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Abstract: The integration of Artificial Intelligence (AI) into bioclimatic building design is reshaping 

the Architecture, Engineering, and Construction (AEC) industry by addressing critical challenges in 

sustainability and efficiency. By aligning structures with local climates, bioclimatic design addresses 

global challenges such as energy consumption, urbanization, and climate change. Complementing 

these principles, AI technologies - including machine learning, digital twins, and generative 

algorithms - are revolutionizing the sector by optimizing processes across the entire building lifecycle, 

from design and construction to operation and maintenance. Amid the diverse array of AI-driven 

innovations, this research highlights Digital Twin (DT) technologies as a key to AI-driven 

transformation, enabling real-time monitoring, simulation, and optimization for sustainable design. 

Applications like façade optimization, energy flow analysis, and predictive maintenance showcase 

their role in adaptive architecture, while frameworks like Construction 4.0 and 5.0 promote human-

centric, data-driven sustainability. By bridging AI with bioclimatic design, the findings contribute to 

a vision of a built environment that seamlessly aligns environmental sustainability with technological 

advancement and societal well-being, setting new standards for adaptive and resilient architecture. 

Despite the immense potential, AI and DTs face challenges like high computational demands, 

regulatory barriers, interoperability and skill gaps. Overcoming these challenges will be crucial for 

maximizing the impact on sustainable building, requiring ongoing research to ensure scalability, 

ethics, and accessibility.  

Keywords: artificial intelligence; digital twin; bioclimatic building design; building performance; 

Internet of Things (IoT); energy efficiency 

 

1. Introduction 

In recent years, the construction industry has undergone a significant transformation, driven by 

advances in both sustainable design and digital technologies. Bioclimatic design, as a key aspect of 

sustainable building, optimizes natural resources such as solar radiation, wind, and thermal 

regulation to enhance climate-responsive structures, minimize energy consumption, and reduce 

environmental impact. The growing emphasis on sustainability is being reinforced by the adoption 

of the Sustainable Development Goals (SDGs), with the construction sector increasingly aligning its 

practices with green building standards, sustainable materials, lifecycle assessments, and 

collaborative research efforts. This shift towards sustainability is driving a more environmentally 

responsible and inclusive future, with stakeholders throughout the industry working together to 

meet global sustainability targets. 

At the same time, the integration of Artificial Intelligence (AI), particularly through Machine 

Learning (ML) and Deep Learning (DL), has revolutionized decision-making in the construction 
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sector. These technologies enable advanced decision support systems that assist construction 

professionals by providing intelligent capabilities to enhance project outcomes [1]. As industry faces 

the dual challenges of digitalization and sustainability, AI has emerged as a powerful tool that can 

address both. The strategic application of AI across the entire lifecycle of building projects - from 

design and construction to operation and maintenance - presents unique opportunities to reduce 

inefficiencies and drive significant improvements in performance [2]. 

AI plays a crucial role in optimizing building designs to improve energy efficiency and reduce 

environmental impact. Through comprehensive data analysis and scenario simulations, AI enables 

architects and engineers to make well-informed decisions that align with rigorous green building 

standards. Beyond enhancing sustainability, AI is also advancing construction materials and 

technologies, driving innovation and resilience in structural design. The use of AI algorithms and 

machine learning techniques has led to the development of novel materials that enhance the 

durability, safety, and efficiency of buildings. These innovations not only promote sustainable 

construction practices but also address the challenges posed by urbanization, climate change, and the 

evolving needs of infrastructure development [3]. 

Despite the growing interest in AI and ML applications in construction engineering, there is a 

notable research gap that requires attention. While some studies have explored specific aspects of AI 

and ML within the industry, a comprehensive review that synthesizes the various methodologies and 

examines their collective impact is still lacking [1].  

This work aims to fill that gap by providing an in-depth analysis of the latest developments in 

AI and ML within Architecture, Engineering and Construction (AEC) industry, as well as identifying 

potential areas for future research and improvement. By exploring the intersection of AI and 

bioclimatic design, this work aims to provide insights into how cutting-edge technologies can address 

environmental challenges, improve building performance, and shape the future of sustainable 

architecture. 

2. Main Principles and Strategies of Bioclimatic Building Design 

Bioclimatic design integrates climate-responsive principles into architecture, optimizing solar 

radiation, temperature, wind, and humidity in order to reduce energy consumption. It aims to 

minimize dependence on artificial systems while ensuring environmental integration. Precise climate 

analysis is essential for effective design, with tools like bioclimatic diagrams aiding in visualizing 

climate-passive design relationships and informing material selection and energy-efficient solutions 

(Figure 1) [4]. 

 

Figure 1. Example of psychrometric Building Bio-Climatic chart from Climate Consultant 6.0. 

The core principles of bioclimatic building design, including thermal comfort, daylighting, and 

energy efficiency, align building design with local climate conditions, reduce energy consumption, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2025 doi:10.20944/preprints202506.0008.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0008.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 19 

 

enhance comfort, and promote environmental and economic sustainability, addressing global 

challenges like energy use and climate change [5]. 

In the past decade, the building sector has drawn significant attention due to its high energy 

consumption and carbon emissions, accounting for 35% of global energy use and 38% of CO₂ 

emissions in 2019 [6]. Bioclimatic design helps mitigate climate change by reducing reliance on non-

renewable energy sources and minimizing emissions [7]. Incorporating locally available renewable 

resources further decreases dependence on large-scale energy supplies. Effective design strategies 

have achieved energy savings of up to 60%, highlighting their potential for sustainable development 

[8]. This approach should be applied not only to new buildings but also as a key component of 

renovation strategies, as outlined in the Revised Energy Performance of Buildings Directive (EPBD) 

approved in 03/2024 [9]. The directive introduces tools like the renovation passport, offering a 

roadmap for phased renovations, helping property owners and investors plan interventions [10]. 

The implementation of bioclimatic principles varies depending on the local climate, building 

type, and geographical location (Figure 2).  

 

Figure 2. Graphic schemes of bioclimatic design strategies [10]. 

However, the main strategies are broadly applicable in different contexts, as follows. 

• Natural Ventilation: Conventional passive cooling strategies, such as shading transparent 

surfaces and employing cross-ventilation and stack ventilation, facilitate natural cooling and 

enhance indoor air quality [4,11,12]. 

• Passive Solar Heating: Optimizing orientation, window placement, and building rotation 

maximizes winter solar gain, enhances ventilation, balances daylight, and leverages thermal 

mass for heat storage [7,8]. 

• Shading and Solar Control: In warm climates, passive shading devices - such as overhangs, 

louvers, and pergolas-along with vegetative solutions like green walls, are employed to reduce 

excessive solar exposure and mitigate overheating [13]. 

• Thermal Insulation: Effective insulation, reflective materials, and high-performance windows, 

significantly reduce heat transfer - lowering energy consumption by up to 60% and ensuring 

thermal stability [8]. 

• Green Roofs and Walls: Vegetation integrated into building designs provide insulation, reduce 

energy use, mitigate urban heat island effects, and improve biodiversity [7,14]. 

• Rainwater Harvesting and Greywater Recycling: Rainwater harvesting, greywater recycling, 

and water features reduce potable water use and contribute to passive cooling [11]. 

• Integration of Smart and Renewable Technologies: The adoption of on-site renewable energy 

generation (e.g.,  
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• photovoltaic panels), local energy storage systems, and intelligent building automation 

enhances energy autonomy, operational efficiency, and environmental performance [15,16]. 

Artificial Intelligence Evolution, Techniques and Application in AEC 

Artificial Intelligence (AI) is a subdiscipline of computer science focused on the development of 

systems that are capable of simulating human cognitive processes, such as perception, reasoning, 

problem-solving, natural language understanding, decision-making and learning from experience. 

The fundamental principles of AI center on the capacity of machines to replicate or enhance human 

cognitive functions, encompassing autonomy, learning, reasoning, problem-solving, and adaptation. 

The origins of AI date back to the mid-20th century, marked by the Turing Test and the 

Dartmouth Conference, where the field was formally established [17,18]. Early research focused on 

symbolic reasoning and rule-based systems but was limited by computational constraints. In the late 

20th century, the focus shifted toward machine learning and neural networks, laying the groundwork 

for deep learning. In the 21st century, growing computational power and the availability of big data 

have enabled major breakthroughs in pattern recognition, natural language processing, and 

computer vision. Recent advancements in reinforcement learning and generative models, such as 

Generative Adversarial Networks (GANs), have further expanded AI’s capabilities. Its integration 

with big data, cloud computing, and the Internet of Things (IoT) has expanded its application areas. 

Moreover, AI-specific hardware like Graphic Processing Units (GPU) and Tensor Processing Units 

(TPU) has accelerated AI training and inference [18]. 

Contemporary research emphasizes explainable AI (XAI) for model transparency, ethical 

considerations, and applications in healthcare, robotics, and autonomous systems, shaping the future 

of intelligent technologies [19].  

This growing focus on responsible and transparent AI aligns with broader trends in the field, as 

highlighted by the AI Index Report 2024. The report shows a rapid rise in open-source AI research, 

with projects on GitHub growing from 845 in 2011 to 1.8 million in 2023 - a 59.3% increase in 2023 

alone - demonstrating both the accelerating pace of innovation and the importance of collaborative 

development [20]. 

In parallel with technological progress, ethical considerations and governance frameworks are 

becoming central to AI deployment. The EU has taken a leading role by introducing regulations for 

"trustworthy AI," combining legal, ethical, and technical standards [21,22]. These guidelines define 

seven key requirements: human oversight, safety, privacy, transparency, fairness, societal well-being, 

and accountability (Figure 3). This risk-based regulatory model is central to the EU AI Act, ensuring 

responsible AI development and use [23]. 

 

Figure 3. Pillars and requirements of trustworthy AI [21]. 

3.1. Artificial Intelligence techniques 

AI can be based on several different techniques, depending on the application and the problem 

being solved. Some of the most commonly used techniques in AI are based on the Machine Learning 
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and Deep Learning. Figure 4. visually illustrate relationship and the distinction between Machine 

Learning and Deep learning in terms of feature extraction and learning. 

 

Figure 4. AI Taxonomy. 

3.1.1. Machine Learning (ML)  

This is the backbone of most AI applications. ML involves training algorithms to recognize 

patterns in data and make predictions based on that data, without being explicitly programmed for 

specific tasks. ML techniques allow computers to recognize patterns, make predictions, and perform 

decision-making tasks based on historical data. There are three primary types of machine learning: 

• Supervised Learning: The model is trained using labeled data (input-output pairs), where the 

desired output is known. The model learns to map inputs to correct outputs. This branch of ML 

includes methods like Linear Regression, Bayesian network, K-nearest neighbours (kNN), 

Decision Tree etc.  

• Unsupervised Learning: The model is trained using unlabeled data, meaning the system must 

identify patterns or groupings on its own. The algorithm must find structure or patterns in the 

input data without guidance. The main goal of unsupervised learning is to explore the data and 

extract useful insights. This includes Fuzzy C Means, Balanced Iterative Reducing and 

Clustering using Hierarchies (BIRCH) and K-Means.  

• Reinforcement Learning: The system learns by interacting with its environment and receiving 

feedback in the form of rewards or penalties, optimizing its behavior over time: Q-Learning, 

Markov decision process [24]. 

3.1.2. Deep Learning (DL) 

Being a subset of machine learning, deep learning uses multi-layered neural networks to model 

complex patterns in data. These networks are inspired by the human brain's structure and are capable 

of handling vast amounts of data and performing complex tasks like image recognition, speech 

processing, and natural language understanding. Deep learning has achieved remarkable success in 

fields such as autonomous driving, medical image analysis, and Natural Language Processing (NLP) 

due to its ability to automatically learn features from raw data without needing explicit programming 

or feature engineering.  

Artificial Neural Networks (ANNs) composed of layers of neurons that work together to process 

input data and produce output predictions. Each neuron in a layer is connected to several neurons in 

the previous and next layers, creating a network of computational units [25]. 

• Discriminative (Supervised) models: focus on learning the boundary between different classes 

in a dataset, rather than modeling data distribution. These supervised deep models typically 

estimate class probabilities from observable data, enabling accurate classification. In simple 

terms, discriminative models learn to distinguish between different categories or labels by 

focusing on the differences in the corresponding data. Common models include Multi-Layer 

Perceptron (MLP), Convolutional Neural Networks (CNNs), Recurrent Neural Networks 
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(RNN), and their variations. The most powerful class of this type is CNNs, which are extensively 

used across a range of tasks, such as object detection, speech recognition, computer vision, image 

classification, and bioinformatics by learning hierarchical features from raw data. 

• Generative (Unsupervised) models: The primary objective of generative models (GMs) is to 

produce data resembling real-world distributions. Despite ongoing research challenges, recent 

advancements have expanded their applications, particularly in computer vision research. GMs 

utilize training data from an unknown data-generating distribution to create new samples that 

match the original distribution. Key models include Auto-Encoder, Generative Adversarial 

Network (GAN), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN) [26].  

Artificial Intelligence is a rapidly evolving field that allows machines to perform tasks that were 

traditionally thought to require human intelligence. By leveraging techniques like machine learning, 

deep learning, natural language processing, and computer vision, AI systems can analyze vast 

amounts of data, learn from it, and make decisions or predictions autonomously. 

Today, AI systems are transforming industries ranging from healthcare to finance, 

manufacturing, and even architecture, playing a pivotal role in driving Industry 5.0 and Society 5.0-

concepts that emphasize the integration of human intelligence, AI, and other emerging technologies 

for a sustainable future [27]. Its impact spans multiple sectors,including Architecture, Engenieering 

and Construction (AEC) and Natural Hazards Engineering (NHE) [28,29]. 

AI in Bioclimatic Building Design 

The application of AI in the AEC sector has evolved significantly over the past few decades from 

early automated design tools like Computer-Aided Design (CAD) to advanced generative algorithms 

and sustainable design solutions. In 1976, Cedric Price developed the concept of the "Generator" - a 

vision of AI-driven architecture, followed by Soddu’s artificial DNA model for medieval cities in 1987 

[25,30]. By the 2000s, AI integrated data-driven decision-making to enhance energy efficiency, 

resource management and waste reduction. Innovations like genetic algorithms for ecological design 

and optimization tools such as GENE-ARCH and OPTIMUS have advanced sustainable architecture 

[30]. Today, AI, alongside big data and cloud computing, is crucial for smart cities and green building 

solutions, optimizing environmental performance in real time. 

4.1. AI, Sustainable Building Design, and Construction 4.0 and 5.0 

The construction industry is undergoing a major transformation driven by digitalization and AI. 

Construction 4.0 signifies a profound shift within the industry, characterized by the fusion of digital 

technologies and data-driven solutions, including the widespread adoption of Internet of Things 

(IoT) devices, Artificial Intelligence, robotics, 3D printing, and Building Information Modeling (BIM), 

which collectively work to optimize processes, reduce costs, and improve building performance. 

While Construction 4.0 focuses on digital integration and automation, Construction (Industry) 5.0 

advances by prioritizing sustainability, environmental stewardship, principles of a circular economy 

and human needs and wellbeing (Figure 5) [27,31]. 
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Figure 5. Focus and main priorities of the concept of Construction (Industry) 5.0. 

AI enhances bioclimatic design by automating analysis, predicting performance, and optimizing 

energy efficiency. Its potential extends to generative design, automation, predictive maintenance, and 

lifecycle optimization, addressing inefficiencies and reducing environmental impact. The industry 

faces challenges like excessive material waste (11-15%) and high energy consumption, with buildings 

accounting for 28% of U.S. commercial energy use and 41.1% in China. AI-driven solutions offer a 

path toward more sustainable, resource-efficient construction [2]. 

4.2. Recent AI Techniques and Combination Technologies in AEC 

The integration of AI in the AEC industry, particularly in sustainable and bioclimatic design, is 

advancing rapidly. AI enhances sustainability by optimizing energy efficiency, reducing 

environmental impact, and improving building performance. Its integration with conventional 

modeling, simulation, and analytics significantly enhances all phases of building design, construction, 

and operation (Table 1) [2]. 

Table 1. AI-driven technologies in AEC sector. 

Building design Construction Operation 

Big Data 
Intelligent Decision Support 

Systems (DSS) 

Building Performance 

Monitoring (BPM) 

Generative design 
Radio-Frequency 

Identification (RFID) 
Predictive Analytics 

Surrogate Modelling Computer Vision Systems 
Structural Health Monitoring 

(SHM) 

Augmented Reality Iot Devices Smart Building Systems 

Virtual Reality Construction Robots  

4.2.1. Building Design 

At the building design stage, advancements in artificial intelligence provide exceptional 

opportunities to optimize sustainability objectives across a range of architectural and engineering 

parameters. Early-stage AI integration enhances decision-making, accelerates design processes, and 

improves energy efficiency to meet regulatory and cost-saving demands. Techniques such as 

Knowledge-Based Engineering (KBE), fuzzy logic, neural networks, and genetic algorithms are 

widely applied in AEC design [32]. Late 20th-century research explored design and morphogenesis, 
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inspiring complex and unconventional forms. Contemporary studies, however, prioritize refining 

and optimizing existing designs, particularly through the optimization of their shapes [30]. 

Big Data is transforming architecture by providing architects with vast amounts of information, 

such as climate patterns, energy use, user behavior, and material performance. This enables data-

driven design decisions, balancing aesthetics, functionality, and sustainability. For example, data-

driven simulations optimize natural light, reducing reliance on artificial lighting, while its use in 

parametric design allows architects to generate numerous design variations through algorithms. 

Analyzing material, cost, and environmental impact data refines designs, minimizes waste, and 

promotes sustainability [27]. 

Meanwhile, Generative Design - AI-driven generative design algorithms, or Generative 

Adversarial Network (GAN) - have become integral in the design process, allowing architects and 

engineers to explore vast numbers of design alternatives based on specific goals (e.g., energy 

efficiency, structural integrity, material optimization). GANs are applied to optimize building forms, 

orientations, and window placements to maximize passive heating in winter or minimize solar heat 

gain in summer, considering local weather patterns. Using the Generator-Discriminator principle, AI 

autonomously generates options, which are then evaluated and refined [25]. 

Recent studies highlight the effectiveness of surrogate modeling in optimizing low-energy 

building design. Surrogate models (SMs) mimic high-fidelity physics-based models by statistically 

correlating input (design variables) and output (performance targets) data from a sample within the 

design space. This research underscores the potential advantages of machine learning methods, 

including ANNs, in handling computationally demanding tasks like building design optimization. 

Surrogate-assisted building performance optimization models are used to optimize energy 

performance by improving systems such as HVAC, lighting, and insulation, reducing overall energy 

consumption. Additionally, surrogate models optimize building shape and layout, enhancing natural 

lighting, ventilation, and thermal comfort while reducing energy waste, using eco-friendly materials, 

and improving energy efficiency throughout the building's lifecycle [33]. 

In addition, Augmented Reality (AR) and Virtual Reality (VR) technologies enhance 

collaboration, enabling stakeholders to virtually walk-through buildings before they are constructed, 

adding design modifications and approvals more efficient and accurate [27]. 

4.2.2. Construction 

The construction industry plays a crucial role in global economic development, with an 

estimated annual value surpassing $10 trillion. However, it often faces challenges such as high costs, 

project delays, and safety concerns with average cost overruns of 80% leading to significant financial 

consequences [1]. AI integration with traditional construction techniques, can optimize workflows, 

streamline processes, and ensure higher-quality construction outcomes. 

Intelligent Decision Support Systems (DSS) utilize a vast amount of historical data, real-time 

information, and predictive analytics to provide accurate insights and recommendations. By 

automating repetitive tasks, optimizing resource allocation, and identifying potential risks, DSS help 

decision-makers improve project outcomes, boost productivity, and reduce costs [1].  

AI algorithms optimize resource utilization, including materials, labor, and equipment, by 

processing real-time data from Radio-Frequency Identification (RFID) tags and sensors attached to 

shipments, ensuring timely delivery, reducing losses, and lowering inventory costs [27]. These 

systems are capable of dynamically adjusting construction schedules and resource allocations in 

response to variables such as weather conditions, material availability, or workforce productivity, 

thereby enhancing operational efficiency and minimizing resource waste. Furthermore, AI-powered 

computer vision systems conduct real-time inspections of construction materials and components, 

detecting defects and ensuring compliance with quality standards [3]. 

Construction sites are inherently complex and hazardous environments. Integration of IoT 

devices such as wearables, drones, and sensors facilitate real-time monitoring of both worker 

activities and site conditions. Wereable devices track workers’ movements and vital signs, providing 
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safety alerts in the event of accidents, while drones conduct aerial surveys and assess progress, 

improving project management and decision-making [27]. These systems can trigger alerts or 

automatically shut down operations in hazardous situations, enhancing safety on the site [3].  

Another revolutionary application of AI is the deployment of construction robots, which are 

capable of performing tasks such as bricklaying, concrete pouring, and 3D printing, improving speed, 

precision, and reducing reliance on manual labor [27]. 

4.2.3. Operation 

AI integration with IoT and Big Data during the operational phase of bioclimatic design 

enhances building efficiency and sustainability by continuously monitoring and optimizing 

performance based on real-time data. 

Building Performance Monitoring (BPM) algorithms analyze real-time data from sensors 

integrated into building systems to detect patterns in energy use and environmental conditions. By 

processing this data, machine learning algorithms can automatically adjust settings for HVAC 

systems, lighting, and other equipment, enhancing efficiency while maintaining occupant comfort [2].  

Predictive analytics, another subset of AI, revolutionizes maintenance practices by forecasting 

equipment failures based on variables such as temperature, vibration, and usage patterns, enabling 

proactive maintenance, minimising downtime and reducing costly repairs [3]. Structural Health 

Monitoring (SHM) utilizes IoT sensors to assess the integrity of buildings, bridges, and infrastructure 

by tracking vibrations, deformation, and stress. Real-time data analysis enables early detection of 

damage, ensuring timely maintenance, preventing severe failures and ensuring both occupant safety 

and structural longevity. Additionally, IoT-driven systems optimize resource use, monitor emissions, 

and support compliance with environmental regulations, promoting sustainable construction [27]. 

AI-driven machine learning and predictive analytics improve forecasting, maintenance, and 

performance optimization for renewable energy systems, reducing costs and enhancing efficiency. 

By analyzing large datasets, AI predicts energy outputs, assists in project planning, and identifies 

optimal locations for renewable infrastructure [34]. 

Smart building systems leverage AI to enhance occupant comfort and productivity through 

personalized environmental control, using sensors and real-time adjustments [2]. Additionally, AI-

driven urban planning analyzes infrastructure, transportation, and public services to create inclusive, 

accessible cities. Smart sensors and algorithms optimize traffic flow, reducing congestion and 

improving mobility [27]. 

AI-Driven Digital Twins 

Digital Twin (DT) was initially implemented in NASA's Apollo program in 2010, and since then, 

its use has expanded across various industries, including manufacturing, aviation, defense, and 

healthcare, enhancing automation and efficiency [35]. The convergence of Artificial Intelligence with 

Digital Twin technologies have sparked growing interest in their potential applications within the 

AEC sector. While Digital Twins offer a virtual replica of physical assets - such as buildings, 

infrastructure, or entire urban environments - the integration of AI enhances their functionality, 

rendering them more dynamic, predictive, and adaptive in response to real-time data and evolving 

conditions. The potential of a human-centric Digital Twin (DT) approach is envisioned to create 

adaptive, data-driven built environments that interact dynamically with users, facilitating more 

dynamic and personalized interactions. Its ecosystem consists of three core elements: the physical 

environment, its digital replica, and the system managing their interaction [36]. 

Modeling technologies create a virtual model that reflects the physical environment's 

parameters, such as structure, functionality, location, and performance, While IoT technologies 

enable bi-directional data exchange via communication protocols. High-volume, multi-source data is 

stored, integrated, and analyzed using advanced analytics, then presented to users through 

interactive visualizations supported by visualization technologies [35]. 
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4.2. Digital Twin System Architecture  

The digital twin system is conceptualized in five development layers: data acquisition, data 

transmission, digital modeling, data/model integration, and service. 

1. Data Acquisition: This layer collects dynamic data from the physical environment trought IoT 

sensors that detect changes in physical, chemical, and electrical properties of the surroundings 

(temperature, humidity, gas concentrations, light intensity, motion etc.), producing an electrical 

output in response. Input from various sensors can be collected by the more advanced control 

systems like Supervisory Control and Data Acquisition (SCADA) system for HVAC plants, 

Direct Digital Control (DDC) system etc. These technologies include ultrasonic and gyroscopic 

sensors, which are used to detect clashes, track machinery locations, and ensure accurate 

placement of resources on construction sites. While building surveillance systems with video 

streams detect pedestrians and measure environmental conditions like ambient brightness and 

surface temperatures using thermal imaging modules [35]. 

2. Data Transmission: Raw data from the data acquisition layer is transmitted to other system 

components via wired or wireless technologies (Wi-Fi, Bluetooth, WLAN and Ultra-Wideband 

(UWB)), following communication protocols like Message Queuing Telemetry Transport 

(MQTT) or Hypertext Transfer Protocol (HTTP). Building Management Systems (BMS) use the 

internet and Building Automation and Control Networks (BACnet) protocols for data 

communication between devices and sensors. Additionally, platforms like SophyAI and 

Gazebo-ROS are utilized for visualizing and processing sensor data [35]. 

3. Digital Modeling: Virtual models of the physical environment are created using technologies 

like laser scanning, photogrammetry, and software tools (Autodesk Revit, Navisworks, 

Solidworks etc) to capture and represent parameters such as geometry, functionality, location, 

and performance. Additionally, game development software like Unity 3D is employed for 

creating interactive 3D models, avatars, and virtual environments (e.g., Virtual Reality setups 

with Oculus devices) [33,34]. Specifically, Autodesk defines five levels of Digital Twins in the 

AEC sector, each with a distinct function: Descriptive, Informative, Predictive, Comprehensive 

and Autonomous. Currently, most DT applications are at Level 2 (Informative Twin), with some 

moving toward Level 3 (Predictive Twin) [36]. 

 

Figure 6. Primary data processing [36]. 
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4. Data/Model Integration: Multi-source, high-volume data is stored in cloud platforms like 

Google Cloud Microsoft Azure and Amazon Web service (AWS). Some systems also use 

mirrored databases to store data from existing building systems like BMS. Data fusion 

techniques integrate various data types (e.g., sensor, mechanical, and image/video data) into a 

unified digital twin model, often utilizing customized Application Programming Interfaces 

(APIs). Platforms like Autodesk Revit, Unity 3D, and Midas Gen are used for this integration, 

enabling real-time updates and the fusion of multi-form data into BIM or other virtual 

environments. Advanced AI technologies process this data for insights and predictive analysis. 

The processed data then is visualized in digital twin systems through various software 

platforms, primarily 3D modeling tools like Autodesk Revit, Autodesk Navisworks, Unity 3D, 

Virtual and Augmented Reality [35]. 

5. Service: Represents the range of services it provides to users, and these services vary depending 

on the specific application context. It enables real-time monitoring, predictive analytics, early 

issue detection, and data visualization, supporting decision-making and operational efficiency. 

It tracks structural assets, construction activities, and environmental conditions  (e.g., 

temperature, energy consumption, occupancy) while identifying faults in building systems, 

forecasting failures, and triggering alarms for anomalies. Additionally, digital twins facilitate 

scenario simulations, robotic control, and smart home management [35]. 

These layers work together to provide a comprehensive view of the physical and virtual systems 

in real-time, allowing stakeholders to monitor, analyze, and make data-driven decisions in the built 

environment. 

4.3. The Role of Digital Twins in Bioclimatic Design 

The advent of Digital Twin technologies has revolutionized the approach to building design, 

construction, and urban planning, particularly in the context of bioclimatic design. By using Digital 

Twins designers and engineers can create precise virtual models of buildings or urban areas that 

integrate real-time environmental data, sensor feedback, and predictive simulations. This technology 

facilitates continuous performance monitoring and optimization, ensuring adaptive responses to 

climatic conditions. By linking physical assets with virtual counterparts, Digital Twins incorporate 

Building Information Modeling, IoT, and sensor networks to implement climate-responsive features 

such as solar shading, natural ventilation, and energy-efficient building envelopes. Real-time sensor 

data on indoor and outdoor conditions supports adaptive design modifications, reducing energy 

consumption and enhancing occupant comfort [35,37]. 

An increasing interest in optimizing building envelope systems to reduce energy consumption 

and enhance occupant comfort, driving research into advanced technologies. For example, a data-

driven approach to the digital twinning and optimization of a naturally ventilated solar façades with 

phase-changing materials (PCMs) and double-façade systems integrated with active air conditioning 

system scan improve thermal performance, energy efficiency of buildings and offer a viable solution 

for low-income communities facing challenges related to energy costs and indoor air quality. The role 

of digital twins in monitoring, analyzing, and optimizing the façade system’s behavior in real-time 

under various climate scenarios, providing valuable insights for sustainable building design and 

reducing energy demand, particularly for low-income communities [38,39].  

Monitoring indoor thermal comfort has also gained increasing attention as it plays a key role in 

optimizing building energy use while maintaining desired indoor conditions. Recent advances 

integrate BIM, IoT, and immersive VR to provide real-time, interactive visualizations of comfort 

indicators such as Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD). These 

systems allow users to navigate virtual building models, access live sensor data, and adjust 

parameters like metabolic rate or clothing insulation to simulate various scenarios, enabling more 

intuitive and efficient comfort assessment [40]. 

In urban environments, Digital Twins are being explored in the multi-energy system 

digitalization. By integrating data from IoT sensors, building management systems, and grid 
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infrastructure, DTs provide a dynamic and accurate virtual representation of the physical energy 

systems, enabling stakeholders to model, simulate, and analyze energy flows and system behavior. 

By modeling and analyzing energy flows, cities can optimize the integration of renewable sources 

like solar, wind, and geothermal, reducing reliance on non-renewable energy and enhancing 

sustainability [41]. 

AI-driven Digital Twins also can play a crucial role in stormwater management, addressing 

urbanization and climate change challenges. Using machine learning, they process vast datasets from 

sensors, weather forecasts, and monitoring systems to simulate stormwater behavior, predict 

flooding, and optimize drainage performance, reducing the need for costly infrastructure upgrades 

[42,43]. By integrating real-time sensor data with hydraulic models, digital twins enhance stormwater 

depth estimation, improve near-term forecasts, and detect sensor faults with over 99% accuracy, 

minimizing false flood alarms. Enabled by low-power sensing and wireless communication, they 

support street-level flood warnings, sewer blockage detection, and active control of valves and gates, 

ultimately mitigating flooding and pollution risks [43]. 

Additionally, Digital Twins aid in fire risk management in urban and wildland-urban areas by 

integrating temperature sensors, smoke detectors, and satellite imagery to detect and simulate fire 

behavior. They support bioclimatic design by assessing fire risks and optimizing mitigation 

strategies, including design of fire-resistant materials, building layouts, and vegetation planning [44]. 

Finally, the use of Digital Twins in the field of heritage conservation is emerging as a vital tool 

for sustainable and effective cultural heritage preservation. Photogrammetry and laser scanning have 

revolutionized documentation by enabling the rapid acquisition of detailed 3D point clouds. Heritage 

assets, subject to natural decay and external factors, require ongoing monitoring and maintenance, 

as emphasized by international organizations like ICOMOS and UNESCO. Heritage Building 

Information Modeling (HBIM) applies BIM techniques to built heritage, using digital surveys to 

create accurate models for conservation. Traditionally reliant on visual inspections, monitoring is 

now enhanced by sensors and scanning technologies. Digital Twins integrate these advancements 

with AI and Machine Learning to predict deterioration and simulate conservation needs, though 

research in this area remains limited. The Heritage Digital Twin (HDT) framework applies DT 

concepts to heritage sites, assessing them through four key attributes: Fidelity (model accuracy), 

Synchronization (real-time interaction), Intelligence (data and AI integration), and Autonomy 

(automation in conservation tasks) [45]. 

AI-driven digital restoration is also gaining importance, particularly in detecting and repairing 

damage to ancient heritage. Deep learning algorithms can identify cracks in murals with high 

precision, while Generative Adversarial Networks (GANs) simulate and restore original colors and 

textures. Integrated with 3D modeling and virtual reality, these technologies enable precise digital 

reconstruction, improving restoration accuracy and efficiency [46]. 

Future Perspectives of AI in AEC Industry and Sustainable Building Design 

The integration of Artificial Intelligence into the AEC industry presents significant opportunities 

for advancing technology and promoting sustainability. AI-powered systems offer innovative 

solutions to optimize energy use, minimize waste, and streamline resource allocation, ultimately 

reducing carbon emissions and conserving natural resources. By leveraging AI in BIM, IoT, Big Data, 

and predictive systems, the industry can improve efficiency, sustainability, and safety while 

progressing toward Sustainable Development Goals such as SDG 7 (Affordable and Clean Energy), 

SDG 9 (Industry, Innovation, and Infrastructure), and SDG 11 (Sustainable Cities and Communities). 

AI-driven innovations in predictive analytics, supply chain optimization, and data-driven 

communication further foster economic growth and environmental preservation, supporting a 

holistic approach to sustainable construction [3]. 

However, despite AI’s potential, adoption in the construction sector remains slow due to 

traditional industry practices, project complexity, and a limited understanding of AI’s potential 

benefits [2]. Key challenges affecting AI integration include: 
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• High Initial Costs: AI-driven tools such as BIM, generative design, and automation demand 

substantial upfront investment, posing financial challenges. Adopting tools like BIM integrated 

with AI, deploying AI-powered energy management systems like urban multi-energy systems 

(UMES) DTs, or investing in robotic construction technologies involve significant costs for 

hardware, software, and training.  These financial barriers can be especially challenging for 

small and medium-sized enterprises (SMEs). Financial incentives, government subsidies, and 

demonstrated long-term return on investment (ROI) could facilitate wider adoption. However, 

the hidden costs associated with AI adoption, such as system customization, integration with 

existing infrastructure, and ongoing maintenance, must also be considered [2,27]. 

• Data Transmission and Security: AI applications in construction heavily rely on data from 

various sources, including sensor networks, environmental data, construction schedules, and 

building materials. The data generated in these systems often includes heterogeneous types, 

such as image data, video data, mechanical data, and environmental data. In terms of data 

transmission, most studies nowadays have focused on short-range wireless technologies, such 

as Wi-Fi, Bluetooth, and UWB.  Moreover, ensuring secure data transmission is a key 

consideration. Many construction-related data are confidential, and the transmission of such 

sensitive information can expose the system to cyber-attacks. A breach in these systems could 

have far-reaching consequences, including compromising building safety, exposing sensitive 

data, or disrupting critical infrastructure. Future research should focus on privacy-preserving 

network models and secure data exchange mechanisms [35]. 

• Data Integration and Compatibility: The AEC industry struggles with fragmented inconsistent, 

and siloed data across across various stages of a building's lifecycle. Construction projects 

typically involve numerous stakeholders using different software platforms, which complicates 

system interoperability [27]. This data often comes from multiple sources, including design 

models (e.g., BIM), building materials, construction schedules, sensor networks, and 

environmental data from IoT devices, which can be incompatible or poorly organized. This lack 

of integration often leads to delays, cost overruns, and project disruptions. Open-source 

platforms, standardized interfaces, and semantic web technologies can enhance interoperability. 

Additionally, collaborative approaches, such as BIM and Integrated Project Delivery (IPD), can 

streamline workflows, improve coordination, and enhance overall project delivery )[1,2,35]. 

• Integration of AR and VR for Data Processing and Visualization: In terms of data 

visualization, the use of 3D modeling platforms, along with immersive technologies like Virtual 

and Augmented Reality, has advanced the visualization and interaction with digital twin data, 

driving increasing interest in their integration within Intelligent DSS for construction 

engineering. These technologies provide interactive and immersive experiences that improve 

spatial comprehension, collaboration and enhance decision-making but face usability and cost 

barriers. User-friendly solutions, real-time synchronization with BIM  and cost-effective 

solutions are needed for widespread adoption in the AEC sector [1,35]. 

• Scalability and Standardization: While AI-driven solutions show significant potential in 

individual construction projects, scaling these solutions across entire industries and supply 

chains presents a distinct challenge. The construction industry’s diversity, characterized by 

varying regulations, building codes, materials, and construction techniques, complicates the 

widespread implementation of AI solutions without considerable customization. AI adoption is 

hindered by industry diversity, varying regulations, and a lack of standardized protocols. Unlike 

industries such as healthcare, which have established broad standards like HL7, or 

manufacturing with ISO 9000, the construction sector lacks cohesive frameworks for data 

exchange, interoperability, and quality assurance. Establishing industry-wide frameworks is 

essential for interoperability and efficiency [1,27]. 

• Continuous Learning and Adaptation: Studies have shown benefits of DSS in areas like project 

scheduling, risk management, and material selection. Online learning algorithms in risk 

management, allowing the system to adjust to evolving risk profiles and enhance decision-
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making. While, machine learning for material selection, enabling the system to learn and refine 

recommendations based on feedback and new data. DSS enhance project management but 

require reliable data access and scalable algorithms [1]. 

• Explainability and Transparency: AI models, particularly those using deep learning, often 

operate as "black boxes," where their decision-making processes are not transparent or 

understandable to humans. AI decision-making must be interpretable to ensure trust and 

accountability. The field of Explainable Artificial Intelligence aims to address this issue by 

creating models that provide clear, understandable explanations for their decisions. XAI 

frameworks should balance accuracy and interpretability [19]. 

• Environmental Impact: As AI systems grow in sophistication, they require massive 

computational resources, which translates to a substantial environmental impact. AI models 

require significant computational resources, contributing to a high energy demand and carbon 

footprint. Sustainable AI practices, data optimization, and governance frameworks should be 

prioritized [47,48]. In this context, the concept of Net Zero Energy Data Centers (NZEDC) 

encapsulates key sustainability strategies, defined by the RenewIT project (Deliverable 4.5) as 

data centers that achieve a net-zero balance by exclusively consuming renewable energy while 

generating an equivalent amount of electrical and thermal energy over their operational lifespan 

[16]. 

• Regulatory and Ethical Considerations: AI systems, which can significantly impact society, the 

economy, and individual lives, require robust frameworks to ensure they are developed and 

deployed responsibly. Design teams often lack regulatory support documents with performance 

benchmarks for non-mechanical solutions, unlike mechanical systems (e.g., HVAC, heat pumps) 

validated by European standards (Delegated Regulation 2022/759; Commission, 2014). These 

benchmarks are crucial for assessing energy savings and comfort across climates [10]. Moreover, 

AI governance must address fairness, transparency, and human oversight. According to the AI 

Index Report 2024, in 2023, policymakers in both the European Union and the United States 

made significant strides in AI regulation [20]. The European Union’s AI Act and similar 

frameworks emphasize ethical AI development [23].  

• Skill Gaps and Workforce Adaptation: AI adoption in the AEC sector requires significant 

workforce reskilling to bridge the technical expertise gap. While AI can greatly enhance 

efficiency, it may reduce the need for certain manual tasks, leading to potential workforce 

displacement. This raises important ethical concerns about balancing the benefits of automation 

with the preservation of employment opportunities [31]. In addition, Many professionals in 

construction lack the technical expertise required to effectively use AI tools, which demand 

knowledge in areas like machine learning, data analytics, robotics, and programming. Building 

and deploying AI solutions in construction require specialized knowledge, and there is currently 

a large gap between the demand for AI talent and the availability of qualified 

professionals.Talent development and collaborative training programs are essential to prepare 

professionals for AI-driven roles [2,27]. 

To fully realize AI’s potential in sustainable construction, industry stakeholders must address 

these challenges through policy support, investment, and technological advancements. Future 

research should focus on scalable, cost-effective AI solutions that enhance efficiency, safety, and 

sustainability while ensuring ethical and responsible implementation. 

7. Conclusions 

Amid growing environmental challenges like climate change and resource depletion, bioclimatic 

design has emerged as a key strategy for creating energy-efficient, climate-responsive buildings, 

aligning with global sustainability goals. Simultaneously, AI technologies are transforming decision-

making across various domains, driving the development of intelligent, eco-friendly infrastructure. 

This review explores the intersection of bioclimatic design and AI, highlighting their integration as a 

solution to sustainability and efficiency challenges in the AEC industry. 
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AI is transforming bioclimatic design across the building lifecycle, enhancing energy efficiency 

and performance through tools like generative design algorithms and surrogate models. Among 

these advancements, Digital Twin technologies stand out, enabling real-time monitoring, simulation, 

and optimization by integrating AI, IoT, and BIM. Their applications in façade optimization, energy 

flow analysis, and risk assessment highlight their potential in sustainability and energy efficiency. 

Looking ahead, DTs are expected to drive autonomous, human-centric design under Construction 

5.0 and Industry 5.0, with applications extending to heritage conservation and resource-efficient 

construction. However, challenges such as computational and energy demands, interoperability, and 

regulatory constraints must be addressed for broader adoption. Future research should prioritize 

scalable, ethical, and transparent implementations to maximize AI’s impact. By integrating AI, DTs, 

and emerging technologies, the AEC industry can set new benchmarks for sustainable, adaptive, and 

intelligent built environments. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AI Artificial Intelligence 

AEC Architecture, Engineering and Construction 
DT Digital Twin 

SDG Sustainable Development Goals 

ML  Machine Learning 

DL Deep Learning 

EPBD Revised Energy Performance of Buildings Directive 

GAN Generative Adversal Networks 

IoT Internet of Things 

GPU Graphic Processing Units 

TPU Tensor Processing Units 

XAI Explainable Artificial Intelligence 

EU Europian Union 

kNN k-Nearest Neighbours 

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies 
NLP Natural Language Processing 

ANN Artificial Neural Networks 

MLP Multi-Layer Perception 

CNN Convolutional Neural Networks 

RNN Recurent Neural Networks 

GM Generative Models 

GAN Generative Adversal Network 

RBM Restricted Boltzman Machine 

DBN Deep Belief Network 

NHE Natural Hazards Engineering 

CAD Computer-Aided Design 

BIM Building Information Modeling 

DSS Decision Support Systems 

RFID Radio-Frequency Identification 

BPM Building Performance Monitoring 

SHM Structural Health Monitoring 

KBE Knowledge-Based Engineering 

SM Surrogate model 
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HVAC Heating, Ventilation and Air Conditionig 

AR Augmented Reality 

VR Vurtual Reality 

SCADA Supervisory Control and Data Acquistion 

DDC Direct Digital Control 

WLAN Wireless Local Area Network 

UWB Ultra-Wideband 

MQTT Message Queuing Telemetry Transport 

HTTP Hypertext Transfer Protocol 

BMS Building Management Systems 

AWS Amazon Web Service 

API Application Programming Interface 

PCM Phase-Changing Material 

PMV Predicted Mean Vote 

PPD Predicted Percentage Dissatisfied 

HBIM Heritage Building Information Modeling 

UMES Urban Multi-Energy Systems 

SME Medium-Sized Enterprise 

ROI Return on Investment 

IPD Integrated Project Delivery 

NZEDC Net Zero Energy Data Center 
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