Submitted:
02 June 2025
Posted:
02 June 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. CNN Model and Computer System
2.3. Model Evaluation
3. Results and Discussion
3.1. Model Training
3.2. Hyperparameter Tuning
3.2. Impact of Dataset Quality on Model Performance
4. Conclusions
References
- Pan, G.; Zheng, Y.; Guo, S.; Lv, Y. Automatic sewer pipe defect semantic segmentation based on improved U-Net. Autom. Constr. 2020, 119, 103383. [Google Scholar] [CrossRef]
- Wirahadikusumah, R.; Abraham, D.M.; Iseley, T.; Prasanth, R.K. Assessment technologies for sewer system rehabilitation. Autom. Constr. 1998, 7, 259–270. [Google Scholar] [CrossRef]
- Ariaratnam, S.T.; El-Assaly, A.; Yang, Y. Assessment of infrastructure inspection needs using logistic models. J. Infrastruct. Syst. 2001, 7, 160–165. [Google Scholar] [CrossRef]
- Gould, S.J.F.; Boulaire, F.A.; Burn, S.; Zhao, X.L.; Kodikara, J.K. Seasonal factors influencing the failure of buried water reticulation pipes. Water Sci. Technol. 2011, 63, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- Khazraeializadeh, S.; Gay, L.F.; Bayat, A. Comparative analysis of sewer physical condition grading protocols for the City of Edmonton. Can. J. Civ. Eng. 2014, 41, 811–818. [Google Scholar] [CrossRef]
- Tan, X.; Bao, Y.; Zhang, Q.; Nassif, H.; Chen, G. Strain transfer effect in distributed fiber optic sensors under an arbitrary field. Autom. Constr. 2021, 124, 103597. [Google Scholar] [CrossRef]
- Yin, X.; Chen, Y.; Bouferguene, A.; Zaman, H.; Al-Hussein, M.; Kurach, L. A deep learning-based framework for an automated defect detection system for sewer pipes. Autom. Constr. 2020, 109, 102967. [Google Scholar] [CrossRef]
- Tan, Y.; Cai, R.; Li, J.; Chen, P.; Wang, M. Automatic detection of sewer defects based on improved You Only Look Once algorithm. Autom. Constr. 2021, 131, 103912. [Google Scholar] [CrossRef]
- Liu, Z.; Kleiner, Y. State of the art review of inspection technologies for condition assessment of water pipes. Measurement 2013, 46, 1–15. [Google Scholar] [CrossRef]
- Koo, D.-H.; Ariaratnam, S.T. Innovative method for assessment of underground sewer pipe condition. Autom. Constr. 2006, 15, 479–488. [Google Scholar] [CrossRef]
- Chae, M.J.; Abraham, D.M. Neuro-fuzzy approaches for sanitary sewer pipeline condition assessment. J. Comput. Civ. Eng. 2001, 15, 4–14. [Google Scholar] [CrossRef]
- Kumar, S.S.; Abraham, D.M.; Jahanshahi, M.R.; Iseley, T.; Starr, J. Automated defect classification in sewer closed-circuit television inspections using deep convolutional neural networks. Autom. Constr. 2018, 91, 273–283. [Google Scholar] [CrossRef]
- Yang, M.D.; Su, T.C. Automated diagnosis of sewer pipe defects based on machine learning approaches. Expert Syst. Appl. 2008, 2008 35, 1327–1337. [Google Scholar] [CrossRef]
- Seo, J.; Han, S.; Lee, S.; Kim, H. Computer vision techniques for construction safety and health monitoring. Adv. Eng. Inform. 2015, 29, 239–251. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016. [Google Scholar]
- Zhong, B.; Wu, H.; Ding, L.; Love, P.E.D.; Li, H.; Luo, H.; Jiao, L. Mapping computer vision research in construction: Developments, knowledge gaps and implications for research. Autom. Constr. 2019, 107, 102919. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Khow, Z.J.; Tan, Y.-F.; Karim, H.A.; Rashid, H.A.A. Deep learning for pipeline interior defect classification: A comparative study of polar and Cartesian coordinate representations, In Proceedings of the 2024 IEEE Symposium on Industrial Electronics & Applications, Kristiansand, Norway, 5-8 August 2024.
- AI Hub. Available online: https://www.aihub.or.kr/ (accessed on 16 May 2025).
- Lee, S.-Y. A study on the influence factors on the activities of voluntary neighborhood watchmen. J. Korean Public Police Security Stud. 2021, 18, 171–185. [Google Scholar] [CrossRef]
- Kim, M.-K. Automatic fruit grading using stacking ensemble model based on visual and physical features. J. Korea Multimed. Soc. 2022, 25, 1386–1394. [Google Scholar]
- Son, J.; Lee, J.; Kim, J.; Oh, J.; Yoon, S. Proposal of CCTV inspection defect item codes through defect frequency analysis of domestic sewer pipelines. J. Korean Soc. Water Wastewater 2016, 30(6), 623–634. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 20-25 June 2009. [Google Scholar]
- Meijer, D.; Scholten, L.; Clemens, F.; Knobbe, A. A defect classification methodology for sewer image sets with convolutional neural networks. Autom. Constr. 2019, 104, 281–298. [Google Scholar] [CrossRef]
- Mao, A.; Mohri, M.; Zhong, Y. Cross-entropy loss functions: Theoretical analysis and applications. In Proceedings of the International conference on Machine learning, Honolulu, USA, 23-29 July 2023. [Google Scholar]
- Jelassi, S.; Li, Y. Towards understanding how momentum improves generalization in deep learning. In Proceedings of the International Conference on Machine Learning, Baltimore, USA, 17-23 July 2022. [Google Scholar]
- Ge, R.; Kakade, S.M.; Kidambi, R.; Netrapalli, P. The step decay schedule: A near optimal, geometrically decaying learning rate procedure for least squares. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Krogh, A.; Hertz, J. A simple weight decay can improve generalization. Adv. Neural Inf. Process. Syst. 1991, 4, 950–957. [Google Scholar]
- Xie, X.; Xie, M.; Moshayedi, A.J.; Noori Skandari, M.H. A hybrid improved neural networks algorithm based on L2 and dropout regularization. Math. Probl. Eng. 2022, 2022, 8220453. [Google Scholar] [CrossRef]












| Dropout rate | none | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.8 |
| Accuracy(%) | 88.25 | 90.25 | 88.75 | 88.00 | 89.50 | 88.00 | 88.50 | 87.50 | 89.75 |
| L2 ratio(λ) | none | 0.0001 | 0.0005 | 0.001 | 0.005 | 0.01 | 0.05 | 0.1 |
| Accuracy(%) | 90.25 | 89.25 | 90.00 | 89.00 | 89.50 | 92.75 | 84.25 | 78.00 |
| Dropout ratio | L2 regularization ratio | Accuracy(%) |
|---|---|---|
| 0.20 | - | 90.25 |
| 0.01 | 92.75 | |
| 0.25 | - | 88.75 |
| 0.01 | 87.75 | |
| 0.30 | - | 88.00 |
| 0.01 | 89.50 | |
| 0.35 | - | 89.50 |
| 0.01 | 91.25 | |
| 0.4 | - | 88.00 |
| 0.01 | 89.50 | |
| 0.45 | - | 88.50 |
| 0.01 | 88.25 | |
| 0.5 | - | 87.50 |
| 0.01 | 89.25 | |
| 0.8 | - | 89.75 |
| 0.01 | 91.75 |
| Dataset | Normal image | Low-quality image | Low-quality rate(%) | Accuracy(%) |
|---|---|---|---|---|
| Set 1-A | 3,898 | 0 | 0 | 72.50 |
| Set 1 | 3,898 | 102 | 2.5 | 69.00 |
| Set 1-B | 3,750 | 250 | 6.25 | 62.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).