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Abstract: The integration of Artificial Intelligence (Al) into bioclimatic building design is reshaping
the Architecture, Engineering, and Construction (AEC) industry by addressing critical challenges in
sustainability and efficiency. By aligning structures with local climates, bioclimatic design addresses
global challenges such as energy consumption, urbanization, and climate change. Complementing
these principles, Al technologies - including machine learning, digital twins, and generative
algorithms - are revolutionizing the sector by optimizing processes across the entire building lifecycle,
from design and construction to operation and maintenance. Amid the diverse array of Al-driven
innovations, this research highlights Digital Twin (DT) technologies as a key to Al-driven
transformation, enabling real-time monitoring, simulation, and optimization for sustainable design.
Applications like facade optimization, energy flow analysis, and predictive maintenance showcase
their role in adaptive architecture, while frameworks like Construction 4.0 and 5.0 promote human-
centric, data-driven sustainability. By bridging Al with bioclimatic design, the findings contribute to
a vision of a built environment that seamlessly aligns environmental sustainability with technological
advancement and societal well-being, setting new standards for adaptive and resilient architecture.
Despite the immense potential, AI and DTs face challenges like high computational demands,
regulatory barriers, interoperability and skill gaps. Overcoming these challenges will be crucial for
maximizing the impact on sustainable building, requiring ongoing research to ensure scalability,
ethics, and accessibility.

Keywords: artificial intelligence; digital twin; bioclimatic building design; building performance;
Internet of Things (IoT); energy efficiency

1. Introduction

In recent years, the construction industry has undergone a significant transformation, driven by
advances in both sustainable design and digital technologies. Bioclimatic design, as a key aspect of
sustainable building, optimizes natural resources such as solar radiation, wind, and thermal
regulation to enhance climate-responsive structures, minimize energy consumption, and reduce
environmental impact. The growing emphasis on sustainability is being reinforced by the adoption
of the Sustainable Development Goals (SDGs), with the construction sector increasingly aligning its
practices with green building standards, sustainable materials, lifecycle assessments, and
collaborative research efforts. This shift towards sustainability is driving a more environmentally
responsible and inclusive future, with stakeholders throughout the industry working together to
meet global sustainability targets.

At the same time, the integration of Artificial Intelligence (Al), particularly through Machine
Learning (ML) and Deep Learning (DL), has revolutionized decision-making in the construction
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sector. These technologies enable advanced decision support systems that assist construction
professionals by providing intelligent capabilities to enhance project outcomes [1]. As industry faces
the dual challenges of digitalization and sustainability, Al has emerged as a powerful tool that can
address both. The strategic application of Al across the entire lifecycle of building projects - from
design and construction to operation and maintenance - presents unique opportunities to reduce
inefficiencies and drive significant improvements in performance [2].

Al plays a crucial role in optimizing building designs to improve energy efficiency and reduce
environmental impact. Through comprehensive data analysis and scenario simulations, Al enables
architects and engineers to make well-informed decisions that align with rigorous green building
standards. Beyond enhancing sustainability, Al is also advancing construction materials and
technologies, driving innovation and resilience in structural design. The use of Al algorithms and
machine learning techniques has led to the development of novel materials that enhance the
durability, safety, and efficiency of buildings. These innovations not only promote sustainable
construction practices but also address the challenges posed by urbanization, climate change, and the
evolving needs of infrastructure development [3].

Despite the growing interest in Al and ML applications in construction engineering, there is a
notable research gap that requires attention. While some studies have explored specific aspects of Al
and ML within the industry, a comprehensive review that synthesizes the various methodologies and
examines their collective impact is still lacking [1].

This work aims to fill that gap by providing an in-depth analysis of the latest developments in
Al and ML within Architecture, Engineering and Construction (AEC) industry, as well as identifying
potential areas for future research and improvement. By exploring the intersection of Al and
bioclimatic design, this work aims to provide insights into how cutting-edge technologies can address
environmental challenges, improve building performance, and shape the future of sustainable
architecture.

2. Main Principles and Strategies of Bioclimatic Building Design

Bioclimatic design integrates climate-responsive principles into architecture, optimizing solar
radiation, temperature, wind, and humidity in order to reduce energy consumption. It aims to
minimize dependence on artificial systems while ensuring environmental integration. Precise climate
analysis is essential for effective design, with tools like bioclimatic diagrams aiding in visualizing
climate-passive design relationships and informing material selection and energy-efficient solutions
(Figure 1) [4].
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Figure 1. Example of psychrometric Building Bio-Climatic chart from Climate Consultant 6.0.

The core principles of bioclimatic building design, including thermal comfort, daylighting, and
energy efficiency, align building design with local climate conditions, reduce energy consumption,
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enhance comfort, and promote environmental and economic sustainability, addressing global
challenges like energy use and climate change [5].

In the past decade, the building sector has drawn significant attention due to its high energy
consumption and carbon emissions, accounting for 35% of global energy use and 38% of CO,
emissions in 2019 [6]. Bioclimatic design helps mitigate climate change by reducing reliance on non-
renewable energy sources and minimizing emissions [7]. Incorporating locally available renewable
resources further decreases dependence on large-scale energy supplies. Effective design strategies
have achieved energy savings of up to 60%, highlighting their potential for sustainable development
[8]. This approach should be applied not only to new buildings but also as a key component of
renovation strategies, as outlined in the Revised Energy Performance of Buildings Directive (EPBD)
approved in 03/2024 [9]. The directive introduces tools like the renovation passport, offering a
roadmap for phased renovations, helping property owners and investors plan interventions [10].

The implementation of bioclimatic principles varies depending on the local climate, building
type, and geographical location (Figure 2).

. Solar Chimney
Trombe/Sun Walls
Inertial Elements

. Atria

Natural Ventilation
. Green surfaces
Earth Tubes

8 . Sunspaces

@N A AWN R

Figure 2. Graphic schemes of bioclimatic design strategies [10].

However, the main strategies are broadly applicable in different contexts, as follows.

e Natural Ventilation: Conventional passive cooling strategies, such as shading transparent
surfaces and employing cross-ventilation and stack ventilation, facilitate natural cooling and
enhance indoor air quality [4,11,12].

e Passive Solar Heating: Optimizing orientation, window placement, and building rotation
maximizes winter solar gain, enhances ventilation, balances daylight, and leverages thermal
mass for heat storage [7,8].

e Shading and Solar Control: In warm climates, passive shading devices - such as overhangs,
louvers, and pergolas-along with vegetative solutions like green walls, are employed to reduce
excessive solar exposure and mitigate overheating [13].

e  Thermal Insulation: Effective insulation, reflective materials, and high-performance windows,
significantly reduce heat transfer - lowering energy consumption by up to 60% and ensuring
thermal stability [8].

¢  Green Roofs and Walls: Vegetation integrated into building designs provide insulation, reduce
energy use, mitigate urban heat island effects, and improve biodiversity [7,14].

¢ Rainwater Harvesting and Greywater Recycling: Rainwater harvesting, greywater recycling,
and water features reduce potable water use and contribute to passive cooling [11].

e Integration of Smart and Renewable Technologies: The adoption of on-site renewable energy
generation (e.g.,
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e photovoltaic panels), local energy storage systems, and intelligent building automation
enhances energy autonomy, operational efficiency, and environmental performance [15,16].

Artificial Intelligence Evolution, Techniques and Application in AEC

Artificial Intelligence (Al) is a subdiscipline of computer science focused on the development of
systems that are capable of simulating human cognitive processes, such as perception, reasoning,
problem-solving, natural language understanding, decision-making and learning from experience.
The fundamental principles of Al center on the capacity of machines to replicate or enhance human
cognitive functions, encompassing autonomy, learning, reasoning, problem-solving, and adaptation.

The origins of Al date back to the mid-20th century, marked by the Turing Test and the
Dartmouth Conference, where the field was formally established [17,18]. Early research focused on
symbolic reasoning and rule-based systems but was limited by computational constraints. In the late
20th century, the focus shifted toward machine learning and neural networks, laying the groundwork
for deep learning. In the 21st century, growing computational power and the availability of big data
have enabled major breakthroughs in pattern recognition, natural language processing, and
computer vision. Recent advancements in reinforcement learning and generative models, such as
Generative Adversarial Networks (GANSs), have further expanded Al’s capabilities. Its integration
with big data, cloud computing, and the Internet of Things (IoT) has expanded its application areas.
Moreover, Al-specific hardware like Graphic Processing Units (GPU) and Tensor Processing Units
(TPU) has accelerated Al training and inference [18].

Contemporary research emphasizes explainable Al (XAI) for model transparency, ethical
considerations, and applications in healthcare, robotics, and autonomous systems, shaping the future
of intelligent technologies [19].

This growing focus on responsible and transparent Al aligns with broader trends in the field, as
highlighted by the Al Index Report 2024. The report shows a rapid rise in open-source Al research,
with projects on GitHub growing from 845 in 2011 to 1.8 million in 2023 - a 59.3% increase in 2023
alone - demonstrating both the accelerating pace of innovation and the importance of collaborative
development [20].

In parallel with technological progress, ethical considerations and governance frameworks are
becoming central to Al deployment. The EU has taken a leading role by introducing regulations for
"trustworthy AL" combining legal, ethical, and technical standards [21,22]. These guidelines define
seven key requirements: human oversight, safety, privacy, transparency, fairness, societal well-being,
and accountability (Figure 3). This risk-based regulatory model is central to the EU AI Act, ensuring
responsible AI development and use [23].
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Figure 3. Pillars and requirements of trustworthy Al [21].

3.1. Artificial Intelligence techniques

Al can be based on several different techniques, depending on the application and the problem
being solved. Some of the most commonly used techniques in Al are based on the Machine Learning
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and Deep Learning. Figure 4. visually illustrate relationship and the distinction between Machine
Learning and Deep learning in terms of feature extraction and learning.

Reinforced

Unsupervised Supervised

Machine
Learning

Artificial e Intelligence

Deep
Learning

Discriminative Generative

Figure 4. Al Taxonomy.

3.1.1. Machine Learning (ML)

This is the backbone of most Al applications. ML involves training algorithms to recognize
patterns in data and make predictions based on that data, without being explicitly programmed for
specific tasks. ML techniques allow computers to recognize patterns, make predictions, and perform
decision-making tasks based on historical data. There are three primary types of machine learning;:
e  Supervised Learning: The model is trained using labeled data (input-output pairs), where the

desired output is known. The model learns to map inputs to correct outputs. This branch of ML

includes methods like Linear Regression, Bayesian network, K-nearest neighbours (kNN),

Decision Tree etc.

e  Unsupervised Learning: The model is trained using unlabeled data, meaning the system must
identify patterns or groupings on its own. The algorithm must find structure or patterns in the
input data without guidance. The main goal of unsupervised learning is to explore the data and
extract useful insights. This includes Fuzzy C Means, Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) and K-Means.

e  Reinforcement Learning: The system learns by interacting with its environment and receiving
feedback in the form of rewards or penalties, optimizing its behavior over time: Q-Learning,
Markov decision process [24].

3.1.2. Deep Learning (DL)

Being a subset of machine learning, deep learning uses multi-layered neural networks to model
complex patterns in data. These networks are inspired by the human brain's structure and are capable
of handling vast amounts of data and performing complex tasks like image recognition, speech
processing, and natural language understanding. Deep learning has achieved remarkable success in
fields such as autonomous driving, medical image analysis, and Natural Language Processing (NLP)
due to its ability to automatically learn features from raw data without needing explicit programming
or feature engineering.

Artificial Neural Networks (ANNs) composed of layers of neurons that work together to process
input data and produce output predictions. Each neuron in a layer is connected to several neurons in
the previous and next layers, creating a network of computational units [25].

e  Discriminative (Supervised) models: focus on learning the boundary between different classes
in a dataset, rather than modeling data distribution. These supervised deep models typically
estimate class probabilities from observable data, enabling accurate classification. In simple
terms, discriminative models learn to distinguish between different categories or labels by
focusing on the differences in the corresponding data. Common models include Multi-Layer
Perceptron (MLP), Convolutional Neural Networks (CNNs), Recurrent Neural Networks
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(RNN), and their variations. The most powerful class of this type is CNNs, which are extensively
used across a range of tasks, such as object detection, speech recognition, computer vision, image
classification, and bioinformatics by learning hierarchical features from raw data.

e  Generative (Unsupervised) models: The primary objective of generative models (GMs) is to
produce data resembling real-world distributions. Despite ongoing research challenges, recent
advancements have expanded their applications, particularly in computer vision research. GMs
utilize training data from an unknown data-generating distribution to create new samples that
match the original distribution. Key models include Auto-Encoder, Generative Adversarial
Network (GAN), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN) [26].
Artificial Intelligence is a rapidly evolving field that allows machines to perform tasks that were

traditionally thought to require human intelligence. By leveraging techniques like machine learning,

deep learning, natural language processing, and computer vision, Al systems can analyze vast
amounts of data, learn from it, and make decisions or predictions autonomously.

Today, Al systems are transforming industries ranging from healthcare to finance,
manufacturing, and even architecture, playing a pivotal role in driving Industry 5.0 and Society 5.0-
concepts that emphasize the integration of human intelligence, Al, and other emerging technologies
for a sustainable future [27]. Its impact spans multiple sectors,including Architecture, Engenieering
and Construction (AEC) and Natural Hazards Engineering (NHE) [28,29].

Al in Bioclimatic Building Design

The application of Alin the AEC sector has evolved significantly over the past few decades from
early automated design tools like Computer-Aided Design (CAD) to advanced generative algorithms
and sustainable design solutions. In 1976, Cedric Price developed the concept of the "Generator" - a
vision of Al-driven architecture, followed by Soddu’s artificial DNA model for medieval cities in 1987
[25,30]. By the 2000s, Al integrated data-driven decision-making to enhance energy efficiency,
resource management and waste reduction. Innovations like genetic algorithms for ecological design
and optimization tools such as GENE-ARCH and OPTIMUS have advanced sustainable architecture
[30]. Today, Al alongside big data and cloud computing, is crucial for smart cities and green building
solutions, optimizing environmental performance in real time.

4.1. Al, Sustainable Building Design, and Construction 4.0 and 5.0

The construction industry is undergoing a major transformation driven by digitalization and Al
Construction 4.0 signifies a profound shift within the industry, characterized by the fusion of digital
technologies and data-driven solutions, including the widespread adoption of Internet of Things
(IoT) devices, Artificial Intelligence, robotics, 3D printing, and Building Information Modeling (BIM),
which collectively work to optimize processes, reduce costs, and improve building performance.
While Construction 4.0 focuses on digital integration and automation, Construction (Industry) 5.0
advances by prioritizing sustainability, environmental stewardship, principles of a circular economy
and human needs and wellbeing (Figure 5) [27,31].
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Figure 5. Focus and main priorities of the concept of Construction (Industry) 5.0.

Al enhances bioclimatic design by automating analysis, predicting performance, and optimizing
energy efficiency. Its potential extends to generative design, automation, predictive maintenance, and
lifecycle optimization, addressing inefficiencies and reducing environmental impact. The industry
faces challenges like excessive material waste (11-15%) and high energy consumption, with buildings
accounting for 28% of U.S. commercial energy use and 41.1% in China. Al-driven solutions offer a
path toward more sustainable, resource-efficient construction [2].

4.2. Recent Al Techniques and Combination Technologies in AEC

The integration of Al in the AEC industry, particularly in sustainable and bioclimatic design, is
advancing rapidly. Al enhances sustainability by optimizing energy efficiency, reducing
environmental impact, and improving building performance. Its integration with conventional
modeling, simulation, and analytics significantly enhances all phases of building design, construction,
and operation (Table 1) [2].

Table 1. Al-driven technologies in AEC sector.

Building design Construction Operation
Bie Data Intelligent Decision Support ~ Building Performance
8 Systems (DSS) Monitoring (BPM)
. . Radio-Frequency _— .
Generative design Identification (RFID) Predictive Analytics

1 Health itori

Surrogate Modelling Computer Vision Systems Structural Health Monitoring

(SHM)
Augmented Reality Iot Devices Smart Building Systems

Virtual Reality Construction Robots

4.2.1. Building Design

At the building design stage, advancements in artificial intelligence provide exceptional
opportunities to optimize sustainability objectives across a range of architectural and engineering
parameters. Early-stage Al integration enhances decision-making, accelerates design processes, and
improves energy efficiency to meet regulatory and cost-saving demands. Techniques such as
Knowledge-Based Engineering (KBE), fuzzy logic, neural networks, and genetic algorithms are
widely applied in AEC design [32]. Late 20th-century research explored design and morphogenesis,
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inspiring complex and unconventional forms. Contemporary studies, however, prioritize refining
and optimizing existing designs, particularly through the optimization of their shapes [30].

Big Data is transforming architecture by providing architects with vast amounts of information,
such as climate patterns, energy use, user behavior, and material performance. This enables data-
driven design decisions, balancing aesthetics, functionality, and sustainability. For example, data-
driven simulations optimize natural light, reducing reliance on artificial lighting, while its use in
parametric design allows architects to generate numerous design variations through algorithms.
Analyzing material, cost, and environmental impact data refines designs, minimizes waste, and
promotes sustainability [27].

Meanwhile, Generative Design - Al-driven generative design algorithms, or Generative
Adversarial Network (GAN) - have become integral in the design process, allowing architects and
engineers to explore vast numbers of design alternatives based on specific goals (e.g., energy
efficiency, structural integrity, material optimization). GANs are applied to optimize building forms,
orientations, and window placements to maximize passive heating in winter or minimize solar heat
gain in summer, considering local weather patterns. Using the Generator-Discriminator principle, Al
autonomously generates options, which are then evaluated and refined [25].

Recent studies highlight the effectiveness of surrogate modeling in optimizing low-energy
building design. Surrogate models (SMs) mimic high-fidelity physics-based models by statistically
correlating input (design variables) and output (performance targets) data from a sample within the
design space. This research underscores the potential advantages of machine learning methods,
including ANNSs, in handling computationally demanding tasks like building design optimization.
Surrogate-assisted building performance optimization models are used to optimize energy
performance by improving systems such as HVAC, lighting, and insulation, reducing overall energy
consumption. Additionally, surrogate models optimize building shape and layout, enhancing natural
lighting, ventilation, and thermal comfort while reducing energy waste, using eco-friendly materials,
and improving energy efficiency throughout the building's lifecycle [33].

In addition, Augmented Reality (AR) and Virtual Reality (VR) technologies enhance
collaboration, enabling stakeholders to virtually walk-through buildings before they are constructed,
adding design modifications and approvals more efficient and accurate [27].

4.2.2. Construction

The construction industry plays a crucial role in global economic development, with an
estimated annual value surpassing $10 trillion. However, it often faces challenges such as high costs,
project delays, and safety concerns with average cost overruns of 80% leading to significant financial
consequences [1]. Al integration with traditional construction techniques, can optimize workflows,
streamline processes, and ensure higher-quality construction outcomes.

Intelligent Decision Support Systems (DSS) utilize a vast amount of historical data, real-time
information, and predictive analytics to provide accurate insights and recommendations. By
automating repetitive tasks, optimizing resource allocation, and identifying potential risks, DSS help
decision-makers improve project outcomes, boost productivity, and reduce costs [1].

Al algorithms optimize resource utilization, including materials, labor, and equipment, by
processing real-time data from Radio-Frequency Identification (RFID) tags and sensors attached to
shipments, ensuring timely delivery, reducing losses, and lowering inventory costs [27]. These
systems are capable of dynamically adjusting construction schedules and resource allocations in
response to variables such as weather conditions, material availability, or workforce productivity,
thereby enhancing operational efficiency and minimizing resource waste. Furthermore, Al-powered
computer vision systems conduct real-time inspections of construction materials and components,
detecting defects and ensuring compliance with quality standards [3].

Construction sites are inherently complex and hazardous environments. Integration of IoT
devices such as wearables, drones, and sensors facilitate real-time monitoring of both worker
activities and site conditions. Wereable devices track workers’ movements and vital signs, providing
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safety alerts in the event of accidents, while drones conduct aerial surveys and assess progress,
improving project management and decision-making [27]. These systems can trigger alerts or
automatically shut down operations in hazardous situations, enhancing safety on the site [3].

Another revolutionary application of Al is the deployment of construction robots, which are
capable of performing tasks such as bricklaying, concrete pouring, and 3D printing, improving speed,
precision, and reducing reliance on manual labor [27].

4.2.3. Operation

Al integration with IoT and Big Data during the operational phase of bioclimatic design
enhances building efficiency and sustainability by continuously monitoring and optimizing
performance based on real-time data.

Building Performance Monitoring (BPM) algorithms analyze real-time data from sensors
integrated into building systems to detect patterns in energy use and environmental conditions. By
processing this data, machine learning algorithms can automatically adjust settings for HVAC
systems, lighting, and other equipment, enhancing efficiency while maintaining occupant comfort [2].

Predictive analytics, another subset of Al, revolutionizes maintenance practices by forecasting
equipment failures based on variables such as temperature, vibration, and usage patterns, enabling
proactive maintenance, minimising downtime and reducing costly repairs [3]. Structural Health
Monitoring (SHM) utilizes IoT sensors to assess the integrity of buildings, bridges, and infrastructure
by tracking vibrations, deformation, and stress. Real-time data analysis enables early detection of
damage, ensuring timely maintenance, preventing severe failures and ensuring both occupant safety
and structural longevity. Additionally, IoT-driven systems optimize resource use, monitor emissions,
and support compliance with environmental regulations, promoting sustainable construction [27].

Al-driven machine learning and predictive analytics improve forecasting, maintenance, and
performance optimization for renewable energy systems, reducing costs and enhancing efficiency.
By analyzing large datasets, Al predicts energy outputs, assists in project planning, and identifies
optimal locations for renewable infrastructure [34].

Smart building systems leverage Al to enhance occupant comfort and productivity through
personalized environmental control, using sensors and real-time adjustments [2]. Additionally, Al-
driven urban planning analyzes infrastructure, transportation, and public services to create inclusive,
accessible cities. Smart sensors and algorithms optimize traffic flow, reducing congestion and
improving mobility [27].

Al-Driven Digital Twins

Digital Twin (DT) was initially implemented in NASA's Apollo program in 2010, and since then,
its use has expanded across various industries, including manufacturing, aviation, defense, and
healthcare, enhancing automation and efficiency [35]. The convergence of Artificial Intelligence with
Digital Twin technologies have sparked growing interest in their potential applications within the
AEC sector. While Digital Twins offer a virtual replica of physical assets - such as buildings,
infrastructure, or entire urban environments - the integration of Al enhances their functionality,
rendering them more dynamic, predictive, and adaptive in response to real-time data and evolving
conditions. The potential of a human-centric Digital Twin (DT) approach is envisioned to create
adaptive, data-driven built environments that interact dynamically with users, facilitating more
dynamic and personalized interactions. Its ecosystem consists of three core elements: the physical
environment, its digital replica, and the system managing their interaction [36].

Modeling technologies create a virtual model that reflects the physical environment's
parameters, such as structure, functionality, location, and performance, While IoT technologies
enable bi-directional data exchange via communication protocols. High-volume, multi-source data is
stored, integrated, and analyzed using advanced analytics, then presented to users through
interactive visualizations supported by visualization technologies [35].
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4.2. Digital Twin System Architecture

The digital twin system is conceptualized in five development layers: data acquisition, data
transmission, digital modeling, data/model integration, and service.

1. Data Acquisition: This layer collects dynamic data from the physical environment trought IoT
sensors that detect changes in physical, chemical, and electrical properties of the surroundings
(temperature, humidity, gas concentrations, light intensity, motion etc.), producing an electrical
output in response. Input from various sensors can be collected by the more advanced control
systems like Supervisory Control and Data Acquisition (SCADA) system for HVAC plants,
Direct Digital Control (DDC) system etc. These technologies include ultrasonic and gyroscopic
sensors, which are used to detect clashes, track machinery locations, and ensure accurate
placement of resources on construction sites. While building surveillance systems with video
streams detect pedestrians and measure environmental conditions like ambient brightness and
surface temperatures using thermal imaging modules [35].

2. Data Transmission: Raw data from the data acquisition layer is transmitted to other system
components via wired or wireless technologies (Wi-Fi, Bluetooth, WLAN and Ultra-Wideband
(UWB)), following communication protocols like Message Queuing Telemetry Transport
(MQTT) or Hypertext Transfer Protocol (HTTP). Building Management Systems (BMS) use the
internet and Building Automation and Control Networks (BACnet) protocols for data
communication between devices and sensors. Additionally, platforms like SophyAl and
Gazebo-ROS are utilized for visualizing and processing sensor data [35].

3. Digital Modeling: Virtual models of the physical environment are created using technologies
like laser scanning, photogrammetry, and software tools (Autodesk Revit, Navisworks,
Solidworks etc) to capture and represent parameters such as geometry, functionality, location,
and performance. Additionally, game development software like Unity 3D is employed for
creating interactive 3D models, avatars, and virtual environments (e.g., Virtual Reality setups
with Oculus devices) [33,34]. Specifically, Autodesk defines five levels of Digital Twins in the
AEC sector, each with a distinct function: Descriptive, Informative, Predictive, Comprehensive
and Autonomous. Currently, most DT applications are at Level 2 (Informative Twin), with some
moving toward Level 3 (Predictive Twin) [36].

Mesh Digital

Beauty model replica

Figure 6. Primary data processing [36].
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4. Data/Model Integration: Multi-source, high-volume data is stored in cloud platforms like
Google Cloud Microsoft Azure and Amazon Web service (AWS). Some systems also use
mirrored databases to store data from existing building systems like BMS. Data fusion
techniques integrate various data types (e.g., sensor, mechanical, and image/video data) into a
unified digital twin model, often utilizing customized Application Programming Interfaces
(APIs). Platforms like Autodesk Revit, Unity 3D, and Midas Gen are used for this integration,
enabling real-time updates and the fusion of multi-form data into BIM or other virtual
environments. Advanced Al technologies process this data for insights and predictive analysis.
The processed data then is visualized in digital twin systems through various software
platforms, primarily 3D modeling tools like Autodesk Revit, Autodesk Navisworks, Unity 3D,
Virtual and Augmented Reality [35].

5. Service: Represents the range of services it provides to users, and these services vary depending
on the specific application context. It enables real-time monitoring, predictive analytics, early
issue detection, and data visualization, supporting decision-making and operational efficiency.
It tracks structural assets, construction activities, and environmental conditions (e.g.,
temperature, energy consumption, occupancy) while identifying faults in building systems,
forecasting failures, and triggering alarms for anomalies. Additionally, digital twins facilitate
scenario simulations, robotic control, and smart home management [35].

These layers work together to provide a comprehensive view of the physical and virtual systems
in real-time, allowing stakeholders to monitor, analyze, and make data-driven decisions in the built
environment.

4.3. The Role of Digital Twins in Bioclimatic Design

The advent of Digital Twin technologies has revolutionized the approach to building design,
construction, and urban planning, particularly in the context of bioclimatic design. By using Digital
Twins designers and engineers can create precise virtual models of buildings or urban areas that
integrate real-time environmental data, sensor feedback, and predictive simulations. This technology
facilitates continuous performance monitoring and optimization, ensuring adaptive responses to
climatic conditions. By linking physical assets with virtual counterparts, Digital Twins incorporate
Building Information Modeling, IoT, and sensor networks to implement climate-responsive features
such as solar shading, natural ventilation, and energy-efficient building envelopes. Real-time sensor
data on indoor and outdoor conditions supports adaptive design modifications, reducing energy
consumption and enhancing occupant comfort [35,37].

An increasing interest in optimizing building envelope systems to reduce energy consumption
and enhance occupant comfort, driving research into advanced technologies. For example, a data-
driven approach to the digital twinning and optimization of a naturally ventilated solar facades with
phase-changing materials (PCMs) and double-facade systems integrated with active air conditioning
system scan improve thermal performance, energy efficiency of buildings and offer a viable solution
for low-income communities facing challenges related to energy costs and indoor air quality. The role
of digital twins in monitoring, analyzing, and optimizing the facade system’s behavior in real-time
under various climate scenarios, providing valuable insights for sustainable building design and
reducing energy demand, particularly for low-income communities [38,39].

Monitoring indoor thermal comfort has also gained increasing attention as it plays a key role in
optimizing building energy use while maintaining desired indoor conditions. Recent advances
integrate BIM, IoT, and immersive VR to provide real-time, interactive visualizations of comfort
indicators such as Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD). These
systems allow users to navigate virtual building models, access live sensor data, and adjust
parameters like metabolic rate or clothing insulation to simulate various scenarios, enabling more
intuitive and efficient comfort assessment [40].

In urban environments, Digital Twins are being explored in the multi-energy system
digitalization. By integrating data from IoT sensors, building management systems, and grid
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infrastructure, DTs provide a dynamic and accurate virtual representation of the physical energy
systems, enabling stakeholders to model, simulate, and analyze energy flows and system behavior.
By modeling and analyzing energy flows, cities can optimize the integration of renewable sources
like solar, wind, and geothermal, reducing reliance on non-renewable energy and enhancing
sustainability [41].

Al-driven Digital Twins also can play a crucial role in stormwater management, addressing
urbanization and climate change challenges. Using machine learning, they process vast datasets from
sensors, weather forecasts, and monitoring systems to simulate stormwater behavior, predict
flooding, and optimize drainage performance, reducing the need for costly infrastructure upgrades
[42,43]. By integrating real-time sensor data with hydraulic models, digital twins enhance stormwater
depth estimation, improve near-term forecasts, and detect sensor faults with over 99% accuracy,
minimizing false flood alarms. Enabled by low-power sensing and wireless communication, they
support street-level flood warnings, sewer blockage detection, and active control of valves and gates,
ultimately mitigating flooding and pollution risks [43].

Additionally, Digital Twins aid in fire risk management in urban and wildland-urban areas by
integrating temperature sensors, smoke detectors, and satellite imagery to detect and simulate fire
behavior. They support bioclimatic design by assessing fire risks and optimizing mitigation
strategies, including design of fire-resistant materials, building layouts, and vegetation planning [44].

Finally, the use of Digital Twins in the field of heritage conservation is emerging as a vital tool
for sustainable and effective cultural heritage preservation. Photogrammetry and laser scanning have
revolutionized documentation by enabling the rapid acquisition of detailed 3D point clouds. Heritage
assets, subject to natural decay and external factors, require ongoing monitoring and maintenance,
as emphasized by international organizations like ICOMOS and UNESCO. Heritage Building
Information Modeling (HBIM) applies BIM techniques to built heritage, using digital surveys to
create accurate models for conservation. Traditionally reliant on visual inspections, monitoring is
now enhanced by sensors and scanning technologies. Digital Twins integrate these advancements
with Al and Machine Learning to predict deterioration and simulate conservation needs, though
research in this area remains limited. The Heritage Digital Twin (HDT) framework applies DT
concepts to heritage sites, assessing them through four key attributes: Fidelity (model accuracy),
Synchronization (real-time interaction), Intelligence (data and Al integration), and Autonomy
(automation in conservation tasks) [45].

Al-driven digital restoration is also gaining importance, particularly in detecting and repairing
damage to ancient heritage. Deep learning algorithms can identify cracks in murals with high
precision, while Generative Adversarial Networks (GANSs) simulate and restore original colors and
textures. Integrated with 3D modeling and virtual reality, these technologies enable precise digital
reconstruction, improving restoration accuracy and efficiency [46].

Future Perspectives of Al in AEC Industry and Sustainable Building Design

The integration of Artificial Intelligence into the AEC industry presents significant opportunities
for advancing technology and promoting sustainability. Al-powered systems offer innovative
solutions to optimize energy use, minimize waste, and streamline resource allocation, ultimately
reducing carbon emissions and conserving natural resources. By leveraging Al in BIM, IoT, Big Data,
and predictive systems, the industry can improve efficiency, sustainability, and safety while
progressing toward Sustainable Development Goals such as SDG 7 (Affordable and Clean Energy),
SDG 9 (Industry, Innovation, and Infrastructure), and SDG 11 (Sustainable Cities and Communities).
Al-driven innovations in predictive analytics, supply chain optimization, and data-driven
communication further foster economic growth and environmental preservation, supporting a
holistic approach to sustainable construction [3].

However, despite Al's potential, adoption in the construction sector remains slow due to
traditional industry practices, project complexity, and a limited understanding of Al's potential
benefits [2]. Key challenges affecting Al integration include:
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e High Initial Costs: Al-driven tools such as BIM, generative design, and automation demand
substantial upfront investment, posing financial challenges. Adopting tools like BIM integrated
with Al, deploying Al-powered energy management systems like urban multi-energy systems
(UMES) DTs, or investing in robotic construction technologies involve significant costs for
hardware, software, and training. These financial barriers can be especially challenging for
small and medium-sized enterprises (SMEs). Financial incentives, government subsidies, and
demonstrated long-term return on investment (ROI) could facilitate wider adoption. However,
the hidden costs associated with Al adoption, such as system customization, integration with
existing infrastructure, and ongoing maintenance, must also be considered [2,27].

e Data Transmission and Security: Al applications in construction heavily rely on data from
various sources, including sensor networks, environmental data, construction schedules, and
building materials. The data generated in these systems often includes heterogeneous types,
such as image data, video data, mechanical data, and environmental data. In terms of data
transmission, most studies nowadays have focused on short-range wireless technologies, such
as Wi-Fi, Bluetooth, and UWB. Moreover, ensuring secure data transmission is a key
consideration. Many construction-related data are confidential, and the transmission of such
sensitive information can expose the system to cyber-attacks. A breach in these systems could
have far-reaching consequences, including compromising building safety, exposing sensitive
data, or disrupting critical infrastructure. Future research should focus on privacy-preserving
network models and secure data exchange mechanisms [35].

e Data Integration and Compatibility: The AEC industry struggles with fragmented inconsistent,
and siloed data across across various stages of a building's lifecycle. Construction projects
typically involve numerous stakeholders using different software platforms, which complicates
system interoperability [27]. This data often comes from multiple sources, including design
models (e.g., BIM), building materials, construction schedules, sensor networks, and
environmental data from IoT devices, which can be incompatible or poorly organized. This lack
of integration often leads to delays, cost overruns, and project disruptions. Open-source
platforms, standardized interfaces, and semantic web technologies can enhance interoperability.
Additionally, collaborative approaches, such as BIM and Integrated Project Delivery (IPD), can
streamline workflows, improve coordination, and enhance overall project delivery )[1,2,35].

o Integration of AR and VR for Data Processing and Visualization: In terms of data
visualization, the use of 3D modeling platforms, along with immersive technologies like Virtual
and Augmented Reality, has advanced the visualization and interaction with digital twin data,
driving increasing interest in their integration within Intelligent DSS for construction
engineering. These technologies provide interactive and immersive experiences that improve
spatial comprehension, collaboration and enhance decision-making but face usability and cost
barriers. User-friendly solutions, real-time synchronization with BIM and cost-effective
solutions are needed for widespread adoption in the AEC sector [1,35].

e  Scalability and Standardization: While Al-driven solutions show significant potential in
individual construction projects, scaling these solutions across entire industries and supply
chains presents a distinct challenge. The construction industry’s diversity, characterized by
varying regulations, building codes, materials, and construction techniques, complicates the
widespread implementation of Al solutions without considerable customization. Al adoption is
hindered by industry diversity, varying regulations, and a lack of standardized protocols. Unlike
industries such as healthcare, which have established broad standards like HL7, or
manufacturing with ISO 9000, the construction sector lacks cohesive frameworks for data
exchange, interoperability, and quality assurance. Establishing industry-wide frameworks is
essential for interoperability and efficiency [1,27].

e  Continuous Learning and Adaptation: Studies have shown benefits of DSS in areas like project
scheduling, risk management, and material selection. Online learning algorithms in risk
management, allowing the system to adjust to evolving risk profiles and enhance decision-
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making. While, machine learning for material selection, enabling the system to learn and refine

recommendations based on feedback and new data. DSS enhance project management but

require reliable data access and scalable algorithms [1].

o  Explainability and Transparency: Al models, particularly those using deep learning, often
operate as "black boxes," where their decision-making processes are not transparent or
understandable to humans. Al decision-making must be interpretable to ensure trust and
accountability. The field of Explainable Artificial Intelligence aims to address this issue by
creating models that provide clear, understandable explanations for their decisions. XAl
frameworks should balance accuracy and interpretability [19].

e  Environmental Impact: As Al systems grow in sophistication, they require massive
computational resources, which translates to a substantial environmental impact. AI models
require significant computational resources, contributing to a high energy demand and carbon
footprint. Sustainable Al practices, data optimization, and governance frameworks should be
prioritized [47,48]. In this context, the concept of Net Zero Energy Data Centers (NZEDC)
encapsulates key sustainability strategies, defined by the RenewlIT project (Deliverable 4.5) as
data centers that achieve a net-zero balance by exclusively consuming renewable energy while
generating an equivalent amount of electrical and thermal energy over their operational lifespan
[16].

e  Regulatory and Ethical Considerations: Al systems, which can significantly impact society, the
economy, and individual lives, require robust frameworks to ensure they are developed and
deployed responsibly. Design teams often lack regulatory support documents with performance
benchmarks for non-mechanical solutions, unlike mechanical systems (e.g., HVAC, heat pumps)
validated by European standards (Delegated Regulation 2022/759; Commission, 2014). These
benchmarks are crucial for assessing energy savings and comfort across climates [10]. Moreover,
Al governance must address fairness, transparency, and human oversight. According to the Al
Index Report 2024, in 2023, policymakers in both the European Union and the United States
made significant strides in Al regulation [20]. The European Union’s Al Act and similar
frameworks emphasize ethical Al development [23].

e  Skill Gaps and Workforce Adaptation: Al adoption in the AEC sector requires significant
workforce reskilling to bridge the technical expertise gap. While Al can greatly enhance
efficiency, it may reduce the need for certain manual tasks, leading to potential workforce
displacement. This raises important ethical concerns about balancing the benefits of automation
with the preservation of employment opportunities [31]. In addition, Many professionals in
construction lack the technical expertise required to effectively use Al tools, which demand
knowledge in areas like machine learning, data analytics, robotics, and programming. Building
and deploying Al solutions in construction require specialized knowledge, and there is currently
a large gap between the demand for Al talent and the availability of qualified
professionals.Talent development and collaborative training programs are essential to prepare
professionals for Al-driven roles [2,27].

To fully realize Al’s potential in sustainable construction, industry stakeholders must address
these challenges through policy support, investment, and technological advancements. Future
research should focus on scalable, cost-effective Al solutions that enhance efficiency, safety, and
sustainability while ensuring ethical and responsible implementation.

7. Conclusions

Amid growing environmental challenges like climate change and resource depletion, bioclimatic
design has emerged as a key strategy for creating energy-efficient, climate-responsive buildings,
aligning with global sustainability goals. Simultaneously, Al technologies are transforming decision-
making across various domains, driving the development of intelligent, eco-friendly infrastructure.
This review explores the intersection of bioclimatic design and Al, highlighting their integration as a
solution to sustainability and efficiency challenges in the AEC industry.
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Al is transforming bioclimatic design across the building lifecycle, enhancing energy efficiency
and performance through tools like generative design algorithms and surrogate models. Among
these advancements, Digital Twin technologies stand out, enabling real-time monitoring, simulation,
and optimization by integrating Al, IoT, and BIM. Their applications in fagade optimization, energy
flow analysis, and risk assessment highlight their potential in sustainability and energy efficiency.
Looking ahead, DTs are expected to drive autonomous, human-centric design under Construction
5.0 and Industry 5.0, with applications extending to heritage conservation and resource-efficient
construction. However, challenges such as computational and energy demands, interoperability, and
regulatory constraints must be addressed for broader adoption. Future research should prioritize
scalable, ethical, and transparent implementations to maximize Al’s impact. By integrating Al, DTs,
and emerging technologies, the AEC industry can set new benchmarks for sustainable, adaptive, and
intelligent built environments.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

AEC Architecture, Engineering and Construction
DT Digital Twin

SDG Sustainable Development Goals
ML Machine Learning

DL Deep Learning

EPBD Revised Energy Performance of Buildings Directive
GAN Generative Adversal Networks
IoT Internet of Things

GPU Graphic Processing Units

TPU Tensor Processing Units

XAI Explainable Artificial Intelligence
EU Europian Union

kNN k-Nearest Neighbours

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies
NLP Natural Language Processing
ANN Artificial Neural Networks

MLP Multi-Layer Perception

CNN Convolutional Neural Networks
RNN Recurent Neural Networks

GM Generative Models

GAN Generative Adversal Network
RBM Restricted Boltzman Machine
DBN Deep Belief Network

NHE Natural Hazards Engineering
CAD Computer-Aided Design

BIM Building Information Modeling
DSS Decision Support Systems

RFID Radio-Frequency Identification
BPM Building Performance Monitoring
SHM Structural Health Monitoring
KBE Knowledge-Based Engineering
SM Surrogate model
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HVAC Heating, Ventilation and Air Conditionig

AR Augmented Reality

VR Vurtual Reality

SCADA  Supervisory Control and Data Acquistion
DDC Direct Digital Control

WLAN  Wireless Local Area Network

UWB Ultra-Wideband

MQTT Message Queuing Telemetry Transport
HTTP Hypertext Transfer Protocol

BMS Building Management Systems
AWS Amazon Web Service

API Application Programming Interface
PCM Phase-Changing Material

PMV Predicted Mean Vote

PPD Predicted Percentage Dissatisfied

HBIM Heritage Building Information Modeling
UMES Urban Multi-Energy Systems

SME Medium-Sized Enterprise
ROI Return on Investment
IPD Integrated Project Delivery

NZEDC  Net Zero Energy Data Center
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