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Abstract: We propose model embedding a Godel-like metric within the Kerr black hole interior near
the inner Cauchy horizon (r_). The frame-dragging term Q)(r, 0) is redefined to ensure dimensional
alignment with the Kerr metric. Israel’s junction conditions are applied at r = r; ~ r_, ensuring
continuity of the induced metric and extrinsic curvature. Closed timelike curves (CTCs) are confined
behind the event horizon, respecting chronology protection. The energy-momentum tensor, comprising
a pressureless fluid and a negative cosmological constant, is derived from Einstein’s equations. We
address the inner horizon’s instability and discuss limitations. Dimensional consistency is rigorously
verified for all equations, with units derived explicitly to ensure clarity.
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1. Introduction

The Godel metric [6], renowned for its closed timelike curves (CTCs), and the Kerr metric [9],
describing rotating black holes, share fundamental rotational and causal properties that make them
natural candidates for theoretical unification. The Kerr interior near the inner Cauchy horizon (r—)
exhibits extreme frame-dragging effects and potential causal anomalies [4], creating a region where
conventional spacetime structure becomes highly complex.

The interior structure of black holes has been extensively studied, particularly focusing on the
instability of the inner horizon. Poisson and Israel [12] analyzed the internal structure of black holes
and demonstrated the inherent instability of the Cauchy horizon, while Ori [11] provided exact
solutions for mass inflation phenomena in charged black holes. These works establish the theoretical
foundation for understanding perturbative instabilities near r_ [5].

This paper proposes a Godel-like metric to model the Kerr interior near r_, addressing dimen-
sional inconsistencies found in previous formulations. We apply Israel’s junction conditions [8],
extended by Barrabes and Israel [2] to lightlike limits, to ensure geometric consistency across the
boundary. The model confines CTCs behind the event horizon, consistent with Hawking’s chronology
protection conjecture [7].

Previous investigations of rotating black hole interiors [10] have explored the possibility of CTCs
within the Kerr geometry, while comprehensive studies of Lorentzian wormholes and their causal
structure [13] provide the theoretical framework for understanding exotic spacetime geometries. Our
approach builds upon these foundations while addressing the specific challenges of dimensional
consistency and junction conditions.

The inner horizon’s instability [5] represents a fundamental limitation that we acknowledge
throughout our analysis. Nevertheless, the model provides insights into the theoretical structure of
rotating black hole interiors and offers a framework for future investigations incorporating quantum
gravitational effects [1].

All equations in this work are verified for dimensional consistency, with units derived explicitly
to ensure mathematical rigor and physical interpretability.
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2. Mathematical Framework
2.1. Units and Conventions

We employ geometrized units where ¢ = G = 1. In this system, the dimensional relationships are
established as follows. Since [G] = [L]}[M]~}[T]~? = 1 and [c] = [L][T]~! = 1, we obtain [T] = [L],
which implies [M] = [L].

The fundamental quantities possess the following dimensions: Mass has dimension [M] =

[L]. Angular momentum satisfies [J] = [M][L]*[T]~! = [L] - [L]?>- [L]~! = [L]*. The metric tensor
components yield [ds?] = [L]?. Coordinate dimensions are [t] = [r] = [L] for temporal and radial
coordinates, while [0] = [¢] = 1 for angular coordinates. The Kerr parameter is defined asa = |/ M,

giving [a] = [J]/[M] = [L]/[L] = [L].

2.2. Kerr Metric

In Boyer-Lindquist coordinates (t, 7,6, ¢), the Kerr metric is expressed as:

2 cin?2 - 2
ds2 = — (1 - ZZMr)dt2 + %drz +3d6% + <r2 +a®+ ZMM;HG> sin® d¢? — Wdtdcp, (1)

where the auxiliary functions are defined as:

Y =12 +a%cos? b, (2)
A = r*> —2Mr + a*. (3)

The event and Cauchy horizons are located at:
re =MEVM2—a2 4)
We verify dimensional consistency for each component. The function ¥ satisfies [r?] = [L]?,

[a%] = [L]? and [cos?6] = 1, yielding [Z] = [L]?. Similarly, A has [r?] = [L]?, [Mr] = [L]?, and
[a?] = [L]?, giving [A] = [L]*.

For the metric components, g = — (1 — %) has % = % = 1,50 [gn] = 1 and [gdt?] = [L]?.
The radial component g,, = % gives % = 1, ensuring [grdr?] = [L]?>. The angular component
8ep = T has [geg] = [L]?, yielding [ged?] = [L]*.

The azimuthal component requires more careful analysis. We have gyp = (1’2 +a%+ mr'é*““) sin? 6,

. 4
where 72 + a2 contributes [L]? + [L]? = [L]?, the correction term 2]\/Im;751r\29 = % [L]?, and the total

expression multiplied by sin?  gives [L]? - 1 = [L]?, ensuring [gppd¢*] = [L]Z.L]

The cross term gty = —M has % = [L], so [gtp] = [L] and [gspdtdep] = [L]?.

Finally, the horizons r+ = M + /M2 — a2 satisfy [M?] = [L]?, [a%] = [L]?, giving VM2 — a2 = [L]
and [r+] = [L].

All components contribute [ds?] = [L]?, confirming dimensional consistency of the Kerr metric.

2.3. Revised Godel-like Metric

To model the Kerr interior with Godel-like characteristics, we propose the following modification:

4 — (1 _ ZZMr) A2 —2 (2]\;”1 4 wMz) sin? 0 dtd¢

(5)

2 qin2
st (4 ) g
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where the modified frame-dragging function is:

Q(r,0) = + wM?. (6)

The parameter w represents the Godel-like rotation strength, active for r < r; and vanishing at
the junction r = r;. Dimensional analysis requires [w] = [L] ! to ensure [wM?] = [L] ™' - [L]* = [L].
Since 244 — % = [L], we obtain [Q)] = [L].

The dimensional consistency of the modified metric follows from the Kerr analysis. Components

it §rrs 800, and gy remain identical to Kerr, preserving their dimensional properties. The cross term
becomes gty = —2Qsin? 6, where [Q] = [L] and [sin? 6] = 1 give [g1p] = [L] and [gipdtdp] = [L]*.

The metric reduces to the standard Kerr form when w = 0, ensuring continuity with the exterior
geometry.

3. Geometric Junction
We implement the embedding of the Godel-like metric within the Kerr interior atr = r; ~ r_

using Israel’s junction conditions [8]. These conditions require continuity of both the induced metric
and the extrinsic curvature across the junction hypersurface.

3.1. Induced Metric Matching

At the junction r = r;, we set w = 0 to ensure metric continuity. Both the exterior Kerr and interior
Godel-like metrics reduce to:

2 _
dss =

2Mr;\ , 4Mrjasin®6 )
— (1 — )dt — ———dtdp + £df

¥

2Mr;a? sin®
+ (rJZ +a®+ ]Z> sin? 0d¢?.

As established in Section 2.2, all components possess dimension [L]?, and the metrics match
exactly at the junction.

3.2. Extrinsic Curvature Analysis

The normal vector to the junction hypersurface is n* = (0,/A/%,0,0), where [A/X] = 1 ensures
[n"] = 1. The extrinsic curvature tensor is defined as:

1
Kij = —Enraygi]'. (8)

For the Kerr exterior, the relevant component is:

1 /A 4Mrasin? 6
K _
K“Perr_i z:ar(_z)' ©)

Dimensional analysis shows [gy] = [L], [0y] = [L] 7}, giving [0,g1g] = 1 and [Kip] = 1.

For the Godel-like interior at w = 0, the extrinsic curvature components are identical to those
of Kerr. The remaining components Kgg and Ky also match due to the unchanged ggs = X and gy
forms.

All extrinsic curvature components are dimensionless and continuous across the junction, satisfy-
ing Israel’s conditions [2].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4. Causal Structure and Chronology Protection

The formation of closed timelike curves occurs when the effective metric signature changes,
specifically when:

.2 2
ggf(lf, = (rz +a + ZMM;SIHG> sin? 6 — (ZAgra + wMZ) sin* 6 < 0. (10)

Dimensional verification confirms that the first term contributes [L]? - 1 = [L]?, while the second
term gives [)]?sin* 8 = [L]? - 1 = [L]?, ensuring dimensional consistency.

Importantly, our model confines CTCs to the region r < r, behind the event horizon. This
confinement is consistent with Hawking’s chronology protection conjecture [7], which suggests that
quantum effects prevent the formation of CTCs that could be accessed by external observers.

The causal structure analysis reveals that while CTCs may exist in the deep interior near r_, they
remain causally disconnected from the exterior spacetime, preserving the overall causal hierarchy of
the black hole geometry.

5. Energy-Momentum Tensor

For the region r < r;, we derive the energy-momentum tensor from Einstein’s field equations
Guy = 87Tyy. The stress-energy tensor takes the form:

Tyv = puyuy + Agyv/ (11)

where u" = (1,0,0,0) represents the four-velocity of the fluid.
Solving Einstein’s equations yields:

2
w
=== 12
o= (12)
A= —w? (13)
Dimensional analysis confirms consistency. The four-velocity normalization u*u;, = —1 requires
[u#] = [L]~L. The Einstein tensor has [G,,] = [L] 2, necessitating [T,,] = [L] 2.
For the density, p = & with [w?] = [L] 2 gives [p] = [L] "2 The cosmological constant A = —c?

satisfies [A] = [L] 2.

5.1. Energy Conditions

We examine the standard energy conditions for our model. The weak energy condition requires
p > 0, which is satisfied since w? > 0. However, the strong energy condition p + 3p + A > 0 is violated
due to the negative cosmological constant A < 0, where p = 0 for the pressureless fluid.

This violation is characteristic of exotic matter configurations often required for maintaining
non-trivial spacetime geometries [13]. While such matter violates classical energy conditions, it may
be realized through quantum field effects in the strong gravitational regime near r_.

6. Physical Interpretation and Limitations

Our model presents several important physical features and limitations that warrant detailed
discussion.

The confinement of CTCs behind the event horizon addresses one of the primary concerns with
Godel-like spacetimes in astrophysical contexts. By restricting these causal violations to regions
inaccessible to external observers, the model preserves the overall causal structure of the black hole
while allowing for exotic physics in the deep interior.

However, the inner horizon instability represents a fundamental limitation. Perturbative analysis
[11,12] demonstrates that the Cauchy horizon is generically unstable to both electromagnetic and
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gravitational perturbations. These perturbations undergo exponential amplification, leading to mass
inflation phenomena that typically result in the formation of a null singularity [5].

The mass inflation process fundamentally alters the interior geometry, potentially invalidating our
static junction model. [3] have shown that realistic black holes formed through gravitational collapse
exhibit rapid destruction of the inner horizon, suggesting that our model may only be applicable
during brief intermediate phases of black hole evolution.

The exotic matter content, characterized by the negative cosmological constant and pressureless
fluid, represents another significant limitation. While such matter configurations are mathematically
consistent with Einstein’s equations, their physical realization remains speculative. Quantum field
effects in curved spacetime [1] might provide mechanisms for generating effective exotic matter, but
detailed quantum calculations would be required to establish viability.

The junction at r; ~ r_ assumes a sharp transition between geometries. A more realistic model
would incorporate a smooth transition function w(r) that gradually interpolates between the Kerr
and Godel-like regions. Such refinements require numerical analysis to ensure stability and physical
consistency.

Despite these limitations, our model provides valuable insights into the theoretical structure of
rotating black hole interiors and establishes a framework for investigating exotic causal phenomena in
strong gravitational fields.

7. Future Directions

Several extensions of this work merit investigation. Numerical stability analysis of the junction
region could determine whether smooth transition functions w(r) exist that maintain geometric
consistency while avoiding pathological behavior.

Incorporation of quantum gravitational effects represents another promising direction. Loop
quantum gravity approaches [1] suggest that quantum geometry effects might resolve the classical
singularities and instabilities that plague the inner horizon region. Our model could serve as a classical
starting point for such quantum investigations.

The model’s predictions for gravitational wave signatures during black hole formation and
evolution could provide observational tests. If CTCs exist temporarily in the deep interior, they might
leave detectable imprints in the gravitational wave signal, particularly during the late stages of black
hole merger events.

Extensions to charged and electromagnetically coupled black holes would connect our work
with the extensive literature on Reissner-Nordstrom geometries and their quantum properties. The
interplay between electromagnetic fields and the Godel-like rotation might yield new phenomena
absent in the purely gravitational case.

8. Conclusion

We have presented a dimensionally consistent model embedding a Godel-like metric within
the Kerr black hole interior near the inner Cauchy horizon. The corrected frame-dragging function
Q= ZMT’“ + wM? ensures proper dimensional alignment while preserving the essential rotational
characteristics of both geometries.

The application of Israel’s junction conditions guarantees geometric consistency across the bound-
ary atr = r; ~ r_, with careful verification of both induced metric and extrinsic curvature continuity.
The resulting energy-momentum tensor, comprising a pressureless fluid and negative cosmological
constant, emerges naturally from Einstein’s equations.

Crucially, our model confines closed timelike curves behind the event horizon, respecting chronol-
ogy protection while allowing for exotic causal phenomena in the deep interior. All equations have
been rigorously verified for dimensional consistency, with explicit derivation of units throughout.

While the model faces limitations from inner horizon instability and exotic matter requirements,
it provides a mathematically consistent framework for investigating the theoretical structure of ro-
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tating black hole interiors. The work establishes foundations for future numerical studies, quantum
gravitational extensions, and observational predictions that could test the validity of exotic spacetime
geometries in astrophysical contexts.

The dimensional rigor and geometric consistency demonstrated here illustrate the feasibility of
constructing hybrid spacetime models that combine different metric signatures while maintaining
physical plausibility. Such approaches may prove essential for understanding the full complexity of
black hole physics in both classical and quantum gravitational regimes.
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This article is published as a preprint for public dissemination and feedback from the scientific
community. The author plans to submit this work or future versions to academic journals. This
proposal and previous drafts have been shared with several scientists for initial feedback, whose
valuable comments are incorporated to strengthen the research. If you would like to contribute with
suggestions or comments, please contact me at bautista.baron@proton.me. Collaboration with the
scientific community is fundamental to the development of this work, and I appreciate any input.
Furthermore, I would like to thank those who wish to collaborate in the extension of this work; this
paper is a preliminary model, and anyone interested in developing and publishing an expanded
version would be of great help to the dissemination and future of the project.

Acknowledgments: I sincerely appreciate the constructive comments received on the drafts, as well as those
anticipated for future work, which are taken into account to strengthen the research.

References

1. Ashtekar, A. and Bojowald, M. (2005). Black hole evaporation: A paradigm. Classical and Quantum Gravity,
22(16):3349-3362.

2. Barrabes, C. and Israel, W. (1991). Thin shells in general relativity and cosmology: The lightlike limit.
Physical Review D, 43(4):1129-1142.

3. Cardoso, V., Dias, O. ]., Lemos, J. P, and Yoshida, S. (2004). Black-hole bomb and superradiant instabilities.
Physical Review D, 70:044039.

4.  Carter, B. (1968). Global structure of the Kerr family of gravitational fields. Physical Review, 174(5):1559-1571.

5. Dafermos, M. (2003). Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-
Maxwell-scalar field equations. Annals of Mathematics, 158(3):875-928.

6. Godel, K. (1949). An example of a new type of cosmological solutions of Einstein’s field equations of
gravitation. Reviews of Modern Physics, 21(3):447-450.

7. Hawking, S. W. (1992). Chronology protection conjecture. Physical Review D, 46(2):603-611.

8.  Israel, W. (1966). Singular hypersurfaces and thin shells in general relativity. Nuovo Cimento B, 44(1):1-14.

9. Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics.
Physical Review Letters, 11(5):237-238.

10. Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes. Oxford University Press, Oxford.

11.  Ori, A. (1991). Inner structure of a charged black hole: An exact mass-inflation solution. Physical Review
Letters, 67(7):789-792.

12.  Poisson, E. and Israel, W. (1990). Internal structure of black holes. Physical Review D, 41(6):1796-1809.

13.  Visser, M. (1996). Lorentzian Wormholes: From Einstein to Hawking. AIP Press, Woodbury, NY.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0257.v1
http://creativecommons.org/licenses/by/4.0/

