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*  Correspondence: rsanch18@ford.com 

Abstract: The main  contribution  is  to provide machine  learning and quality practitioners with a 

complete and practical method  to estimate  the  lower bound of  the  intrinsic kappa coefficient and 

accuracy. Kappa statistic  is one of  the most used methods  to evaluate  the effectiveness of quality 

inspections based on attributive characteristics. Kappa and accuracy are also extensively used  for 

classification problems in machine learning. This article develops exact and approximate methods to 

estimate the lower bound of kappa’s “intrinsic” value for any number of categories. In addition, two 

methods (exact and approximate) are provided to estimate the accuracy lower bound for machine 

learning practitioners who prefer  this performance metric. For  the  intrinsic kappa coefficient and 

accuracy, the results showed that the approximate methods’ estimations are very close to those from 

the exact method for a wide range of sample sizes and misclassified  instances, indicating  that the 

approximate can be used for any number of categories. Additionally, real‐life examples illustrate the 

use of the method for practitioners. 

Keywords: kappa coefficient; confidence limit; machine learning; accuracy; classification problems 

 

1. Introduction 

The Kappa  coefficient has  recently gained  researchers’  interest  for  its use  as  a performance 

metric  in  machine‐learning  classification  problems  [1].  However,  due  to  its  intuitive  meaning, 

accuracy is still expected to be a complementary measure of kappa within the same works [2–7]. 

Sanchez‐Marquez et al. [8] show that kappa is also extensively used for quality inspections of 

attributive  characteristics, which  is  a  classification problem  [9–14].  In  this  context,  the degree  of 

assessment agreement is the same concept as accuracy in machine learning; both measures are the 

same statistic. Sanchez‐Marquez et al. [8] developed the “intrinsic” kappa coefficient, which is robust 

against imbalanced samples compared to the traditional kappa coefficient that proved biased under 

such conditions. 

Kappa and accuracy measures are also used in any field with a classification problem [15–19]. 

Researchers and practitioners can also use other metrics to evaluate classifier performance, such 

as G‐Mean and curve ROC, each offering benefits and limitations. This paper does not aim to compare 

different  available metrics with  the  one  developed  here.  Instead,  it  focuses  on  generalising  the 

intrinsic kappa coefficient, a metric whose application  in machine  learning classifiers has recently 

gained attention, making it usable for any number of categories. Furthermore, most current metrics 

for classifiers, such as G‐Mean or curve ROC, are limited to two categories. In contrast, the metric 

developed in this work is designed to work with any number of categories. 

Like other statistics, kappa has its variance; therefore, using its point estimate is incorrect since 

the  effect of  the  sample  size  should be  considered. The  literature has addressed  the necessity of 

estimating kappa’s confidence intervals or lower bounds using different approaches [8,20–22]. Other 

limitations of the kappa coefficient have been discussed [20,21,23–25], such as bias due to expected 

agreement, the challenges of using multiple raters, and the application of weighted scales. However, 

despite these advancements, some gaps remain unsolved. Available works using kappa still have 
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two main problems. The first problem is that the coefficient depends on the sample bias, e.g., when 

samples are not balanced over the different categories, the traditional kappa coefficient [20,21,23–25] 

depends  on  the  percentage  of  instances  of  each  category  [8],  also  called  as  prevalence.  This 

characteristic of the traditional kappa coefficient is a drawback since we could change the result by 

only adjusting the sample prevalence without improving the classification system’s performance. The 

other problem is that these traditional kappa statistics are based on asymptotic approximations used 

without analysing the performance for small samples or developing an alternate exact method. 

Donner & Rotondi [22] address the sample size problem, while Sanchez‐Marquez et al. [8] also 

develop an  exact method and derive  expressions  for  the  intrinsic kappa  coefficient. As Sanchez‐

Marquez et al. mentions, the point estimate of the intrinsic kappa coefficient does not depend on the 

prevalence of the sample, which is the main drawback of the traditional kappa coefficient. Sanchez‐

Marquez et al.’s method [8] is especially interesting for machine learning research and applications. 

Researchers and practitioners must  train  the models using available data, which only  sometimes 

contains balanced samples for the different categories. However, both papers only apply to binary 

applications, e.g., applications with two categories. In addition, Donner & Rotondi [22] provide tables 

for selecting  the best sample size  for each case, which  is a  limitation  for  the generalisation of  the 

method. Sanchez‐Marquez et al. [8] use an exact method that needs several expressions and the F 

distribution,  thus  losing  the  simplicity  of  the  traditional  methods  based  on  asymptotic 

approximations. 

This  paper  addresses  the  gaps  mentioned  above  by  developing  generalised  exact  and 

approximate methods for estimating the lower bound of the intrinsic kappa coefficient and accuracy 

for any number of categories (NC). The results showed that the approximate methods performed well 

even for tiny sample sizes and low rates of misclassified instances. 

The next sections are organised as follows: 

- Section 2, titled “On the generalisation of the intrinsic kappa coefficient for any number of 

categories”, derives exact and approximate generalised expressions for estimating the lower 

bound of the intrinsic kappa coefficient and accuracy. 

- Section 3 shows the comparison results between the exact and approximate methods. It also 

provides insights into the effect of the number of categories on estimating the intrinsic kappa 

coefficient. 

- Section 4 discusses if the main objectives set up in the introduction section have been met. It 

also discusses possible limitations and future research. 

- Section 5 shows the application of the method using actual data. 

2. Materials and Methods 

Sanchez‐Marquez et al.  [8] derived an  intrinsic kappa coefficient  for dichotomous categories, 

with its point estimate expressed as 

𝑘෠ ൌ 1 െ 𝛼ො െ 𝛽መ   , 

where  𝑘෠   is  the  point  estimate  of  the  intrinsic  kappa  coefficient,  𝛼ො   is  the  type‐I  error  (the 
proportion  of  non‐defective  units  misclassified),  and  𝛽መ   is  the  type‐II  error  (the  proportion  of 
defective units misclassified). Significantly,  this coefficient does not depend on  the percentage of 

instances of each category, giving us a robust measure unaffected by class prevalence. Regretfully, it 

can be applied only  to dichotomous problems. This paper aims  to develop a generalised  intrinsic 

kappa coefficient applicable to problems with any number of categories. 

In Figure 1, the confusion matrix is contained inside the bold square. The labels A, B ..., and NC 

represent the categories used to classify each instance or unit. Every instance is assigned a label from 

one of these categories. The labelling process occurs twice. The first labelling is conducted beforehand 

and is known as the ’known standard.’ The initial label serves as a reference or benchmark to train 

and validate the classification system, whether it involves a machine learning algorithm or a group 
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of human raters. The classification system itself performs the second labelling. Comparing these two 

labels  reveals  the  system’s performance.  In  this  context, performance metrics  such  as  the  kappa 

coefficient  quantitatively  measure  the  system’s  classification  accuracy.  In  this  matrix  and  the 

following  lines  formulae, m represents  the number of repetitions a particular object or  instance  is 

evaluated and classified. Therefore, m only makes sense in the context of quality inspections but not 

in machine learning since every time an instance is classified, it will be classified as belonging to the 

same  category;  thus,  in machine  learning, m = 1. The notation P(i/j)  represents  the probability or 

percentage of instances or units classified as belonging to class i when they belong to j, with i and j 

ranging  from A  to NC. Similarly, Xi/j  indicates  the number of  instances or units  classified  in  this 

manner. It is important to note that instances are correctly classified along the matrix diagonal i = j. 

The number of units known to belong to class i is denoted by ni; finally, N represents the total number 

of instances. 

 

Figure 1. Generalised confusion matrix for any number of categories. 

Figure 1 shows a confusion matrix for generalising the intrinsic kappa coefficient first developed 

by Sanchez‐Marquez et al.  [8]. For simplification, NC stands for the number of categories and the 

name of the last category. According to Sanchez‐Marquez et al. [8], for deriving the intrinsic kappa 

coefficient, which should not depend on the proportion of units belonging to each category, we must 

set up the sample as balanced and assume the hypothesis that we will obtain an expression that does 

not depend on the proportion of units in each category. However, this does not imply that the sample 

must be balanced.  Instead,  this approach  leads  to a kappa  coefficient  expression  independent of 

sample prevalence, yielding the intrinsic kappa coefficient. As noted earlier, Sanchez‐Marquez et al. 

[8] were  the  first  to derive  the  intrinsic  kappa  coefficient  for dichotomous problems,  employing 

similar fundamental concepts and methodology. Once the expression for the intrinsic kappa point 

estimate is derived, we must check if the initial hypothesis is met and then account for the different 

sample  sizes  in  each  category  using  kappa’s  lower  bound  computed  by  the  F‐statistic  level  of 

significance  for  the exact method or  the standard error  for  the approximate one. As explained by 

Sanchez‐Marquez et al. [8], by forcing the same number of  instances in all categories, we obtain a 
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coefficient that does not depend on the prevalence so that it is the value that a balanced experiment 

would obtain, which is the intrinsic value of kappa. The intrinsic kappa coefficient shows how well 

the system (or the classifier in machine learning) classifies the instances regardless of the proportion 

of units  in each category.  It does not happen with  the  traditional kappa coefficient, which would 

change  its value without changing  the classifier performance by changing  the proportion of units 

belonging to each category. Therefore, by using the expressions of the intrinsic kappa coefficient, we 

obtain the same result as with the traditional kappa coefficient with a balanced sample but without 

the need for the sample to be balanced. Once the expression of the point estimate of the intrinsic value 

of the kappa coefficient has been obtained, it is necessary to consider the estimation error due to the 

sample size by expressing a confidence interval or limit. 

In Figure 1, the conditional proportions are shown on the top of each cell. Every cell shows a 

proportion on the top and a count below. For example, the first cell of the matrix in the upper left‐

hand corner contains the proportion of instances evaluated as belonging to category A that are known 

to belong to A, so P(A/A). It also contains the count of instances, which, in this cell, is the number of 

instances evaluated as A when it is known they belong to A. Therefore, all cells contain the conditional 

proportion by column and  their corresponding conditional count. The additional cells outside the 

confusion matrix (outside the bold square) also show the proportion on the top and the count below, 

except  for  the  lower  right‐hand  corner,  which  only  contains  the  total  count  since  the  overall 

proportion is one. As mentioned above, the confusion matrix shown in Figure 1 is built according to 

the hypothesis that assuming the number of instances belonging to all categories is equal (nA = nB = … 

= nNC) will allow us to derive the intrinsic kappa coefficient. 

According to Everitt [23], the kappa coefficient is defined as 

𝑘෠ ൌ ௣ො೚ି௣ො೐
ଵି௣ො೐

                    (1) 

where  𝑝̂௢   is  the  proportion  of  observed  agreements,  and  𝑝̂௘   is  the  proportion  of  expected 
agreements  (which  can  also  be  understood  as  agreements  obtained  by  chance).  The  observed 

agreements denoted as Xo, will be on the diagonal of  the confusion matrix, representing the well‐

classified  instances. The  off‐diagonal  counts  are  the misclassified  ones.  It  is  the  idea  behind  the 

accuracy, which, along with kappa, is one of the most widely used performance metrics in machine 

learning. For those interested in a deeper understanding, foundational literature ([23]) delves into the 

definition and application of the kappa coefficient. The confusion matrix can be summarised using 

the proportion of well‐classified instances. Therefore, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌෟ 𝑝̂௢ and  𝑋௢~ 𝐵ሺ𝑁,𝑝𝑜ሻ. 
Using the structure of the data from Figure 1, 

𝑝̂௢ ൌ
௑೚
ே
ൌ

௑ಲ/ಲା௑ಳ/ಳା⋯ା௑ಿ಴/ಿ಴

ே
  , and            (2) 
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𝑝̂௘ ൌ
1
𝑁𝐶

𝑃஺ ൅
1
𝑁𝐶

𝑃஻ ൅⋯൅
1
𝑁𝐶

𝑃ே஼

ൌ
1
𝑁𝐶

൤
1
𝑁𝐶

൫𝑃ሺ𝐴 𝐴⁄ ሻ ൅ 𝑃ሺ𝐴 𝐵⁄ ሻ ൅ ⋯൅ 𝑃ሺ𝐴 𝑁𝐶⁄ ሻ൯൨

൅
1
𝑁𝐶

൤
1
𝑁𝐶

൫𝑃ሺ𝐵 𝐴⁄ ሻ ൅ 𝑃ሺ𝐵 𝐵⁄ ሻ ൅ ⋯൅ 𝑃ሺ𝐵 𝑁𝐶⁄ ሻ൯൨ ൅ ⋯

൅
1
𝑁𝐶

൤
1
𝑁𝐶

൫𝑃ሺ𝑁𝐶 𝐴⁄ ሻ ൅ 𝑃ሺ𝑁𝐶 𝐵⁄ ሻ ൅ ⋯൅ 𝑃ሺ𝑁𝐶 𝑁𝐶⁄ ሻ൯൨

ൌ
1

𝑁𝐶2 ሾ𝑃ሺ𝐴 𝐴⁄ ሻ ൅ 𝑃ሺ𝐴 𝐵⁄ ሻ ൅ ⋯൅ 𝑃ሺ𝐴 𝑁𝐶⁄ ሻ ൅ 𝑃ሺ𝐵 𝐴⁄ ሻ ൅ 𝑃ሺ𝐵 𝐵⁄ ሻ ൅⋯

൅ 𝑃ሺ𝐵 𝑁𝐶⁄ ሻ ൅ ⋯൅ 𝑃ሺ𝑁𝐶 𝐴⁄ ሻ ൅ 𝑃ሺ𝑁𝐶 𝐵⁄ ሻ ൅ ⋯൅ 𝑃ሺ𝑁𝐶 𝑁𝐶⁄ ሻሿ

ൌ
1

𝑁𝐶2 ෍෍𝑃ሺ𝑖 𝑗⁄ ሻ

𝑁𝐶

𝑗ൌ𝐴

𝑁𝐶

𝑖ൌ𝐴

 

Looking at Figure 1, we can see that the sum of all conditional proportions inside the confusion 

matrix is NC since conditional proportions on each column sum up to one. Therefore, 

𝑝̂௘ ൌ
ଵ

ே஼మ
𝑁𝐶 ൌ ଵ

ே஼
  . 

𝑝̂௘ ൌ
ଵ

ே஼
  .                    (3) 

Substituting (3) in (1) we obtain 

𝑘෠ ൌ ௣ො೚ିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
  .                  (4) 

The initial hypothesis has been confirmed since, in Eq. (4), the point estimate of kappa does not 

depend on the prevalence. Therefore, Eq. (4) and Eq. (2) compute the point estimate of the intrinsic 

kappa coefficient. 

It  is  exciting  and  intuitive  that  the  intrinsic kappa  statistic  that  considers  the probability  of 

classifying well by chance only depends on the number of categories. Figure 2 shows the behaviour 

of  𝑘෠   for  a  typical  accuracy  level—𝑝̂௢ ൌ 0.95.  It  shows  that  the  intrinsic kappa  coefficient  is 

penalised when NC  is minimum  (NC = 2). Thus, 𝑘෠  is also  the minimum. The  larger  the NC,  the 
greater the  𝑘෠. The  𝑘෠  behaviour shown in Figure 2 reflects that the larger the number of categories, 

the more difficult it is to classify well by chance, which is coherent with the definition of the kappa 

coefficient. Therefore, the intrinsic kappa coefficient considers the probability of classifying well by 

chance, and it depends on the number of categories, which is more coherent than what happens with 

the traditional kappa coefficient. The traditional coefficient reflects that classifying well by chance 

also depends on the proportion of instances belonging to each category [8]. It means that it is more 

coherent  that  the probability of classifying a particular unit or  instance well depends only on  the 

number of categories and not on the proportion of units in the sample belonging to each category. 

The  latter does not make  sense. Therefore,  the  intrinsic kappa  coefficient better  reflects how  the 

system (human or automated) classifies itself than the traditional coefficient. 
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Figure 2. Graphical representation of Eq. (4) for accuracy = 0.95: Intrinsic Kappa point estimate as a function of 

the number of categories. 

It is well‐known that  𝑘 ∈ ሾെ1, 1ሿ, therefore Eq. (4) must meet this essential characteristi𝐼𝑓 𝑝௢ෞ ൌ

0 → lim
ே஼→ஶ

െ 1
𝑁𝐶െ1 ൌ 0  . It means that when 𝑁𝐶 → ∞, 𝑘෠ ൌ 𝑝

𝑜
ෝ   . 

We can derive the above conclusion directly from Eq. (4), which means that  it applies to any 

number of categories: 

lim
ே஼→ஶ

𝑘෠ ൌ
௣ො೚ିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ 𝑝̂௢    . 

Sánchez‐Marquez et al. [8] derived the following equation for the case of two categories: 

𝑘෠ ൌ 1 െ 𝛼ො െ 𝛽መ  ,                (5) 

where  𝛼ො  is the proportion of wrong‐classified non‐defective  instances, and  𝛽መ   is the proportion of 
wrong‐classified defective instances. 

If Eq. (5) is a particular case of Eq. (4), Eq. (5) should appear from Eq. (4) if we express Eq. (4) as 

a function of  𝛼ො  and  𝛽መ . Let us check it. 
For two categories and expressing it in terms of  𝛼ො  and  𝛽መ , we have that 

𝑝̂௢ ൌ
ሺଵିఈෝሻಿ

మ

ே
൅

ሺଵି ఉ෡ሻಿ
మ

ே
ൌ ଵ

ଶ
൫1 െ 𝛼ො ൅ 1 െ  𝛽መ൯ ൌ

ଵ

ଶ
൫2 െ 𝛼ො െ  𝛽መ൯  . 

From Eq. (4), 

𝑘෠ ൌ
௣ො೚ିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
, that for two categories and expressing it in terms of α and β, we arrive at 

𝑘෠ ൌ
௣ො೚ିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ

భ
మ൫ଶିఈෝ  ିఉ෡൯ିሺଵ ଶ⁄ ሻ

ଵିሺଵ/ଶሻ
ൌ

భ
మ൫ଵିఈෝିఉ

෡൯

ଵ/ଶ
ൌ 1 െ 𝛼ො െ 𝛽መ . 

Therefore, we have confirmed that Eq. (5) and (4) are equivalent for NC = 2. 

As mentioned in the literature [8], it is essential not to use the point estimate, thus 

considering the sample size. The following lines derive expressions to estimate the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2025 doi:10.20944/preprints202506.0273.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0273.v1
http://creativecommons.org/licenses/by/4.0/


  7  of  23 

 

confidence  lower bound of  the  intrinsic kappa coefficient and  the accuracy using 

exact and approximate methods. 

2.1. Exact Confidence Lower Bound of the Intrinsic Kappa Coefficient Accuracy for Any Number   

of Categories 

As mentioned above,  𝑝̂௢  is the proportion of the well‐classified instances; thus, it is a binomial 

statistic.  Therefore,  we  can  compute  the  exact  confidence  lower  bound  for  k  based  on  the  F 

distribution [26] [27]: 

𝑘௅஻ ൌ
௣೚,ಽಳିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
  ,                (6) 

where  kLB  is  the  confidence  lower  bound  of  the  intrinsic  kappa  coefficient  and  𝑝௢,௅஻   is  the 
confidence lower bound of the accuracy. 

In Eq. (6): 

𝑝௢,௅஻ ൌ 1 െ
ఔభ∙ிഌభ,ഌమ,భషഀ

షభ

ఔమାఔభ∙ிഌభ,ഌమ,భషഀ
షభ   ,                (7) 

where: 

- 𝜈ଵ ൌ 2ሾ𝑁 െ ൫𝑋஺ ஺⁄ ൅ 𝑋஻ ஻⁄ ൅⋯൅ 𝑋ே஼ ே஼⁄ ൯ ൅ 1ሿ ൌ 2ሺ𝑋 ൅ 1ሻ 
- 𝜈ଶ ൌ 2 ൣ൫𝑋஺ ஺⁄ ൅ 𝑋஻ ஻⁄ ൅⋯൅ 𝑋ே஼ ே஼⁄ ൯൧ ൌ 2ሺ𝑁 െ 𝑋ሻ 
- 𝑋  is the number of wrong classifications. 

- 𝑁  is the total number of instances. 

- 𝐹ఔభ,ఔమ,ଵିఈ
ିଵ   is the value of the inverse F function for a significance level of α, and  𝜈ଵ  and  𝜈ଶ 

degrees of freedom. 

It should be remarked  that Eq.  (7) computes  the accuracy  lower bound using  the number of 

failures or wrong‐classified instances [26], which are the instances outside the diagonal elements of 

the  confusion matrix.  Therefore,  to  account  for  the  estimation  error  caused  by  the  sample  size, 

practitioners and researchers who prefer accuracy as a performance metric must use this expression 

as a metric performance instead of using the point estimate, which is the common practice so far. 

To compute the lower bound of the intrinsic kappa for one category (category i), we must build 

a confusion matrix for two categories. One category would be that we are interested in computing 

the kappa lower bound, and the other would summarise the ratings of the rest of the categories. Once 

we have constructed this two‐way table, we apply the same concept as that of Eq. (6) and (7) but for 

two categories: 

𝑘௅஻
௜ ൌ 2𝑝௢,௅஻

௜ െ 1  ,               (8) 

where: 

𝑝௢,௅஻
௜ ൌ 1 െ

ఔభ
೔ ∙ிഌభ,ഌమ,భషഀ

షభ

ఔమ
೔ ାఔభ

೔ ∙ி
ഌభ
೔ ,ഌమ

೔ ,భషഀ
షభ   ,              (9) 

where: 

- 𝑝௢,௅஻
௜   is the accuracy lower bound for the i category. 

- 𝜈ଵ
௜ ൌ 2ൣ𝑁 െ ൫ 𝑋௜ ௜⁄ ൅ 𝑋ప̅ ప̅⁄ ൯ ൅ 1൧ ൌ 2ሺ𝑋௜ ൅ 1ሻ. 

- 𝜈ଶ
௜ ൌ 2ሺ𝑁 െ 𝑋௜ሻ. 

- 𝑋௜  is the number of wrong‐classified instances. 

- N is the total number of instances. 

- 𝐹ఔభ,ఔమ,ଵିఈ
ିଵ   is the value of the inverse F function for a significance of α, and  𝜈ଵ  and  𝜈ଶ  degrees of 

freedom. 

- 𝑋௜ ௜⁄   is the number of well‐classified instances that belong to the i category. 
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- 𝑋ప̅ ప̅⁄   is the number of instances that do not belong to the i‐category and are classified as not 

belonging to that category. 

As  with  the  overall  performance,  to  compute  the  accuracy  lower  bound  of  one  category, 

practitioners and researchers must build a two‐way table as mentioned above and use Eq. (9) instead 

of the point estimate. 

Agresti & Coull  [26]  showed  that  approximate methods perform  better  than  exact  ones  for 

binominal  variables.  It  is worth deriving  approximate methods  for  the  estimation  of  confidence 

limits, not only due to their precision but also due to their simplicity [26], which allows practitioners 

and researchers to implement them using basic software packages such as Excel [27] [28]. Therefore, 

in the following lines, we will derive approximate Clopper‐Pearson expressions [29] to approximate 

the lower bound of the intrinsic kappa coefficient, which will be tested in the results section. Since 

accuracy  is  a  simple  binomial  variable, we  can  rely  on Agresti & Coull’s  results  [26]  to  use  its 

approximate expressions, which will also be derived in the next section. 

2.2. Approximate Lower Bound of the Intrinsic Kappa Coefficient and Accuracy for any Number of 

Categories 

To derive asymptotic approximate expressions for confidence  limits of any statistic, we must 

start by deriving the variance of the statistic point estimate. Therefore, from Eq. (4): 

𝑉𝐴𝑅ሺ𝐾෡ሻ ൌ 𝑉𝐴𝑅 ቆ
௣ො೚ି

భ
ಿ಴

ଵି
భ
ಿ಴

ቇ ൌ 𝑉𝐴𝑅 ቆ
೉ೀ
ಿ ି

భ
ಿ಴

ଵି
భ
ಿ಴

ቇ ൌ
ଵ

ቀଵି
భ
ಿ಴ቁ

మ 𝑉𝐴𝑅 ቀ
௑ೀ
ே
െ

ଵ

ே஼
ቁ ൌ

ଵ

ேమቀଵି
భ
ಿ಴ቁ

మ 𝑉𝐴𝑅ሺ𝑋ைሻ   

As 𝑋ை~𝐵ሺ𝑁,𝑝௢ሻ: 

𝑉𝐴𝑅ሺ𝐾෡ሻ ൌ ଵ

ேమቀଵି
భ
ಿ಴ቁ

మ 𝑁𝑝௢ሺ1 െ 𝑝௢ሻ ൌ
ଵ

ேቀଵି
భ
ಿ಴ቁ

మ 𝑝௢𝑞௢      (10) 

According to Clopper & Pearson [29] and Agresti & Coull [26], from the statistic variance, we 

can construct the approximate confidence interval (CI) for p by inverting the Wald test for p. 

From the inverted hypothesis test: 

H0: p = p0 vs Ha: p ≠ p0 

that uses the z statistic  𝑧 ൌ ሺ𝑝̂ െ 𝑝଴ሻ/ඥ𝑉𝐴𝑅ሺ𝑝̂ሻ  , 
we can derive the inverted confidence interval [26], which is: 

𝑝 ൌ 𝑝̂ േ 𝑧ଵିఈ ଶ⁄ ඥ𝑉𝐴𝑅ሺ𝑝̂ሻ  . 

It is well‐known that  𝑉𝐴𝑅ሺ𝑝̂ሻ ൌ 𝑝ሺ1 െ 𝑝ሻ/𝑛. Therefore, 

𝑝 ൌ 𝑝̂ േ 𝑧ଵିఈ ଶ⁄ ඥ𝑝ሺ1 െ 𝑝ሻ/𝑛. 

However,  since we do not usually have  the population parameter  p,  the  approximate CI  is 

commonly calculated using an estimator, which  is  the parameter point estimate  𝑝̂. Therefore,  the 
resulting Wald interval for p, which, according to Agresti & Coull [26], is one of the first parameter 

intervals ever derived is: 

𝑝 ൌ 𝑝̂ േ 𝑧ଵିఈ ଶ⁄ ඥ𝑝̂ሺ1 െ 𝑝̂ሻ/𝑛  .            (11) 

If we are interested in one bound, the expressions are: 

𝑝௅஻ ൌ 𝑝̂ െ 𝑧ଵିఈඥ𝑝̂ሺ1 െ 𝑝̂ሻ/𝑛, and            (12) 

𝑝௎஻ ൌ 𝑝̂ ൅ 𝑧ଵିఈඥ𝑝̂ሺ1 െ 𝑝̂ሻ/𝑛  ,          (13) 

for the lower and upper bound, respectively. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2025 doi:10.20944/preprints202506.0273.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0273.v1
http://creativecommons.org/licenses/by/4.0/


  9  of  23 

 

It is well‐known that, based on the central limit theorem (CLT), Wald’s hypothesis test and its 

derived interval have been generalised as a method to define normal approximations for CIs of any 

statistical parameter. This generalisation can be expressed as: 

𝜃 ൌ 𝜃෠ േ 𝑧ଵିఈ ଶ⁄ ට𝑉𝐴𝑅ሺ𝜃෠ሻ  ,              (14) 

where  𝜃  is the parameter of interest and  𝜃෠  its estimator. 

The expressions for one‐bound estimations are: 

𝜃௅஻ ൌ 𝜃෠ െ 𝑧ଵିఈට𝑉𝐴𝑅ሺ𝜃෠ሻ  , and           (15) 

𝜃௎஻ ൌ 𝜃෠ ൅ 𝑧ଵିఈට𝑉𝐴𝑅ሺ𝜃෠ሻ  .              (16) 

Therefore, applying Wald’s generalisation for the intrinsic kappa coefficient from (15), we obtain 

𝑘௅஻ ൌ 𝑘෠ െ 𝑧ଵିఈට𝑉𝐴𝑅ሺ𝑘෠ሻ  . 

𝑉𝐴𝑅ሺ𝑘෠ሻ  is defined in Eq. (10), which leads us to 

𝑘௅஻ ൌ 𝑘෠ െ 𝑧ଵିఈඨ
௣೚௤೚

ேቀଵି
భ
ಿ಴ቁ

మ  .              (17) 

Like what happens with the p’s CI,  𝑝௢  usually is not known, so we need to use an estimator for 

𝑉𝐴𝑅ሺ𝑘෠ሻ. Like in Wald’s interval, the most obvious option is using  𝑝௢’s point estimate; thus, 

𝑘௅஻ ൌ 𝑘෠ െ 𝑧ଵିఈඨ
௣ො೚௤ො೚

ேቀଵି
భ
ಿ಴ቁ

మ,            (18) 

where  𝑧ଵିఈ  is the value of the inverse standard normal distribution function for α significance level; 

𝑞ො௢ ൌ 1 െ 𝑝̂௢; N is the total sample size. 

Agresti & Coull  [26] showed  that  the approximate Wald’s adjusted method can  improve  the 

results of the original Wald’s method by adding two failures and four instances to the point estimate. 

It means that  𝑞ො௢ ൌ ሺ𝑋 ൅ 2ሻ/ሺ𝑁 ൅ 4ሻ  in Eq. (18). 
The following section will confirm that Eq. (18) approximates the value of kLB well for a wide 

range of sample sizes and accuracy rates. It will also compare results from adjusted and non‐adjusted 

approximate lower bound. 

Since  the accuracy  is a binomial statistic, based on Agresti and Coull’s  results  [26], we must 

apply  the  adjusted Wald’s  approximate method  for  the  proportion  statistic.  Therefore,  for  our 

purpose, we will have that 

𝑝̂௢,௅஻ ൌ 𝑝̂௢ െ 𝑧ଵିఈට
௣ො೚௤ො೚
ே

,              (19) 

where  𝑞ො௢ ൌ ሺ𝑋 ൅ 2ሻ/ሺ𝑁 ൅ 4ሻ. Notice that the point estimate must be adjusted by adding two counts 

to the smallest proportion, the number of failures or wrong‐classified instances [26]. 

3. Results 

This section presents the results of comparing exact and approximate methods for a wide range 

of sample sizes and accuracy levels, as well as for NC = 2, 3, and 10. 
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As for the binomial p parameter, we expect the approximate and exact methods to obtain similar 

results in the lower bound, thus validating that the approximate method can be used to estimate kLB. 

Table 1.  Intrinsic kappa  lower bound. Exact vs approximate method without point‐estimate adjustment  for 

NC=2 and α = 0.05 and α = 0.05 (5%). 

N  Failures  Exact kLB  𝒌෡  Approx. kLB  Rel. Error  Est. Error 

100  5  0.822  0.9  0.828  0.81%  7.97% 

100  25  0.359  0.5  0.358  0.35%  28.49% 

200  5  0.91  0.95  0.914  0.44%  3.82% 

200  50  0.4  0.5  0.399  0.09%  20.15% 

500  5  0.964  0.98  0.965  0.19%  1.49% 

500  50  0.755  0.8  0.756  0.16%  5.52% 

500  100  0.541  0.6  0.541  0.07%  9.81% 

1000  5  0.982  0.99  0.983  0.09%  0.74% 

1000  50  0.876  0.9  0.877  0.10%  2.52% 

1000  100  0.768  0.8  0.769  0.08%  3.90% 

1000  250  0.455  0.5  0.455  0.00%  9.01% 

2000  5  0.991  0.995  0.991  0.05%  0.37% 

2000  50  0.938  0.95  0.939  0.05%  1.21% 

2000  100  0.884  0.9  0.884  0.05%  1.78% 

2000  250  0.725  0.75  0.726  0.04%  3.24% 

2000  500  0.468  0.5  0.468  0.00%  6.37% 

5000  5  0.996  0.998  0.997  0.02%  0.15% 

5000  50  0.975  0.98  0.975  0.02%  0.47% 

5000  100  0.953  0.96  0.953  0.02%  0.68% 

5000  250  0.89  0.9  0.890  0.02%  1.13% 

5000  500  0.786  0.8  0.786  0.02%  1.74% 

5000  1500  0.379  0,4  0.379  0.01%  5.33% 

50000  5  1  1  1  0.00%  0.01% 

50000  50  0,998  0.998  0.998  0.00%  0.05% 

50000  100  0,995  0.996  0.995  0.00%  0.07% 

50000  500  0,979  0.98  0.979  0.00%  0.15% 

50000  1000  0,958  0.96  0.958  0.00%  0.21% 

50000  10000  0,594  0.6  0.594  0.00%  0.98% 

Mean Rel. Error =  0.10%   

Table 2. Intrinsic kappa lower bound. Comparison between exact and approximate method with point estimate 

adjustment for NC=2 and Significance level = 0.05 (5%). 

N  Failures  Exact kLB  𝒌෡  Approx. kLB  Rel. Error  Est. Error 

100  5  0.822  0.9  0.818  0.49%  9.16% 

100  25  0.359  0.5  0.356  0.85%  28.85% 

200  5  0.910  0.95  0.908  0.22%  4.46% 
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200  50  0.400  0.5  0.399  0.25%  20.28% 

500  5  0.964  0.98  0.963  0.08%  1.76% 

500  50  0.755  0.8  0.755  0.08%  5.59% 

500  100  0.541  0.6  0.541  0.02%  9.85% 

1000  5  0.982  0.99  0.981  0.04%  0.87% 

1000  50  0.876  0.9  0.877  0.05%  2.56% 

1000  100  0.768  0.8  0.769  0.05%  3.93% 

1000  250  0.455  0.5  0.455  0.01%  9.02% 

2000  5  0.991  0.995  0.991  0.02%  0.44% 

2000  50  0.938  0.95  0.938  0.03%  1.23% 

2000  100  0.884  0.9  0.884  0.03%  1.80% 

2000  250  0.725  0.75  0.726  0.03%  3.25% 

2000  500  0.468  0.5  0.468  0.00%  6.38% 

5000  5  0.996  0.998  0.996  0.01%  0.17% 

5000  50  0.975  0.98  0.975  0.01%  0.48% 

5000  100  0.953  0.96  0.953  0.01%  0.68% 

5000  250  0.890  0.9  0.890  0.02%  1.13% 

5000  500  0.786  0.8  0.786  0.01%  1.75% 

5000  1500  0.379  0.4  0.379  0.01%  5.33% 

50000  5  1  1  1  0.00%  0.02% 

50000  50  0.998  0.998  0.998  0.00%  0.05% 

50000  100  0.995  0.996  0.995  0.00%  0.07% 

50000  500  0.979  0.98  0.979  0.00%  0.15% 

50000  1000  0.958  0.96  0.958  0.00%  0.21% 

50000  10000  0,594  0.6  0.594  0.00%  0.98% 

Mean Rel. Error =  0.08%   

Table 3. Intrinsic kappa lower bound. Comparison between exact and approximate method without point 

estimate adjustment for NC=3 and Significance level = 0.05 (5%). 

N  Failures  Exact kLB  𝒌෡  Approx. kLB  Rel. Error  Est. Error 

100  5  0.866  0.925  0.871  0.58%  5.81% 

100  25  0.519  0.625  0.518  0.18%  17.10% 

200  5  0.932  0.963  0.935  0.33%  2.83% 

200  50  0.550  0.625  0.549  0.05%  12.09% 

500  5  0.973  0.985  0.974  0.14%  1.11% 

500  50  0.816  0.85  0.817  0.11%  3.89% 

500  100  0.656  0.7  0.656  0.04%  6.31% 

1000  5  0.986  0.993  0.987  0.07%  0.55% 

1000  50  0.907  0.925  0.908  0.07%  1.84% 

1000  100  0.826  0.85  0.827  0.06%  2.75% 

1000  250  0.591  0.625  0.591  0.00%  5.41% 
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2000  5  0.993  0.996  0.993  0.04%  0.28% 

2000  50  0.954  0.963  0.954  0.04%  0.89% 

2000  100  0.913  0.925  0.913  0.04%  1.30% 

2000  250  0.794  0.813  0.794  0.03%  2.25% 

2000  500  0.601  0.625  0.601  0.00%  3.82% 

5000  5  0.997  0.999  0.997  0.01%  0.11% 

5000  50  0.981  0.985  0.982  0.02%  0.35% 

5000  100  0.965  0.97  0.965  0.02%  0.50% 

5000  250  0.917  0.925  0.917  0.01%  0.82% 

5000  500  0.839  0.85  0.840  0.01%  1.23% 

5000  1500  0.534  0.55  0.534  0.01%  2.91% 

50000  5  1  1  1  0.00%  0.01% 

50000  50  0.998  0.999  0.998  0.00%  0.03% 

50000  100  0.996  0.997  0.997  0.00%  0.05% 

50000  500  0.984  0.985  0.984  0.00%  0.11% 

50000  1000  0.968  0.97  0.968  0.00%  0.16% 

50000  10000  0.696  0.7  0.694  0.21%  0.84% 

Mean Rel. Error =  0.07%   

Table 4. Intrinsic kappa lower bound. Comparison between exact and approximate method with point 

estimate adjustment for NC=3 and Significance level = 0.05 (5%). 

N  Failures  Exact kLB  𝒌෡  Approx. kLB  Rel. Error  Est. Error 

100  5  0.866  0.925  0.863  0.35%  6.68% 

100  25  0.519  0.625  0.517  0.44%  17.31% 

200  5  0.932  0.963  0.931  0.16%  3.30% 

200  50  0.55  0.625  0.549  0.14%  12.17% 

500  5  0.973  0.985  0.972  0.06%  1.31% 

500  50  0.816  0.85  0.816  0.06%  3.95% 

500  100  0.656  0.7  0.656  0.01%  6.33% 

1000  5  0.986  0.993  0.986  0.03%  0.65% 

1000  50  0.907  0.925  0.908  0.04%  1.87% 

1000  100  0.826  0.850  0.826  0.04%  2.77% 

1000  250  0.591  0.625  0.591  0.01%  5.41% 

2000  5  0.993  0.996  0.993  0.01%  0.33% 

2000  50  0.954  0.963  0.954  0.02%  0.91% 

2000  100  0.913  0.925  0.913  0.02%  1.31% 

2000  250  0.794  0.813  0.794  0.02%  2.25% 

2000  500  0.601  0.625  0.601  0.00%  3.83% 

5000  5  0.997  0.999  0.997  0.01%  0.13% 

5000  50  0.981  0.985  0.981  0.01%  0.36% 

5000  100  0.965  0.97  0.965  0.01%  0.51% 
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5000  250  0.917  0.925  0.917  0.01%  0.82% 

5000  500  0.839  0.85  0.84  0.01%  1.23% 

5000  1500  0.534  0.55  0.534  0.01%  2.91% 

50000  5  1  1  1  0.00%  0.01% 

50000  50  0.998  0.999  0.998  0.00%  0.04% 

50000  100  0.996  0.997  0.997  0.00%  0.05% 

50000  500  0.984  0.985  0.984  0.00%  0.11% 

50000  1000  0.968  0.97  0.968  0.00%  0.16% 

50000  10000  0.696  0.7  0.696  0.00%  0.63% 

Mean Rel. Error =  0.05%   

Table 5. Intrinsic kappa lower bound. Comparison between exact and approximate method without point 

estimate adjustment for NC=10 and Significance level = 0.05 (5%). 

N  Failures  Exact kLB  𝒌෡  Approx. kLB  Rel. Error  Est. Error 

100  5  0.901  0.944  0.905  0.41%  4.22% 

100  25  0.644  0.722  0.643  0.11%  10.96% 

200  5  0.950  0.972  0.952  0.24%  2.08% 

200  50  0.666  0.722  0.666  0.03%  7.75% 

500  5  0.980  0.989  0.981  0.10%  0.82% 

500  50  0.864  0.889  0.864  0.08%  2.76% 

500  100  0.745  0.778  0.745  0.03%  4.20% 

1000  5  0.990  0.994  0.990  0.05%  0.41% 

1000  50  0.931  0.944  0.932  0.05%  1.33% 

1000  100  0.871  0.889  0.872  0.04%  1.95% 

1000  250  0.697  0.722  0.697  0.00%  3.47% 

2000  5  0.995  0.997  0.995  0.03%  0.20% 

2000  50  0.966  0.972  0.966  0.03%  0.66% 

2000  100  0.935  0.944  0.936  0.03%  0.94% 

2000  250  0.847  0.861  0.848  0.02%  1.57% 

2000  500  0.705  0.722  0.705  0.00%  2.45% 

5000  5  0.998  0.999  0.998  0.01%  0.08% 

5000  50  0.986  0.989  0.986  0.01%  0.26% 

5000  100  0.974  0.978  0.974  0.01%  0.37% 

5000  250  0.939  0.944  0.939  0.01%  0.60% 

5000  500  0.881  0.889  0.881  0.01%  0.87% 

5000  1500  0.655  0.667  0.655  0.00%  1.78% 

50000  5  1  1  1  0.00%  0.01% 

50000  50  0.999  0.999  0.999  0.00%  0.03% 

50000  100  0.997  0.998  0.997  0.00%  0.04% 

50000  500  0.988  0.989  0.988  0.00%  0.08% 

50000  1000  0.977  0.978  0.977  0.00%  0.12% 
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50000  10000  0.775  0.778  0.775  0.00%  0.42% 

Mean Rel. Error =  0.05%   

Table 6. Intrinsic kappa lower bound. Comparison between exact and approximate method with point 

estimate adjustment for NC=10 and Significance level = 0.05 (5%). 

N  Failures  Exact kLB  𝒌෡  Approx. kLB  Rel. Error  Est. Error 

100  5  0.866  0.925  0.863  0.35%  4.85% 

100  25  0.519  0.625  0.517  0.44%  11.10% 

200  5  0.932  0.963  0.931  0.16%  2.42% 

200  50  0.55  0.625  0.549  0.14%  7.80% 

500  5  0.973  0.985  0.972  0.06%  0.97% 

500  50  0.816  0.85  0.816  0.06%  2.80% 

500  100  0.656  0.7  0.656  0.01%  4.22% 

1000  5  0.986  0.993  0.986  0.03%  0.48% 

1000  50  0.907  0.925  0.908  0.04%  1.36% 

1000  100  0.826  0.850  0.826  0.04%  1.96% 

1000  250  0.591  0.625  0.591  0.01%  3.47% 

2000  5  0.993  0.996  0.993  0.01%  0.24% 

2000  50  0.954  0.963  0.954  0.02%  0.67% 

2000  100  0.913  0.925  0.913  0.02%  0.95% 

2000  250  0.794  0.813  0.794  0.02%  1.57% 

2000  500  0.601  0.625  0.601  0.00%  2.45% 

5000  5  0.997  0.999  0.997  0.01%  0.10% 

5000  50  0.981  0.985  0.981  0.01%  0.27% 

5000  100  0.965  0.97  0.965  0.01%  0.37% 

5000  250  0.917  0.925  0.917  0.01%  0.60% 

5000  500  0.839  0.85  0.84  0.01%  0.87% 

5000  1500  0.534  0.55  0.534  0.01%  1.78% 

50000  5  1  1  1  0.00%  0.01% 

50000  50  0.998  0.999  0.998  0.00%  0.03% 

50000  100  0.996  0.997  0.997  0.00%  0.04% 

50000  500  0.984  0.985  0.984  0.00%  0.08% 

50000  1000  0.968  0.97  0.968  0.00%  0.12% 

50000  10000  0.696  0.7  0.696  0.00%  0.42% 

Mean Rel. Error =  0.05%   

Tables I, III and V are built using Eq. (4) and Eq. (19) without adjusting  𝑞ො௢. Therefore,  𝑞ො௢ ൌ 𝑋/𝑁, 
where X  is  the  total number of failures or wrong‐classified  instances  found outside  the confusion 

matrix’s diagonal. N is the total amount of instances, including repetitions—if any—in the context of 

quality  inspections.  In  machine  learning  applications,  we  just  talk  about  instances  without 

repetitions. Tables II, IV and VI use the adjusted point estimate for the variance in Eq. (19), thus  𝑞ො௢ ൌ
ሺ𝑋 ൅ 2ሻ/ሺ𝑁 ൅ 4ሻ. N is the total number of machine learning or quality assessments in the context of 
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quality inspections. Failures are the wrong‐classified instances (counts outside the confusion matrix 

diagonal). Relative error is defined as 

𝑅𝑒𝑙. 𝑒𝑟𝑟𝑜𝑟 ሺ%ሻ ൌ ቚ
”௘௫௔௖௧ ௞ಽಳ”‐”௔௣௣௥௢௫.௞ಽಳ”

”௘௫௔௖௧ ௞ಽಳ”
ቚ ∙ 100  .        (20) 

Looking at all tables, we can conclude that, although the kappa coefficient is typically expressed 

using two decimals, we must go to the third decimal (or beyond) to see discrepancies between the 

exact and approximate method, even for tiny sample sizes. It is also reflected by the relative error, 

which  is  less  than 1%  in all cases. Since  the estimates computed by both methods are completely 

independent and different regarding assumptions and starting points, we can conclude that these 

results validate the exact and approximate method this paper derives. It would be improbable that 

such different methods  for calculating confidence  intervals would have similar estimation errors, 

giving us such close estimation lower bounds. The only plausible explanation is that both methods 

are valid and almost equivalent. 

A relative error shows that the adjusted point estimate performs slightly better but is so close to 

the method without adjusting  𝑞ො௢  that we must conclude that both methods give the same results in 

practical terms. 

These  results  also  confirm  that  the  greater  the  sample  size,  the  better  the  approximation, 

although they are very close for all cases, even for small sample sizes for all NCs studied. As expected, 

the greater  the NC,  the better  the approximation. Therefore, we must  conclude  that based on  its 

simplicity and estimation precision, the approximate method without point estimate adjustment is 

the best method to estimate the intrinsic kappa coefficient lower bound for any NC and sample size. 

For validation of the accuracy approximate method, we must refer to Agresti and Coull’s results 

[26] make us choose the adjusted and non‐adjusted Wald’s confidence interval method, which are 

defined  by Eq.  (19). Tables VII  and VIII  show  similar  results  than  those  for  the  intrinsic  kappa 

estimate. Adjusted and non‐adjusted lower bounds have very similar results in terms of precision. 

Therefore, the conclusion is that, for this paper, we should choose a non‐adjusted Wald’s interval to 

estimate the lower accuracy bound since it is the simplest method. It should be noted that accuracy 

is not a function of the number of categories; thus, we only need two tables for the comparison. 

Table 7. Accuracy lower bound. Comparison between exact and approximate method without point estimate 

adjustment and Significance level = 0.05 (5%). 

N  Failures  Exact Acc.LB  𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚෣   Appr. Acc.LB  Rel. Error  Est. Error 

100  5  0.911  0.95  0.914  0.37%  3.77% 

100  25  0.679  0.75  0.679  0.09%  9.50% 

200  5  0.955  0.975  0.957  0.21%  1.86% 

200  50  0.7  0.75  0.7  0.03%  6.72% 

500  5  0.982  0.99  0.983  0.09%  0.74% 

500  50  0.877  0.9  0.878  0.07%  2.45% 

500  100  0.77  0.8  0.771  0.02%  3.68% 

1000  5  0.991  0.995  0.991  0.05%  0.37% 

1000  50  0.938  0.95  0.939  0.04%  1.19% 

1000  100  0.884  0.9  0.884  0.04%  1.73% 

1000  250  0.727  0.75  0.727  0.00%  3.00% 

2000  5  0.995  0.998  0.996  0.02%  0.18% 

2000  50  0.969  0.975  0.969  0.02%  0.59% 

2000  100  0.942  0.95  0.942  0.02%  0.84% 
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2000  250  0.863  0.875  0.863  0.02%  1.39% 

2000  500  0.734  0.75  0.734  0.00%  2.12% 

5000  5  0.998  0.999  0.998  0.01%  0.07% 

5000  50  0.988  0.99  0.988  0.01%  0.23% 

5000  100  0.977  0.98  0.977  0.01%  0.33% 

5000  250  0.945  0.95  0.945  0.01%  0.53% 

5000  500  0.893  0.9  0.893  0.01%  0.78% 

5000  1500  0.689  0.7  0.689  0.00%  1.52% 

50000  5  1  1  1  0.00%  0.01% 

50000  50  0.999  0.999  0.999  0.00%  0.02% 

50000  100  0.998  0.998  0.998  0.00%  0.03% 

50000  500  0.989  0.99  0.989  0.00%  0.07% 

50000  1000  0.979  0.98  0.979  0.00%  0.11% 

50000  10000  0.797  0.80  0.797  0.00%  0.37% 

Mean Rel. Error =  0.04%   

Table  8. Accuracy  lower  bound. Comparison  between  exact  and  approximate method with  point  estimate 

adjustment and Significance level = 0.05 (5%). 

N  Failures  Exact Acc.LB  𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚෣   Appr. Acc. LB  Rel. Error  Est. Error 

100  5  0.911  0.95  0.909  0.22%  4.34% 

100  25  0.679  0.75  0.678  0.22%  9.62% 

200  5  0.955  0.975  0954  0.10%  2.17% 

200  50  0.7  0.75  0.699  0.07%  6.76% 

500  5  0.982  0.99  0.981  0.04%  0.87% 

500  50  0.877  0.9  0.878  0.03%  2.49% 

500  100  0.77  0.8  0.77  0.01%  3.69% 

1000  5  0.991  0.995  0.991  0.02%  0.44% 

1000  50  0.938  0.95  0.938  0.02%  1.21% 

1000  100  0.884  0.9  0.884  0.02%  1.75% 

1000  250  0.727  0.75  0.727  0.00%  3.01% 

2000  5  0.995  0998  0.995  0.01%  0.22% 

2000  50  0.969  0.975  0.969  0.01%  0.60% 

2000  100  0.942  0.95  0.942  0.02%  0.85% 

2000  250  0.863  0.875  0.863  0.01%  1.39% 

2000  500  0.734  0.75  0.734  0.00%  2.13% 

5000  5  0.998  0.999  0.998  0.00%  0.09% 

5000  50  0.988  0.99  0.988  0.01%  0.24% 

5000  100  0.977  098  0.977  0.01%  0.34% 

5000  250  0.945  0.95  0.945  0.01%  0.54% 

5000  500  0.893  0.9  0.893  0.01%  0.78% 

5000  1500  0.689  0.7  0.689  0.00%  1.52% 
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50000  5  1  1  1  0.00%  0.01% 

50000  50  0.999  0.999  0.999  0.00%  0.02% 

50000  100  0.998  0.998  0.998  0.00%  0.03% 

50000  500  0.989  0.99  0.989  0.00%  0.07% 

50000  1000  0.979  0.98  0.979  0.00%  0.11% 

50000  10000  0.797  0.8  0.797  0.00%  0.37% 

Mean Rel. Error =  0.03%   

If we invert the confidence interval and consider the point estimates in tables I through VIII as 

the parameter value and the parameter lower bound as the point estimate lower bound, we can use 

these tables to plan the sample size based on the expected estimation error, which is defined as 

𝐸𝑠𝑡. 𝑒𝑟𝑟𝑜𝑟 ሺ%ሻ ൌ  ఏିఏ
෡ಽಳ
ఏ

∙ 100  , 

although, as mentioned, for the calculation in tables I through VIII, we invert the confidence interval, 

thus 

𝐸𝑠𝑡.𝐸𝑟𝑟𝑜𝑟ሺ%ሻ ൌ  ఏ
෡ିఏಽಳ
ఏ෡

∙ 100  . 

Sanchez‐Marquez  et  al.  [8] and other  authors use  the practical  rule of  10%  for  the  expected 

estimation error. Therefore, an estimation error of less than 10% is considered a good estimation. For 

accuracy, there is no value above 10%. Thus, we would obtain reasonable estimates for small sample 

sizes and  low accuracy.  It means  that  if we used point estimates  for accuracy,  the point estimate 

would  have  a  low  estimation  error  each  time  we  took  a  sample.  Therefore,  practitioners  and 

researchers  can use  its point estimate when using accuracy. However,  if we want  to  run a more 

precise study with less than 1% estimation errors and use the point estimate, the sample size should 

be >5000 instances or inspections. Suppose we do not have the opportunity to increase the sample 

size due to data availability or resource restraints. In that case, the only option is to use the lower 

bound instead of the point estimate to compare different techniques. 

The estimation error of the intrinsic kappa coefficient also depends on the number of categories. 

As expected, the number of categories makes the estimation error smaller with the same sample size. 

For the minimum NC, NC = 2, the estimation error makes us increase the sample to a minimum of 

500 or use the lower bound instead of the point estimate if we have N < 500. As mentioned, increasing 

the NC allow us to use relatively small samples such as N = 200. However, in this case, the estimation 

error is greater than 10% for tiny samples such as N = 100 and low accuracy levels such as 75%. To 

summarise, when the expected estimation error is greater than 10% (or 1% when higher precision is 

needed), the typical recommendation is to increase the sample size or, if not possible, use the lower 

bound instead of the point estimates. 

4. Real‐Life Example—Classification of Handwritten Digits 

This section aims to illustrate the use of the method this paper develops for machine learning 

and quality inspections. For this purpose, two real‐life examples with actual data are provided. These 

examples are not intended to demonstrate the benefits of the generalised intrinsic kappa statistic—

this has already been shown in previous sections—but rather to guide researchers and practitioners 

on how to use it. 

4.1. Machine Learning Example 

This example of classification of the MNIST dataset is a deep learning effort that pays homage 

to  the  historical  importance  of  this  iconic  dataset.  Introduced  initially  to  test  handwritten  digit 
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recognition  algorithms, MNIST  remains  relevant  as  a  foundational  tool  for  understanding  and 

implementing deep learning techniques. 

The goal of the example is to generate a classification of the different digits using a convolutional 

neural network. 

The details can be found in the Python script developed in the Jupyter Notebook file provided 

with this paper [30]. 

We want to classify ten digits from 0 to 9. After trying different neural network architectures 

(see the details in the Jupyter Notebook file), the resulting 10 x 10 confusion matrix is 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

976 0 1 0 0 0 2 1 0 0
0 1131 2 1 0 0 0 1 0 0
1 2 1025 0 0 0 0 6 0 0
0 0 2 1005 0 1 0 1 1 0
0 0 0 0 979 0 2 0 0 1
0 0 0 4 0 885 1 0 1 1
1 2 1 0 2 4 946 0 2 0

0 2 3 0 0 1 0 1020 1 1
1 0 1 1 0 1 0 2 964 4
0 0 0 0 5 3 0 5 1 995 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

The accuracy point estimate is calculated by 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦ෟ ൌ 𝑝̂௢ ൌ
∑𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚
ൌ

9926
10002

ൌ 0.9924 

Although looking at Table VII, and according to the sample size of this example, we would not 

need to estimate the accuracy lower bound; we calculate it to illustrate how to do it. Thus, from Eq. 

(19), we have that 

𝑝̂௢,௅஻ ൎ 𝑝̂௢ െ 𝑧ଵିఈඨ
𝑝̂௢𝑞ො௢
𝑁

ൌ 0.9924 െ 1.645ඨ
0.9924 ∙ 0.0076

10002
ൌ 0.991 

As expected, and due to the sample size, the accuracy lower bound is close to its point estimate. 

The interpretation of this lower bound is that we can know that with a confidence level of 95%, we 

have at least an accuracy of 0.991. 

The exact method gives us a very close result. From Eq. (7) we have that 

𝑝௢,௅஻ ൌ 1 െ
ఔభ∙ிഌభ,ഌమ,భషഀ

షభ

ఔమାఔభ∙ிഌభ,ഌమ,భషഀ
షభ ൌ 1 െ ଵହସ∗ଵ.ଵଽହହ

ଵଽ଼ହଶାଵହସ∗ଵ.ଵଽହହ
ൌ 0.9908  . 

In  this example,  the  relative  error  is 0,02%. We also  see  that  the exact  lower bound and  the 

approximate are very close to the point estimate since the sample size is big enough to use the point 

estimate, as mentioned before any calculation. 

The intrinsic kappa point estimate is calculated by Eq. (4) as follows: 

𝑘෠ ൌ ௣ො೚ିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ ଴.ଽଽଶସିଵ/ଵ଴

ଵିଵ/ଵ଴
ൌ 0.9916  . 

Like what happens with the accuracy, based on the sample size and the NC, we would not need 

to estimate a  lower bound since  the estimation error  is much smaller  than 10%. However, we are 

going to calculate kLB to illustrate the method. Therefore, from Eq. (19), we have that 

𝑘௅஻ ൎ 𝑘෠ െ 𝑧ଵିఈඩ
𝑝̂௢𝑞ො௢

𝑁 ቀ1 െ
1
𝑁𝐶ቁ

ଶ ൌ 0.9916 െ 1.645ඩ
0.9924 ∙ 0.0076

10002 ቀ1 െ
1

10ቁ
ଶ ൌ 0.99 
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Like what happens with the accuracy, the lower bound of the intrinsic kappa coefficient is very 

close to its point estimate. This effect is due to the sample size. Again, this effect tells us that we would 

not have needed to calculate the lower bound and thus use the point estimate. 

The exact method gives us a similar result. From Eq. (6), 

𝑘௅஻ ൌ
௣೚,ಽಳିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ

଴.ଽଽ଴଼ିଵ/ଵ଴

ଵିଵ/ଵ଴
ൌ 0.9898  . 

As expected, approximate and exact methods give us very close  results  for  the kappa  lower 

bound, with a relative error of 0.02%. 

As  explained  in  Section  2,  we  can  compute  these metrics  for  any  classification  (digit)  by 

collapsing the confusion matrix. For instance, we can calculate accuracy and kappa coefficients for 

digit 7, which is the category with more classification errors, by collapsing the confusion matrix as 

follows: 

ቀ1020 8
16 8958

ቁ 

The number of  instances classified as digit  seven  that we know  they are digit 7  is 1020;  the 

number of instances not classified as digit seven that we know they belong to digit 7 is 16; the number 

of instances that are classified as digit 7, but they do not belong to it is 8; and the number of instances 

that are well classified as not belonging to digit 7 is 8958. 

We obtain accuracy and kappa metrics by applying the same equations to this collapse matrix. 

Therefore, 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦ෟ ൌ 𝑝̂௢ ൌ
∑𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚
ൌ

9978
10002

ൌ 0.9978 

The approximate 95%‐confidence lower bound gives us the following result: 

𝑝̂௢,௅஻ ൎ 𝑝̂௢ െ 𝑧ଵିఈඨ
𝑝̂௢𝑞ො௢
𝑁

ൌ 0.9978 െ 1.645ඨ
0.9978 ∙ 0.0024

10002
ൌ 0.997 

The exact 95% lower bound is calculated as 

𝑝௢,௅஻ ൌ 1 െ
ఔభ∙ிഌభ,ഌమ,భషഀ

షభ

ఔమାఔభ∙ிഌభ,ഌమ,భషഀ
షభ ൌ 1 െ

ହ଴∗ଵ.ଷହ଴଻଺

ଵଽଽହ଺ାହ଴∗ଵ.ଷହ଴଻଺
ൌ 0.9966  . 

Like the overall metrics, for digit 7, exact and approximate methods give us very close results. 

Again, the point estimate and the lower bounds are very close, thus telling us that due to the sample 

size, we could use the point estimate in this example. 

Using  the  collapse  confusion matrix, we  can  also  estimate  kappa metrics. The Kappa point 

estimate is calculated as 

𝑘෠ ൌ ௣ො೚ିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ ଴.ଽଽ଻଼ିଵ/ଶ

ଵିଵ/ଶ
ൌ 0.9956  . 

Kappa’s approximate 95%‐confidence lower bound is calculated as 

𝑘௅஻ ൎ 𝑘෠ െ 𝑧ଵିఈඩ
𝑝̂௢𝑞ො௢

𝑁 ቀ1 െ 1
𝑁𝐶ቁ

ଶ ൌ 0.9956 െ 1.645ඩ
0.9978 ∙ 0.0024

10002 ቀ1 െ 1
2ቁ

ଶ ൌ 0.994 

And its exact value as 

𝑘௅஻ ൌ
௣೚,ಽಳିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ

଴.ଽଽ଺଺ ିଵ/ଶ

ଵିଵ/ଶ
ൌ 0.9932  . 
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Although Table  I  tells us  that  the  relative error must be greater  for  two categories,  it  is still 

acceptable, especially for big sample sizes like this one. Therefore, it is coherent with this result that 

shows that the approximate and exact lower bounds are very close—with a relative error of 0.08%. 

This example clearly shows that, in any case, the overall intrinsic kappa coefficient will always 

be  greater  than  any  of  the  individual  kappa  coefficients  calculated  for  each  category  since  the 

collapsed matrix  only  considers  the  classification  errors  of  that  category.  Similarly,  the  overall 

accuracy will always be smaller than the individual accuracies calculated for each category. 

4.2. Quality Inspection Example 

The data in this example comes from a real‐life example presented by Sanchez‐Marquez et al. 

[8]. Quality  inspections are made by  inspectors regarding acceptable and non‐acceptable units.  In 

total, 4800 inspections, including repetitions, on 400 units (200 from each category) by six inspectors. 

The resulting confusion matrix is 

ቀ2256 288
144 2112

ቁ 

where 2256 are the acceptable inspections rated as acceptable, 144 are the acceptable ones wrongly 

classified,  2112  are  the  not  acceptable  wrongly  classified,  and  288  were  wrongly  classified  as 

acceptable. 

The accuracy point estimate is calculated by 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦ෟ ൌ 𝑝̂௢ ൌ
∑𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚
ൌ

4368
4800

ൌ 0.91 

Applying Eq. (19), we compute the approximate 95%‐confidence lower bound: 

𝑝̂௢,௅஻ ൎ 𝑝̂௢ െ 𝑧ଵିఈඨ
𝑝̂௢𝑞ො௢
𝑁

ൌ 0.91 െ 1.645ඨ
0.91 ∙ 0.09

4800
ൌ 0.9032 

The exact method gives us the following result: 

𝑝௢,௅஻ ൌ 1 െ
ఔభ∙ிഌభ,ഌమ,భషഀ

షభ

ఔమାఔభ∙ிഌభ,ഌమ,భషഀ
షభ ൌ 1 െ

଼଺଺∗ଵ.଴଼ସ଺଻

଼଻ଷ଺ା଼଺଺∗ଵ.଴଼ସ଺଻
ൌ 0.9029  . 

As with the machine learning example, according to the sample size and the accuracy level (see 

Table I), the relative error is 0.03%, thus below 1%. Therefore, we confirm that the approximate and 

exact methods give very close results. 

Using expression (4), we have that 

𝑘෠ ൌ ௣ො೚ିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ ଴.ଽଵିଵ/ଶ

ଵିଵ/ଶ
ൌ 0.82. 

The method derived in Sanchez‐Marquez et al.’s work [8] gives us the same point estimate using 

alpha  and  beta  point  estimates  since  𝑘෠ ൌ 1 െ 𝛼ො െ 𝛽መ ൌ 1 െ 0.06 െ 0.12 ൌ 0.82 ,  thus 

confirming that both methods are equivalent (see section 2). 

The approximate 95%‐confidence lower bound is computed as 

𝑘௅஻ ൎ 𝑘෠ െ 𝑧ଵିఈඩ
𝑝̂௢𝑞ො௢

𝑁 ቀ1 െ 1
𝑁𝐶ቁ

ଶ ൌ 0.82 െ 1.645ඩ
0.91 ∙ 0.09

4800 ቀ1 െ 1
2ቁ

ଶ ൌ 0.8064 

and the exact lower bound as 

𝑘௅஻ ൌ
௣೚,ಽಳିሺଵ ே஼⁄ ሻ

ଵିሺଵ ே஼⁄ ሻ
ൌ ଴,ଽ଴ଶଽ ିଵ/ଶ

ଵିଵ/ଶ
ൌ 0.8058  . 

Unsurprisingly,  exact  and  approximate methods  give  us  a  relative  error  of  less  than  1%, 

specifically 0.07%. Sanchez‐Marquez et al. [8] also show the same result using alpha and beta statistics 

with  𝑘௅஻ᇱᇱ ൌ 0.8058. Although  it has been shown  in Section 2  that both methods are equivalent  to 

estimating kappa’s intrinsic value, this result confirms it with an example. 
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The estimation error  is about 1.7%, which  is  low, although depending on the expected result 

(minimum kappa  required) and  the precision, one could decide  to  increase  the sample size. This 

example shows that the sample size can be essential to classification problems. 

The purpose of  this  section was not  to  confirm  the validity of  the method, which has been 

sufficiently proved  in sections 2 and 3, but  to  illustrate how  to use  it.  It has been shown  that  the 

generalised  intrinsic kappa coefficient,  the accuracy, and  their  lower bounds can be calculated by 

applying the equations and steps shown in this section. The method developed in this paper can be 

easily implemented using any software. Indeed, the approximate lower bounds, shown as sufficiently 

precise,  can  be  calculated  even manually  using  the  statistical  table  of  the  standardised  normal 

distribution. 

5. Discussion 

The methods developed  in  this paper have met  the gaps  introduced  in Section  1  that were 

present  in the available methods. The traditional kappa coefficient depends on how the sample  is 

split over the different categories (aka prevalence), which does not represent how well the system 

classifies  since, without  improving  anything, we  could  change  the  result  by  only  adjusting  the 

prevalence. Only one available work solves this issue, although only for the case of two categories. 

This paper develops  expressions  that  generalise  the  intrinsic  kappa  coefficient  confidence  lower 

bound  for any number of categories, which simultaneously solves the problem of considering the 

effect of  the  sample  size. This work also  shows  that  the approximate expressions derived herein 

perform  as  well  as  the  exact  ones,  thus  providing  researchers  and  practitioners  with  simple 

expressions that are easy to use and interpret. 

5.1. Theoretical Implications 

The available works that have used the traditional kappa coefficient should review their results 

to recalculate them using the intrinsic kappa since it is not biased due to the prevalence of the sample. 

Some classification methods may have been considered acceptable or good due to the sample. This 

effect is more likely in machine learning developments since, in this context, it is expected to use the 

available sample, which is typically non‐balanced. Therefore, for future work involving classification 

systems of any NC, we recommend using the method developed in this work, which is based on the 

intrinsic kappa coefficient instead of the traditional one. 

5.2. Practical Implications 

The method derived herein allows practitioners and researchers to adjust the sample size or use 

the available sample since the lower bounds consider that size, thus permitting a cost reduction if the 

results meet performance expectations. Without considering the sample size, the result is not reliable 

enough. 

Since  the approximate methods derived  in  this paper have proved  reliable  in estimating  the 

lower bounds of accuracy and kappa, their use provides an easy‐to‐use and easy‐to‐interpret option 

that simplifies the performance studies of classification systems. 

5.3. Limitations and Future Research 

This paper has  focused on  the  two most used performance metrics  in machine  learning and 

quality inspections. However, following the same methodology, future works can develop exact and 

approximate methods for other performance metrics such as precision, recall, F1‐score, true‐positive 

rate, false‐positive rate, and other metrics. The current use of these metrics in machine learning must 

be corrected since researchers and practitioners use point estimates. Hence, the results depend on the 

prevalence and the sample size used to test the methods they apply or develop. 
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6. Conclusions 

All objectives  set up  in  the  introduction  section have been met. This paper develops precise 

approximate and exact methods to estimate kappa and accuracy lower bounds for any number of 

categories,  thus  generalising  Sanchez‐Marquez  et  al.’s  method  [8].  We  recommend  using  the 

approximate expressions since they have proved to provide very close results to those of the exact 

method. This paper uses the intrinsic kappa coefficient, which is more reliable than the traditional 

kappa  coefficient  since  it  does  not  depend  on  the  prevalence  of  the  sample  used  to  test  the 

classification  system.  Practitioners  and  researchers  should  use  lower  bounds  instead  of  point 

estimates since, as  it has been shown, depending on  the expected  result and  the sample size,  the 

estimation error can make the results unreliable enough to make decisions. 
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