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Abstract: We propose model embedding a Gödel-like metric within the Kerr black hole interior near
the inner Cauchy horizon (r−). The frame-dragging term Ω(r, θ) is redefined to ensure dimensional
alignment with the Kerr metric. Israel’s junction conditions are applied at r = rj ≈ r−, ensuring
continuity of the induced metric and extrinsic curvature. Closed timelike curves (CTCs) are confined
behind the event horizon, respecting chronology protection. The energy-momentum tensor, comprising
a pressureless fluid and a negative cosmological constant, is derived from Einstein’s equations. We
address the inner horizon’s instability and discuss limitations. Dimensional consistency is rigorously
verified for all equations, with units derived explicitly to ensure clarity.

Keywords: Kerr metric; Gödel metric; closed timelike curves; Cauchy horizon; Israel junction condi-
tions; black hole interior; frame-dragging

1. Introduction
The Gödel metric [6], renowned for its closed timelike curves (CTCs), and the Kerr metric [9],

describing rotating black holes, share fundamental rotational and causal properties that make them
natural candidates for theoretical unification. The Kerr interior near the inner Cauchy horizon (r−)
exhibits extreme frame-dragging effects and potential causal anomalies [4], creating a region where
conventional spacetime structure becomes highly complex.

The interior structure of black holes has been extensively studied, particularly focusing on the
instability of the inner horizon. Poisson and Israel [12] analyzed the internal structure of black holes
and demonstrated the inherent instability of the Cauchy horizon, while Ori [11] provided exact
solutions for mass inflation phenomena in charged black holes. These works establish the theoretical
foundation for understanding perturbative instabilities near r− [5].

This paper proposes a Gödel-like metric to model the Kerr interior near r−, addressing dimen-
sional inconsistencies found in previous formulations. We apply Israel’s junction conditions [8],
extended by Barrabès and Israel [2] to lightlike limits, to ensure geometric consistency across the
boundary. The model confines CTCs behind the event horizon, consistent with Hawking’s chronology
protection conjecture [7].

Previous investigations of rotating black hole interiors [10] have explored the possibility of CTCs
within the Kerr geometry, while comprehensive studies of Lorentzian wormholes and their causal
structure [13] provide the theoretical framework for understanding exotic spacetime geometries. Our
approach builds upon these foundations while addressing the specific challenges of dimensional
consistency and junction conditions.

The inner horizon’s instability [5] represents a fundamental limitation that we acknowledge
throughout our analysis. Nevertheless, the model provides insights into the theoretical structure of
rotating black hole interiors and offers a framework for future investigations incorporating quantum
gravitational effects [1].

All equations in this work are verified for dimensional consistency, with units derived explicitly
to ensure mathematical rigor and physical interpretability.
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2. Mathematical Framework
2.1. Units and Conventions

We employ geometrized units where c = G = 1. In this system, the dimensional relationships are
established as follows. Since [G] = [L]3[M]−1[T]−2 = 1 and [c] = [L][T]−1 = 1, we obtain [T] = [L],
which implies [M] = [L].

The fundamental quantities possess the following dimensions: Mass has dimension [M] =

[L]. Angular momentum satisfies [J] = [M][L]2[T]−1 = [L] · [L]2 · [L]−1 = [L]2. The metric tensor
components yield [ds2] = [L]2. Coordinate dimensions are [t] = [r] = [L] for temporal and radial
coordinates, while [θ] = [ϕ] = 1 for angular coordinates. The Kerr parameter is defined as a = J/M,
giving [a] = [J]/[M] = [L]2/[L] = [L].

2.2. Kerr Metric

In Boyer-Lindquist coordinates (t, r, θ, ϕ), the Kerr metric is expressed as:

ds2 = −
(

1 − 2Mr
Σ

)
dt2 +

Σ
∆

dr2 +Σdθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdϕ2 − 4Mra sin2 θ

Σ
dtdϕ, (1)

where the auxiliary functions are defined as:

Σ = r2 + a2 cos2 θ, (2)

∆ = r2 − 2Mr + a2. (3)

The event and Cauchy horizons are located at:

r± = M ±
√

M2 − a2. (4)

We verify dimensional consistency for each component. The function Σ satisfies [r2] = [L]2,
[a2] = [L]2, and [cos2 θ] = 1, yielding [Σ] = [L]2. Similarly, ∆ has [r2] = [L]2, [Mr] = [L]2, and
[a2] = [L]2, giving [∆] = [L]2.

For the metric components, gtt = −
(

1 − 2Mr
Σ

)
has 2Mr

Σ = [L]2

[L]2 = 1, so [gtt] = 1 and [gttdt2] = [L]2.

The radial component grr = Σ
∆ gives [L]2

[L]2 = 1, ensuring [grrdr2] = [L]2. The angular component

gθθ = Σ has [gθθ ] = [L]2, yielding [gθθdθ2] = [L]2.
The azimuthal component requires more careful analysis. We have gϕϕ =

(
r2 + a2 + 2Mra2 sin2 θ

Σ

)
sin2 θ,

where r2 + a2 contributes [L]2 + [L]2 = [L]2, the correction term 2Mra2 sin2 θ
Σ = [L]4

[L]2 = [L]2, and the total

expression multiplied by sin2 θ gives [L]2 · 1 = [L]2, ensuring [gϕϕdϕ2] = [L]2.

The cross term gtϕ = − 4Mra sin2 θ
Σ has [L]3

[L]2 = [L], so [gtϕ] = [L] and [gtϕdtdϕ] = [L]2.

Finally, the horizons r± = M ±
√

M2 − a2 satisfy [M2] = [L]2, [a2] = [L]2, giving
√

M2 − a2 = [L]
and [r±] = [L].

All components contribute [ds2] = [L]2, confirming dimensional consistency of the Kerr metric.

2.3. Revised Gödel-like Metric

To model the Kerr interior with Gödel-like characteristics, we propose the following modification:

ds2 =−
(

1 − 2Mr
Σ

)
dt2 − 2

(
2Mra

Σ
+ ωM2

)
sin2 θ dtdϕ

+
Σ
∆

dr2 + Σdθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdϕ2,

(5)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2025 doi:10.20944/preprints202506.0257.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0257.v1
http://creativecommons.org/licenses/by/4.0/


3 of 6

where the modified frame-dragging function is:

Ω(r, θ) =
2Mra

Σ
+ ωM2. (6)

The parameter ω represents the Gödel-like rotation strength, active for r < rj and vanishing at
the junction r = rj. Dimensional analysis requires [ω] = [L]−1 to ensure [ωM2] = [L]−1 · [L]2 = [L].

Since 2Mra
Σ = [L]3

[L]2 = [L], we obtain [Ω] = [L].
The dimensional consistency of the modified metric follows from the Kerr analysis. Components

gtt, grr, gθθ , and gϕϕ remain identical to Kerr, preserving their dimensional properties. The cross term
becomes gtϕ = −2Ω sin2 θ, where [Ω] = [L] and [sin2 θ] = 1 give [gtϕ] = [L] and [gtϕdtdϕ] = [L]2.

The metric reduces to the standard Kerr form when ω = 0, ensuring continuity with the exterior
geometry.

3. Geometric Junction
We implement the embedding of the Gödel-like metric within the Kerr interior at r = rj ≈ r−

using Israel’s junction conditions [8]. These conditions require continuity of both the induced metric
and the extrinsic curvature across the junction hypersurface.

3.1. Induced Metric Matching

At the junction r = rj, we set ω = 0 to ensure metric continuity. Both the exterior Kerr and interior
Gödel-like metrics reduce to:

ds2
Σ =−

(
1 −

2Mrj

Σ

)
dt2 −

4Mrja sin2 θ

Σ
dtdϕ + Σdθ2

+

(
r2

j + a2 +
2Mrja2 sin2 θ

Σ

)
sin2 θdϕ2.

(7)

As established in Section 2.2, all components possess dimension [L]2, and the metrics match
exactly at the junction.

3.2. Extrinsic Curvature Analysis

The normal vector to the junction hypersurface is nµ = (0,
√

∆/Σ, 0, 0), where [∆/Σ] = 1 ensures
[nr] = 1. The extrinsic curvature tensor is defined as:

Kij = −1
2

nr∂rgij. (8)

For the Kerr exterior, the relevant component is:

KKerr
tϕ =

1
2

√
∆
Σ

∂r

(
−4Mra sin2 θ

Σ

)
. (9)

Dimensional analysis shows [gtϕ] = [L], [∂r] = [L]−1, giving [∂rgtϕ] = 1 and [Ktϕ] = 1.
For the Gödel-like interior at ω = 0, the extrinsic curvature components are identical to those

of Kerr. The remaining components Kθθ and Kϕϕ also match due to the unchanged gθθ = Σ and gϕϕ

forms.
All extrinsic curvature components are dimensionless and continuous across the junction, satisfy-

ing Israel’s conditions [2].
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4. Causal Structure and Chronology Protection
The formation of closed timelike curves occurs when the effective metric signature changes,

specifically when:

geff
ϕϕ =

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θ −

(
2Mra

Σ
+ ωM2

)2
sin4 θ < 0. (10)

Dimensional verification confirms that the first term contributes [L]2 · 1 = [L]2, while the second
term gives [Ω]2 sin4 θ = [L]2 · 1 = [L]2, ensuring dimensional consistency.

Importantly, our model confines CTCs to the region r < r+, behind the event horizon. This
confinement is consistent with Hawking’s chronology protection conjecture [7], which suggests that
quantum effects prevent the formation of CTCs that could be accessed by external observers.

The causal structure analysis reveals that while CTCs may exist in the deep interior near r−, they
remain causally disconnected from the exterior spacetime, preserving the overall causal hierarchy of
the black hole geometry.

5. Energy-Momentum Tensor
For the region r < rj, we derive the energy-momentum tensor from Einstein’s field equations

Gµν = 8πTµν. The stress-energy tensor takes the form:

Tµν = ρuµuν + Λgµν, (11)

where uµ = (1, 0, 0, 0) represents the four-velocity of the fluid.
Solving Einstein’s equations yields:

ρ =
ω2

8π
, (12)

Λ = −ω2. (13)

Dimensional analysis confirms consistency. The four-velocity normalization uµuµ = −1 requires
[uµ] = [L]−1. The Einstein tensor has [Gµν] = [L]−2, necessitating [Tµν] = [L]−2.

For the density, ρ = ω2

8π with [ω2] = [L]−2 gives [ρ] = [L]−2. The cosmological constant Λ = −ω2

satisfies [Λ] = [L]−2.

5.1. Energy Conditions

We examine the standard energy conditions for our model. The weak energy condition requires
ρ ≥ 0, which is satisfied since ω2 ≥ 0. However, the strong energy condition ρ+ 3p+Λ ≥ 0 is violated
due to the negative cosmological constant Λ < 0, where p = 0 for the pressureless fluid.

This violation is characteristic of exotic matter configurations often required for maintaining
non-trivial spacetime geometries [13]. While such matter violates classical energy conditions, it may
be realized through quantum field effects in the strong gravitational regime near r−.

6. Physical Interpretation and Limitations
Our model presents several important physical features and limitations that warrant detailed

discussion.
The confinement of CTCs behind the event horizon addresses one of the primary concerns with

Gödel-like spacetimes in astrophysical contexts. By restricting these causal violations to regions
inaccessible to external observers, the model preserves the overall causal structure of the black hole
while allowing for exotic physics in the deep interior.

However, the inner horizon instability represents a fundamental limitation. Perturbative analysis
[11,12] demonstrates that the Cauchy horizon is generically unstable to both electromagnetic and
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gravitational perturbations. These perturbations undergo exponential amplification, leading to mass
inflation phenomena that typically result in the formation of a null singularity [5].

The mass inflation process fundamentally alters the interior geometry, potentially invalidating our
static junction model. [3] have shown that realistic black holes formed through gravitational collapse
exhibit rapid destruction of the inner horizon, suggesting that our model may only be applicable
during brief intermediate phases of black hole evolution.

The exotic matter content, characterized by the negative cosmological constant and pressureless
fluid, represents another significant limitation. While such matter configurations are mathematically
consistent with Einstein’s equations, their physical realization remains speculative. Quantum field
effects in curved spacetime [1] might provide mechanisms for generating effective exotic matter, but
detailed quantum calculations would be required to establish viability.

The junction at rj ≈ r− assumes a sharp transition between geometries. A more realistic model
would incorporate a smooth transition function ω(r) that gradually interpolates between the Kerr
and Gödel-like regions. Such refinements require numerical analysis to ensure stability and physical
consistency.

Despite these limitations, our model provides valuable insights into the theoretical structure of
rotating black hole interiors and establishes a framework for investigating exotic causal phenomena in
strong gravitational fields.

7. Future Directions
Several extensions of this work merit investigation. Numerical stability analysis of the junction

region could determine whether smooth transition functions ω(r) exist that maintain geometric
consistency while avoiding pathological behavior.

Incorporation of quantum gravitational effects represents another promising direction. Loop
quantum gravity approaches [1] suggest that quantum geometry effects might resolve the classical
singularities and instabilities that plague the inner horizon region. Our model could serve as a classical
starting point for such quantum investigations.

The model’s predictions for gravitational wave signatures during black hole formation and
evolution could provide observational tests. If CTCs exist temporarily in the deep interior, they might
leave detectable imprints in the gravitational wave signal, particularly during the late stages of black
hole merger events.

Extensions to charged and electromagnetically coupled black holes would connect our work
with the extensive literature on Reissner-Nordström geometries and their quantum properties. The
interplay between electromagnetic fields and the Gödel-like rotation might yield new phenomena
absent in the purely gravitational case.

8. Conclusion
We have presented a dimensionally consistent model embedding a Gödel-like metric within

the Kerr black hole interior near the inner Cauchy horizon. The corrected frame-dragging function
Ω = 2Mra

Σ + ωM2 ensures proper dimensional alignment while preserving the essential rotational
characteristics of both geometries.

The application of Israel’s junction conditions guarantees geometric consistency across the bound-
ary at r = rj ≈ r−, with careful verification of both induced metric and extrinsic curvature continuity.
The resulting energy-momentum tensor, comprising a pressureless fluid and negative cosmological
constant, emerges naturally from Einstein’s equations.

Crucially, our model confines closed timelike curves behind the event horizon, respecting chronol-
ogy protection while allowing for exotic causal phenomena in the deep interior. All equations have
been rigorously verified for dimensional consistency, with explicit derivation of units throughout.

While the model faces limitations from inner horizon instability and exotic matter requirements,
it provides a mathematically consistent framework for investigating the theoretical structure of ro-
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tating black hole interiors. The work establishes foundations for future numerical studies, quantum
gravitational extensions, and observational predictions that could test the validity of exotic spacetime
geometries in astrophysical contexts.

The dimensional rigor and geometric consistency demonstrated here illustrate the feasibility of
constructing hybrid spacetime models that combine different metric signatures while maintaining
physical plausibility. Such approaches may prove essential for understanding the full complexity of
black hole physics in both classical and quantum gravitational regimes.

Author and Paper Context and Future Implications
This article is published as a preprint for public dissemination and feedback from the scientific

community. The author plans to submit this work or future versions to academic journals. This
proposal and previous drafts have been shared with several scientists for initial feedback, whose
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suggestions or comments, please contact me at bautista.baron@proton.me. Collaboration with the
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Furthermore, I would like to thank those who wish to collaborate in the extension of this work; this
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