors leading to a
model’s prediction. For our purposes, these tools address the "black box" nature of deep learning by
identifying biologically meaningful features driving predictions. Techniques like SHAP (Shapley
Additive Explanations) [3,14], a game theoretic approach to model predictions has seen promising
use in identifying candidate autism genes and in transcriptomic analysis.

9. Case Studies Demonstrating Biological Applications

Huntington’s Disease: Predictive Stratification A machine learning pipeline for the Enroll-HD
cohort integrated gradient-boosted decision trees (XGBoost, CatBoost, LightGBM) and Support
Vector Machines (SVMs) to predict age of onset (AAO) and saw effectiveness against the well-known
Langbehn formula [20].

Alzheimer’s Disease: Early Biomarker Discovery: Support vector machines have been
successfully used as an explainable Al tool in accurately diagnosing and predicting Alzheimer’s with
outcomes comparable to traditional methods in the National Alzheimer’s Coordinating Center
dataset [1].
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Schizophrenia: Biomarkers from f-MRI imaging: Graph neural networks (GNNs) have been
effectively applied to resting-state f-MRI data, achieving an accuracy of 0.82 in distinguishing
individuals with schizophrenia from healthy controls, outperforming or matching most existing
methods [33].

10. Limitations

Despite significant advancements, three key challenges persist in the field.

Multi-Omics Data Integration: Harmonizing multi-omics datasets is complicated by batch effects
[35], differences in resolution, and data sparsity [10], which hinder cross-study reproducibility. While
the emergence of large, standardized datasets has mitigated these challenges, further improvements
in data harmonization and preprocessing pipelines remain crucial.

Lack of Experimental Validation & Model Interpretability: Many deep learning-based predictions
lack experimental validation, limiting their translational impact. Additionally, their black-box nature
poses challenges for clinical adoption, as regulatory approval and clinical trust require
interpretability. Advances in explainable AI (XAI), such as SHAP and LIME (Local Interpretable
Model-Agnostic Explanations) [22], are improving model transparency but require broader
implementation.

Dataset Bias & Generalizability: Existing datasets often underrepresent diverse populations,
introducing biases that limit the generalizability of findings [13]. Addressing this issue requires
greater diversity in sample collection, an effort increasingly supported by large-scale consortia
collaborations.

11. Conclusion

The integration of multi-omics data, computational modeling, and Al has revolutionized our
understanding of neuronal gene regulation, plasticity, and disease. Advances in single-cell and
spatial transcriptomics, alongside epigenomic profiling, have revealed neuronal identity and
function, while Al-driven approaches have identified key regulatory elements, biomarkers, and
therapeutic targets.

However, challenges in data integration, validation, and model interpretability hinder clinical
translation. Standardized multi-omics pipelines, explainable AI (XAI), and diverse datasets are
needed for generalizability.

Future directions include hybrid AI models, high-resolution neuronal atlases, and deeper
computational integration into precision medicine. Interdisciplinary collaboration will be key to
advancing Al-driven diagnostics and therapies for brain disorders.
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Figure 3. An illustration of the various ML techniques available for analyzing brain -omics data. Created in
BioRender. Goswami, a. (2025) https://BioRender.com/xapiapw.

Table 1.
Datasets
Scale and
Dataset Name Data Type Purpose . Key Application
Resolution
More  than
Allen Brain Atlas 100,000 Understanding
Imaging, Mapping
(Vries, Siegle, & ) ) o neurons, cortical  structure
transcriptomics neuronal activity .
Koch, 2023) cellular functions
resolution
Tabula Muris (
Approx.
(The Tabula Clustering Exploring immune-
) Single-cell RNA- 100,000 cells,
Muris neuronal ) neuronal
) seq single-cell ) )
Consortium, subtypes ) interactions
resolution
2020))
Human Cell More than ten
Atlas (Rood, et Integrating million cells, Tracking
al., 2025) Multi-omics transcriptomics ~ single cell & developmental
(Rozenblatt- & epigenomics spatial trajectories
Rosen, resolution
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Stubbington,
Regev, &
Teichmann,
2017)
Roadmap
Genome-
Epigenomics . ) Studying histone . Identifying histone
Epigenomics S wide, high- o
(Satterlee, et al., modifications plasticity markers
resolution
2019)
Computational Techniques
. Example Use
Methodology Function Dataset Used Strength
Case
Alzheimer’s Select the most
Identifying early
LASSO Feature selection Disease relevant gene
Alzheimer’s
Regression with sparsity National markers (Cui, et al,,
biomarkers
Initiative 2021)
) Dream5 Captures complex
Modeling  gene
Graph  Neural Infer regulatory network interactions (Feng,
regulatory . ) )
Networks pathways initiative Jiang, Yin, & Sun,
networks
dataset 2023)
Improves Al model
Understanding interpretability
Identifying ~ key transcriptional (Castro-Martinez,
SHAP Various
biological features mechanisms in Vargas, Diaz-
ASD Beltran, & Esteban,
2024)
Challenges in Multi-omics Analysis
Challenge Issue Suggested Approach  Impact on Research
Bias in multi-omics Standardizing data Improves
Batch Effects
integration pipelines reproducibility
) ) Enables deduction of
Incomplete feature Robust imputation
Data Sparsity ) rare neuronal
representation methods
subtypes
Implementation of Enhances Al-driven
. Lack of interpretability . )
Deep learning models explainable Al biomarker
in AI models
frameworks validation.
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