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Abstract: We aim to provide detailed derivation and analytical investigation that lead to closed-form
mathematical equations that describe how various plasma properties (such as the electric
conductivity and the travel speed) affect the resultant electric behavior of the plasma as a supersonic
electrically conductive medium that flows under the influence of an applied magnetic field to
produce direct current electricity within a linear channel. This magnetohydrodynamic problem can
take four main forms, depending on the geometric design and electric connectivity of electrodes.
Starting from basic principles and using informative sketches, we explain the equations governing
the performance of this power generation technique, and contrast the operational conditions for the
four different channel cases.
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1. Introduction
1.1. Background

Electricity is a main driver for modern civilization [1,2,2-8]. Global electricity generation and
demand have been generally increasing steadily since 2000, except for irregularities in 2009 due to
the 2008 economic recession and in 2020 due to the COVID-19 pandemic [9-12]. While conventional
power systems (i.e., power plants that burn fossil fuels [13-19]) are reliable methods for generating
large amounts of electricity, their harmful GHG (greenhouse gas) emissions [20-28] and other
pollutants encourage the shift to non-conventional alternatives, such as renewable energy sources
[29,30](such as solar energy [31-36], wind energy [37-39], and crop-based bioenergy [40]), and low-
carbon hydrogen [41-45].

Another method for non-conventional electricity generation is the magnetohydrodynamic
(MHD) generator [46]. Such generators utilize the Lorentz force and electromagnetic principles to
extract energy from a moving ionized gas (plasma) to produce direct current (DC) electricity without
rotating or reciprocating elements as found in conventional heat engines [47-50].

There are two broad categories of MHD generators. One category of MHD generators is the
open-cycle generators, where combustion products (such as carbon dioxide “CO>” and steam “H20")
are seeded with alkaline compounds (e.g., potassium carbonate “K2CQOs”), and they form weakly-
ionized thermal (equilibrium) plasma that is accelerated within a channel while subject to a magnetic
field to induce electric fields and electric currents [51,52]. Such a channel may be viewed as an
“electromagnetic turbine”. Being in thermal equilibrium (or thermodynamic equilibrium) means that
the electrons (the effective charge carriers due to their light mass and thus high mobility) and the
heavy particles in the plasma gas (ions, atoms, and molecules) in such combustion plasmas can be
treated as having one common temperature due to the high collision frequencies and high energy
transfer per collision [53,54]. Being open-cycle means that the working plasma is not recirculated back
after energy is extracted from it for electricity generation.

The other broad category of MHD generators is the closed-cycle type, in which MHD generators
utilize a heated inert gas (e.g., argon “Ar”) [55,56] whose temperature is elevated using a heat
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exchanger (rather than a direct combustion process), and this heated gas is seeded with an alkaline
metal, such as cesium vapor (Cs) to form a non-equilibrium plasma medium. It should be noted here
that the alkali metal cesium, which has an atomic number of 55, vaporizes at a relatively low
temperate of about 944 K (671 °C) [57,58], while it readily melts near room temperatures at only 302 K
(29 °C) [59,60]. Being a non-equilibrium plasma means that its constituent gas particles (electrons,
ions, atoms, and molecules) are not in a state of thermal equilibrium, with electrons characterized by
a higher temperature compared to heavy particles (ions, atoms, and molecules) [61,62]. The higher
temperature of electrons in inert gas plasmas is necessary for keeping a sufficient level of electric
conductivity despite the relatively low bulk temperatures. This state of non-equilibrium (two-
temperature plasma) can be achieved by ohmic heating (Joule heating) under a relatively small
frequency of collisions between the electrons and the neutral gas atoms [63,64]. Being closed-cycle
means that the working plasma is recirculated back after energy is extracted from it for electricity
generation. Before repeating the energy extraction process, energy is added again to the depleted
plasma (e.g., by a heat exchanger) to restore its initial state [65].

Closed-cycle magnetohydrodynamic (CCMHD) generators typically have a disc shape [66-70],
and this design allows efficient utilization of the magnets [71]. The compactness of CCMHD
generators renders them of special interest in space applications, especially in space missions
reaching trajectories far from the sun, where solar irradiation and photovoltaic power conversion
become ineffective [72].

On the other hand, open-cycle magnetohydrodynamic (OCMHD) generators pertain more to
terrestrial electricity generation; where they can provide much larger production capacities. Such
OCMHD generators may be used either in a continuous mode as power plants or in a pulsed mode
for geological prospecting.

The performance of MHD generators can be described in terms of three percentage metrics
[73,74].

First, we have the enthalpy extraction or enthalpy extraction ratio (EE) metric, which is the ratio
of the drop in static enthalpy (Ah) within the MHD generator to the inlet static enthalpy (h;,) at the
entrance of the MHD generator. Thus,

Ah h
EE=—=1--2%¢ (1)
hin hin
where (h;,) and (h,,;) are the specific static enthalpy of the plasma at the entrance and at the exit
of the MHD generator. A high enthalpy extraction (EE) of 38% was successfully demonstrated

experimentally for a disc-type MHD generator [75].

Second, there is the MHD generator isentropic efficiency (9;sen) [76], which relates the actual
relative drop in the static enthalpy to the ideal relative drop in the total (stagnation) enthalpy (hg) in
the case of an isentropic process under the assumption of a calorically-perfect gas (thus, having
constant specific heat capacities and constant specific heat ratio) [77-81]. This MHD isentropic
efficiency is

Ah/hy, ,
nlsen Aho/ho'in ( )
where (h, ;,,) is the specific total enthalpy of the plasma at the entrance of the MHD generator.

The above equation can be written in terms of the total pressure (the stagnation pressure, which
is the sum of the static pressure and the dynamic pressure [82]) at the entrance of the MHD generator
(Poin) and at the exit of the MHD generator (pg,ye) using standard expressions for isentropic
compressible calorically-perfect flows [83] as
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Ah/h;,
Nisen = y-1 (3)
1- (pO,out/pO,in)

where (y) is a constant specific heat ratio (ratio of the specific heat capacity at constant pressure

to the specific heat capacity at constant volume). A high MHD isentropic efficiency (1;se,) of 63% was
successfully demonstrated experimentally for a disc-type MHD generator [84].

Third, there is the MHD generator electric (1,e.), which is defined as the ratio of the electric
power to the mechanical power. Mathematically, this is expressed as

|| Y - 14
Nelec = volume = (4)

- fffvolumeﬁ ) (jX E) dv

Open-cycle magnetohydrodynamic (MHD) generators are primarily in the form of a linear

channel, in which the weakly-ionized plasma moves at a high speed while subject to a strong applied
magnetic field [85]. The inlet plasma speed can be subsonic (Mach < 1) [86-88] or supersonic (Mach >
1) [89-97]. Contrary to subsonic and incompressible flows [98-109], supersonic flows at the MHD
channel entrance need a divergent MHD channel in order to allow the supersonic flow to expand and
accelerate [110-112]. Attached electrodes are used to transmit the collected electric current to an
external eclectic load. There are four common designs for the open-cycle MHD channels; namely, (1)
continuous-electrode Faraday channel [113-115], (2) segmented-electrode Faraday channel [116-118],
(3) linear Hall channel (always have segmented electrodes) [119-121], and (4) diagonal channel or
diagonal-electrode channel or diagonally-shorted channel (always have segmented electrodes) [122-
124]. Each of these designs has a unique layout of its electrodes, hence the name of its type.

1.2. Goal of the Study

This work can be viewed as an extension of our earlier studies about mathematical modeling for
magnetohydrodynamic (MHD) power generation. We previously presented the governing electric
equations in the MHD channel under various levels of modeling approximation [125]. We also
proposed three mathematical approaches for resolving the electric field within the MHD domain
[126]. In addition, we discussed a mathematical model for relating the electric conductivity of MHD
plasma with its local temperature, pressure, and chemical composition [127].

In continuation to our work about mathematical modeling for magnetohydrodynamic (MHD)
generators, we here aim to present mathematical expressions for the electric field and electric current-
density field within the plasma of an open-cycle MHD generator, and the resulting output power
density under the four types of linear MHD channels [128]. We supplement the mathematical analysis
with illustrative sketches and logical derivation starting from elementary equations.

Our review of these mathematical expressions here and organized presentation and contrasting
have a number of benefits. First, they serve as a guide for readers interested in open-cycle MHD
(OCMHD) power generation and the difference in their performance according to the different
channel configurations. Second, our review provided here involves explicit algebraic scalar
expressions, enabling parametric and visual investigation of the nonlinear influence of some
parameters on various variables of importance in the OCMHD channel [129-131]. For example, the
penalty in the electric output power density (P) due to the Hall parameter (f) in the case of a
continuous-electrode Faraday channel can be easily identified through the presented mathematical
expressions in the current study. Third, the directions of the vector fields under each channel
configuration are clarified, and this is useful in understanding the operation of the MHD generator
for each case, and can help in optimizing or controlling the performance [132-135]. For example, the
load factor in the linear Hall channel can be optimized for maximum power output through the
presented mathematical expressions in this study. Fourth, the content of this study may be used in
an educational environment [136-143], where students are exposed to the application of mathematics
in an interdisciplinary subject this combines electric engineering, energy engineering, and physics
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[144]. The analysis presented here is simple, and can be viewed as reduced-order modeling [145] that
takes advantage of a set of assumptions such that no computationally-demanding solutions of the
partial differential equations using computational fluid dynamics (CFD) are needed [146-151].

2. Research Method

The method followed in the current study is the symbolic mathematical manipulation of a
fundamental generic equation for electrically-conducting moving plasma. This equation is the
generalized (extended) Ohm’s law in its vector form, which accounts for the Hall effect (Hall current-
density) as well as the electromagnetic induction effect (Faraday current-density).

We expand this vector equation into three scalar equations (corresponding to the three Cartesian
components). Then, we apply our assumptions to deduce two scalar equations for the axial
component (along the plasma’s travel direction) and the vertical components (perpendicular to the
magnetic field and the plasma velocity). We drop the third scalar equation (in the direction of the
magnetic field) because it becomes trivial in our case.

These two derived scalar equations are analyzed further for each of the four linear channel
configurations; and this leads to the aimed mathematical expressions for the electric field, electric
current-density, and power density for each configuration.

The common assumptions made in this study are:

e  The MHD channel has a divergent geometry, with a trapezoidal cross-section (in the x —y
plane). Such a simple MHD channel has been realized in the Sakhalin pulsed MHD generator
[152-154]. The width (along the magnetic field) is constant, and its influence is disregarded
here (this is equivalent to assuming infinite width, thus two-dimensional channels).

e  The charge carriers are only the free electrons in the plasma (liberated as a result of thermal
ionization). This means that while ions also exist (to ensure the overall neutrality of the
plasma), their contribution to the electric current is neglected [155,156]. This is a reasonable
assumption given the much stronger mobility of the lighter electrons compared to the heavier
ions [157-159].

e  Unidirectional magnetic field (magnetic-field flux density) that points in the positive z-axis.
Therefore, the magnetic-field flux density vector (B) can be expressed as B k, where (k) is a
unit vector in the direction of the positive z-axis. Because the magnetic field is externally
applied, this assumption can be justified. In such a case, special electromagnetic designs can be
made to approximate this assumption. This treatment of the magnetic field as being fully
controllable implies a low magnetic Reynolds number assumption [160-163], where auxiliary
induced magnetic-field flux density due to the moving plasma (the self-excitation
phenomenon) is neglected [164-167]. This “inductionless” assumption [168] of a low magnetic
Reynolds number is reasonable for MHD generators [169-171].

e  Unidirectional plasma velocity that points in the positive x-axis. Therefore, the plasma
velocity vector (u) can be expressed as u i, where (f) is a unit vector in the direction of the
positive x-axis. Although this assumption neglects turbulence and no-slip effects in the plasma
flow, it can be regarded as an acceptable treatment for deriving system-level laws, where the
time-averaged bulk velocity of the plasma should be primarily in the axial direction. This
assumption becomes more valid when the divergence angle of the channel decreases, so the
channel height approaches uniformity. In addition, turbulence tends to be suppressed as the
Mach number increases [172,173]; and our study is for supersonic channels. In addition,
adopting a one-dimensional approximation for a channel flow or exterior flow has been
implemented in other studies [174-177].

e No electric field along the lateral direction (along the direction of the magnetic field). This
assumption is aligned with the unidirectionality assumption for the magnetic field. Even if the
plasma has a three-dimensional flow velocity, the unidirectional magnetic field along the z-
axis is not able to induce an electric field in the same z-direction. Therefore, the electric field
along the z-axis within the MHD plasma can only be caused by an externally applied electric
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field; but such a case is not considered in the current study, where there are no electrodes
along the z-axis to permit this.

3. Base Scalar Equations for Electric Fields in MHD Plasma

In this section, we derive the two base scalar equations for the conventional electric current-
density and the load-consumed electric field, under the assumptions made in the previous section;
particularly the unidirectional magnetic field and the unidirectional plasma velocity. These scalar
equations are the x-component and the y-component of the generalized Ohm’s law, which applies
to a three-dimensional conductor medium (rather than a conductive wire).

The generalized Ohm’s law (for plasma with neglected ion drift) relates the electric current-
density (J) to the electric field (E), electric conductivity (o), and the applied magnetic field (B) [178-
180]. It should be noted that we adopt the conventional current here, rather than the electron current
[181-183]. The only difference if the electron current is adopted rather than the conventional current
is that the electric current-density (/) should have a minus sign in each appearance for it in our
presented mathematical formulations.

The generalized Ohm’s law can be expressed in different forms, we start with the following
convenient form for it, which facilitates our discussion and subsequent analysis:

J=0E-ujxB (5)
where (p) is the electron mobility.

The Hall parameter (f) is the electron mobility (1) divided by the magnitude of the applied
magnetic-field flux density (B). Mathematically, this is expressed as

u=t (6)

It is useful to add here that the electric conductivity of the plasma (o) due to the free electrons
(ions contribution is neglected as mentioned earlier) is [184-186]
0g=¢éene i (7)
where (n,) is the number density of the charge-carrier electrons, and (e) is the elementary charge
(the absolute electric charge of an electron; e = 1.6021766 x 107%° C [187-189]).
Therefore, the generalized Ohm’s law form in Equation (5) can be expressed in an alternative
form as
J=0E—B] Xt (8)
where (#ig) is a unit vector in the direction of the applied magnetic-field flux density vector (B).
Thus, this unit vector is defined as

—_

B (9)
B

The first term in Equation (8), the term (o E), is an extended version of the classical Ohm’s law

fip

for a one-dimensional solid conductor. To demonstrate this; one can multiply both sides of the
equation by the area (A4) perpendicular to the electric current-density, and then replace the vector
electric field (E) by the negative value of the scalar gradient of the electric potential (). This gives

]A=0A<—A—CD> (10)

)
where (/) is the magnitude of the unidirectional current density; and (- A®/§) is a numerical
approximation for the gradient of the electric potential (®), and it becomes exact in the case of a linear
decrease of the electric potential in the direction of the conventional electric current density.
The product (J A) in the above equation is the electric current (/).

I=]4 (11)
Also, the quantity (o A/§) is the reciprocal of the resistance (R) of the conductor. Therefore,
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6
R=— 12
— (12)
Using Equation (11) and Equation (12) in Equation (10) gives the classical Ohm’s law, as

AD
[ = —— 13
= (13)

The minus sign in the above equation indicates that the electric potential drops in the direction
of the electric current. This minus sign is normally dropped when Ohm’s law is expressed, with the
understanding that the electric potential drops across the conductor or the load.

The second term in Equation (8), the term (—f ] x ip), is the Hall electric current-density due to
the Hall effect, where an electric voltage is induced as a result of the movement of the electrons under
the effect of the applied magnetic field, and this leads to a “secondary” Hall current density
perpendicular to both the “primary” current density (/) and the applied magnetic field (B) [190-192].
The magnitude of this “secondary” or Hall current density, | — 8 ] X fig|, is proportional to the Hall
parameter (). Thus, from Equation (6), The magnitude of this “secondary” or Hall current

density, |—f ] x ﬁB| =|—uB ] x fig|, is proportional to either the magnitude of the applied
magnetic field (B) or the electron mobility ().
In the current study, the applied magnetic-field flux density vector is assumed to be totally in the

z-axis, whose unit vector is (k). Therefore, we have

g =k (14)
Using Equation (14) in Equation (8) gives a third form for the generalized Ohm’s law, which is
J=cE-p]xk (15)

The cross product (f x k) leads to a vector that has two non-trivial components in the x-axis and
y-axis only, as

Jxk=(i+], ]+, k) xk=—], i+ ] (16)

Using Equation (16) in Equation (15), and collecting terms for the three Cartesian components
gives the following three scalar equations:

]xzo-Ex_ﬁ]y (17)

Jy=0E,+B]; (18)

J;=0E, (19)
Given that the z-component of the within-channel electric field vector (E) is zero here

E,=0 (20)
then, Equation (19) implies also that the z-component of the electric current-density is zero

J:=0 (21)

Equation (17) and Equation (18) are implicit expressions for the x-component and the y-
component of the electric current-density, and these two components (/, and J,) are clearly coupled.
However, these two coupled equations can be solved simultaneously to obtain two explicit
uncoupled expressions for these two components (/, and J,), with the result being as follows:

o
Jx = Tﬁz (Ex -B Ey) (22)

Jy = %’32 (Ey + B Ex) (23)

The electric field vector within the plasma (E) is the vector sum of the electric field source vector
or the open-circuit electric field vector (Eyc) that is induced due to the motion of the electrically-
conductive plasma under the effect of the applied magnetic field vector, and the electric field sink
(E,) that is consumed by the external electric load (if a load is connected). Thus,
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E = Ey + Epc (24)

The load electric field (E,) in MHD power generation is dependent on the connected load.
However, if the MHD channel is used in a reverse mode as a plasma accelerator (a
magnetohydrodynamic drive), then this electric field (E,) can be then viewed as an applied one, and
the electric current is applied to the MHD electrodes from a powerful external DC (direct current)
source, rather than being collected from the MHD electrodes [193-195].

The induced or convection open-circuit electric field vector (Eoc) is related to the bulk velocity
of the plasma (i) and the applied magnetic field vector (B), while being perpendicular to both of
them [196,197]. Thus,

From the two previous equations, Equation (24) and Equation (25), we can write the following;:
E=E,+ixB (26)

For our case of unidirectional magnetic field (B = B k) and unidirectional convective plasma
velocity (u = u i), the x-component and the y-component of the above vector equation are

Ey = Eox (27)
E,=Ey, —uB (28)
Using the above two expressions for (E,) and (E,) in Equation (22) and Equation (23) gives
]xZ%BZ(EOx_ﬁEOy-I'.BuB) (29)

o
=1y (Eoy —u B + B Eoz) (30)

These two scalar expressions are to be analyzed further and their customized form is to be
discussed for each case of the four designs of the linear magnetohydrodynamic (MHD) channels. This
is presented in the next four sections, with one section dedicated to each channel design.

In the case of Faraday-type MHD linear channels (the continuous-electrode version or the
segmented-electrode version), it is the y-component of the current density (/) and load electric field
(Eoy) that are useful because these are the current densities effectively collected by the channel
electrodes (the anode and cathode, which are separated vertically “along the y-axis”). In such cases,
a Faraday load factor (Kr) can be introduced as the ratio of the load electric field (Ey, ) to the induced
electric field (u B). So, mathematically we have

_ Eoy

Kp = 5 (31)

Equivalently, this Faraday load factor can be viewed as the ratio of the electric resistance of the
load (R, ) to the total series resistance encountered by the electric current flow due to both the external
electric resistance of the load and the effective internal electric resistance within the MHD generator
itself that is designated by the symbol (R;) (this internal resistance is caused by the bulk plasma
region, the boundary layer near the wall [198,199], and any solid slag layer formed on the electrodes
[200,201]). Therefore, the Faraday load factor (Kr) can be mathematically described as

Ry
Therefore, the Faraday load electric field (Ej,) can be expressed as
Eoy =KruB (33)

The value of (Kr) is bounded between 0 and 1. At the extreme condition of K = 1, the circuit is
open (the external load is disconnected). This corresponds to setting the load resistance to infinity
(R, = o) in Equation (32). At the other extreme condition of Kr =0, the circuit is shorted (the
external load is replaced with a perfect electric conductor). This corresponds to setting the load
resistance to zero (R, = 0) in Equation (32). It can be shown that maximum power delivery to the
“matched” external load occurs at an optimum Faraday load factor of Kp = 0.5 [202,203].
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In general, the direct current (DC) electric power delivered to the load powered by a
magnetohydrodynamic channel is [204]

sz—ff J.E,av (34)
volume

where (dV) is an infinitesimal volume element.

The direct current (DC) electric power delivered to the load in the case of a Faraday-type MHD
generator per unit volume of plasma is

Pr = Eqy |Jy| = KruB|J| (35)

where | ], | is the absolute value of the vertical “i.e., parallel to the y-direction” current density
(since it actually has a negative value due to pointing in the negative y-direction).

In the case of Hall-type linear MHD channels, it is the x-component of the current density (/)
and load electric field (Ey,) that are useful because these are the current densities effectively collected
by the channel electrodes (the anode and cathode, which are separated axially “along the x-axis”). In
such cases, a Hall load factor (Ky) can be introduced as the ratio of the load electric field (Ey,) to the
induced (open circuit) axial electric field (8 u B). So, mathematically we have

— |E0x|
H=BuB

where |Ej,| is the absolute value of the axial load electric field (since it is actually having a

(36)

negative value due to pointing in the negative x-direction).

As in the case of the Faraday load factor, the Hall load factor can be viewed as the ratio of the
electric resistance of the load (R;) to the total series resistance encountered by the electric current flow
due to both the external electric resistance of the load and the effective internal electric resistance
within the MHD generator itself (R;). Therefore, the Hall load factor (Ky) can be mathematically
described as

K, = —L (37)
"7 R, +Rg
Therefore, the absolute value of the Hall load electric field (|Ey,|) can be expressed as
|Eox| = Kn BuB (38)

As in the case of the Faraday load factor, the value of (Ky) is bounded between 0 and 1. At the
extreme condition of Ky = 1, the circuit is open. At the other extreme condition of Ky = 0, the circuit
is shorted. Maximum power delivery to the “matched” external load occurs at an optimum Hall load
factor of Ky = 0.5 [205].

The direct current (DC) electric power delivered to the load in the case of a linear Hall MHD
generator per unit volume of plasma is

Py = |Eox|lJx =Ky fuB], (39)

4. Continuous-Electrode Faraday Channel

The first MHD channel design we review in this study is the continuous-electrode Faraday
configuration. This is the simplest configuration among the four linear MHD channels in terms of
physical construction and electric connectivity.

Using Equation (33) in Equation (29) and Equation (30) gives a customized form for the electric
current-density components suitable for Faraday-type channels as
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1x=%32(on—ﬁKpuBJfﬁ”B):#(EO”B”B“_KFD o
b:%ﬂz(KFuB—uB+/3E0x)=Tﬁ2(BEOx—uB[l—KFD (41)

In Figure 1, we illustrate the geometric layout of this channel in the x —y plane. The top side
represents the anode electrode, which has a negative (or grounded) polarity. The bottom side
represents the cathode electrode, which has a positive polarity. In this sketch, the channel height (the
separating distance between the two electrodes) is assumed to increase linearly with the axial
distance (x). This is not necessary, and nonlinear profiles are permitted as well [206]. However, in the
shown linearly-divergent channel, the equipotential surfaces (the virtual surfaces with constant
electric potential ®) become flat planes (straight lines in the shown two-dimensional sketch). These
potential planes are projected in the x —y plane as inclined straight lines, with their inclination
gradually change from being coincident with the anode at the top to being coincident with the
cathode at the bottom. In our sketch, we provide arbitrary values for sample intermediate
equipotential lines, in addition to the top anode (which is also an equipotential line), and the bottom
cathode (which is an equipotential line). We assign an electric potential of 30 V to the cathode, and a
reference zero potential to the anode. These are not realistic values because they are small (actual
cathode potential can exceed hundreds of volts [207-209]), but they are provided just to improve the
explanation through numerical examples.

The y-component of the load electric field (Ey, ) is positive in the case of the continuous-electrode
Faraday channel, meaning that it is pointing vertically up, from the bottom positive cathode to the
top negative (or grounded reference) anode. The load electric field vector is in the direction of
decreasing electric potential [210-212], and this justifies the upward direction of (Ey,).

=0V
I (conventional) ®(anode)

>

SV

0y

Load Ey, 15V

\ZOV

y  25V

wu Pleathode) - 5, .

z, B

Figure 1. Graphical illustration of a linearly-divergent continuous-electrode Faraday channel, with sample

equipotential lines.

In Figure 2, we further highlight the local direction of the load electric field vectors (EO ), which
is perpendicular to the local equipotential lines, making the load electric field vectors take the shape
of circular arcs pointing from the bottom cathode to the top anode. Due to the anti-symmetry, the
overall x-component of the load electric field vanishes, because in the upper half of the channel, the
component (Epy,) is negative (upstream with respect to the moving plasma), while it is positive
(downstream with respect to the moving plasma) in the lower half of the channel as shown in the
sketch.
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I (conventional) anode
A

, /%/ v

E,, (positive)

Load Ey, (positive)

J (conventional)

y \Ll_-‘\ %o ) —

|Eq, (negative)|

X, u B . Cathode
EOC = ﬁ X B
z, B

Figure 2. Graphical illustration of a continuous-electrode Faraday channel, with a demonstration of the direction

of the current density and the load electric field.

So, at the entire generator level, we have
Eox =0 (42)

We also repeat below the general expression for (E,) for Faraday-type channels, which was
presented earlier.

Eoy = KruB (33)

If the MHD channel is uniform in height (no geometric divergence), then the condition (E,, = 0)
becomes applicable locally, not just at an integrated level.

Thus, the overall load electric field is effectively upward (from the bottom cathode to the top
anode).

The absolute value of the local acute inclination angle (64) of the equipotential line (measured
from the “vertical” y-axis) is determined from the local values of the absolute x-component and the
y-component (always positive here) of the load electric field; namely (|Eo,|) and (Ey,), respectively.
Therefore, mathematically we have

E
Oy = tan™?! (ﬁ) (43)
® | Eox|

For example, the centerline equipotential line is exactly horizontal, thus the local load electric
field vector is exactly vertical (thus, |E;,| = 0). Therefore, the centerline equipotential line has
Eq
fp = tan™?! (lTﬁ]) = tan"1(o0) = 90° (44)
Applying the condition (Ep, = 0) to the two base equations, Equation (40) and Equation (41),
gives the following two customized relations for the electric current-density vectors in the case of the
continuous-electrode Faraday channel:

i = B (A=K (45)
b=~y B QKD (46)

Since the values of (), (8), (u), (B), and (1 — K) in the above equation are positive; the two
previous equations imply that the x-component of the current density (/) is positive, while the y-
component of the current density (/) is negative. Therefore, the electric current-density vector () in
the case of the continuous-electrode Faraday channel is inclined right-down. Furthermore, the
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magnitude of this inclination angle (6,), which is the acute angle measured from the vertical y-axis,
is governed by

. Jx
6, = tan™! <m) (47)

However, it can be seen from Equation (45) and Equation (46) that the ratio (/,/|J,|) reduces to
the Hall parameter (). Therefore
6, = tan~1(B) (48)
Because the Hall parameter (8) depends on the electron mobility, which in turn depends on the
local chemical composition, the temperature, and the pressure of the plasma gas [213-215]; the
direction of the current density vectors (J) may change spatially from one point to another within the
MHD channel (but still pointing in the right-down direction). In the special case of uniform
isothermal plasma, the value of () becomes constant throughout the MHD channel, and thus the
electric field vectors (J) become parallel.
From Equation (35), the direct current (DC) electric power delivered to the load in the case of the

continuous-electrode Faraday channel per unit volume of plasma (Pr_cont) is

o
PF—cont:KFuB |]y| :KFuB —zuB(l_KF)
1+p (49)

=1-|_ﬁ2 uszKF(l—KF)

When the above expression is optimized with respect to the Faraday load factor (Kr), the
optimum case occurs at (K = 0.5). This means that the external resistance of the matched (optimized)
load is equal to the internal resistance of the MHD generator, or

Ry opt-r = Rg (50)

In such a case of (Kr = 0.5), the matched-load optimized power dissipation to the load (per unit

plasma volume) in the continuous-electrode Faraday channel is

Pr_cont.opt = 0.25 o u? B? (51)

1+ p?

The factor (1/(1 + $2)) in the above equation represents a power penalty due to the uncollected
“parasitic” Hall current density (/).

In the limiting case of zero Hall effect (§ = 0), the above expression for the optimized load power
(per unit plasma volume) becomes

PF—cont,opt,ideal = 0.25 0 u?® B? (52)

However, practically this ideal condition is not achievable with the continuous-electrode
Faraday channel, because the theoretical condition that (f = 0) also implies zero electron mobility
(#=0) according to Equation (6). From Equation (7), such a condition implies zero electric
conductivity (o = 0), and thus the MHD generator ceases to produce electricity.

The inevitable Hall effect loss associated with the continuous-electrode Faraday channel is a
major disadvantage, making this channel type suitable only for a restricted regime of low (f). For
example, at a Hall parameter value of (f = 0.5), 20% of the ideal power limit is lost, which is a
reasonable loss; while at a Hall parameter of (f = 1), 50% of the ideal power limit is lost; and at a Hall
parameter of (8 = 2), 80% of the ideal power limit is lost and this is high. All these three values of (8)
are possible in open-cycle MHD generator plasma [216]. The use of continuous-electrode Faraday
channel may be regarded as acceptable up to a limit of approximately (8 = 2) [217].

To avoid the aforementioned power loss problem, alternative MHD channel designs should
be used, and this leads to the three alternative configurations of linear MHD channels to be
discussed in the next three subsections.
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We conclude this section by deriving an expression for the electric efficiency of the continuous-
electrode Faraday channel. From the general expression in Equation (4), a reduced version can be
obtained if the channel has uniform electromagnetic properties, and this reduced form is

|]x EOxl + Uy EOyl |]y| EOy EOy KF uB
_ — = = = = K 53
nelec,F cont u |]y| B u |]y| B uB uB F ( )

Thus, the electric efficiency reduces to the Faraday load factor (Kr) in the case of a continuous-
electrode Faraday channel with uniform properties.

5. Linear Hall Channel

After discussing the operation of the continuous-electrode Faraday MHD channel in the
previous section, and highlighting the deficiency caused by the Hall effect causing that type of linear
MHD channels to be undesirable at high Hall parameters exceeded unity; we discuss here the
operation of an alternative type, which is the linear Hall MHD channel.

Unlike the continuous-electrode Faraday MHD channel, where a high Hall parameter ()
beyond unity renders that type undesirable; the linear Hall channel actually is designed for high
values of the Hall parameter () (as high as 10 [218]), and it becomes undesirable at low values of ().

Figure 3 illustrates the configuration of the linear Hall channel. Instead of separating the
electrodes (anode and cathode) vertically, as was the case in the continuous-electrode Faraday
channel; they are here separated axially. The positive cathode is at the rear of the channel, while the
negative (or reference grounded) anode is at the front of the channel. Multiple vertical short-circuit
links are inserted. Each vertical link is an equipotential line, and the electric potential increases
downstream toward the cathode. We added some numerical example values, from 0 V at the anode
to 30 V at the cathode (these are for explaining the variation of the electric potential, but they are not
realistic values due to being very small) [219].

short-circuit links

>
> =)
=) (a8}
I Il
) 5V 10V 15V |20V |25V 3
=]
2 =
<
= 0 3
| )
i 3

h

X Eq, |Eox (negative)| 1 .4

I (conventional)
Wh——
z, B

Figure 3. Graphical illustration of a linear Hall channel, with a demonstration of the direction of the current

density and the load electric field.

It can be seen in the sketch that the load electric field is purely horizontal, pointing upstream in
the direction of decreasing electric potential (®). The load electric field vector (E,) is the opposite of
the gradient of electric potential (®). Mathematically, this can be expressed as
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Ey = -V (54)
Due to the vertical shorting introduced in the linear Hall MHD channel (making the
equipotential lines vertical), the load electric field vector (Ep) is purely horizontal, in the direction of
the negative x-axis. Thus, the vertical component of the load electric field vector (Ey,) vanishes in
the linear Hall channel. Therefore,

Eoy =0 (55)
Eo = Eox i = —|Eqx| i (56)
E 0
Hq) = tan_l (i) — tan—l ( ) = (° (57)
|E0x| |E0x|
Recognizing that (Ey,) has a negative value (Ey, = —|Ej,|), then from Equation (38), we can write
EOx = _KHﬁuB (58)

Using the above equation and Equation (55) in Equation (29) and also in Equation (30), gives a
customized form for the electric current-density components suitable for linear Hall channels as

Jx=1ygr CKu BuB+BuB) =g fuB (1-Ky) (59)
Jy=1ygr (CuB =B KyuB) =~y uB (1+62Ky) (60)

The above two equations show that the current density vector in linear Hall channels has a
positive x-component (J, = |/,|) but a negative y-component (J,, = —|/,|). This is illustrated in the
previous sketch, with the tilt angle (acute angle, measured from the y-axis) of the current-density
vector (6;) when measured from the vertical is mathematically expressed as

— ]x — ﬁ(l_K)
9] = tan 1<m> = tan 1<W21?H) (61)

In order for the current density vector (J) tobe parallel, the Hall parameter (8) has to be uniform,
and this implies uniformity in the plasma thermo-chemical properties (chemical composition,
temperature, and pressure).

From Equation (39), the direct current (DC) electric power delivered to the load per unit volume

of plasma in the case of the linear Hall channel (Py) is
o
1+p2 (62)

=2 _w2B2p%K, (1—K,)
1+ B2 H H
Similar to the case of continuous-electrode Faraday channels, when the above expression is
optimized with respect to the Hall load factor (Ky), the optimum case occurs at (K = 0.5). This means
that the external resistance of the matched (optimized) load is equal to the internal resistance of the
MHD generator, or

Ry opt-u = Rg (63)

In such a case of (K = 0.5), the matched-load optimized power dissipation to the load (per unit
plasma volume) in the linear Hall channel is
2

i 5 o u? B? (64)
Comparing this expression for (Py ,,¢) to the one derived earlier for (P o, ) shows that the power
penalty factor (1/(1 + $?)) in the continuous-electrode Faraday becomes (82/(1 + $2)) in the linear
Hall channel. This Hall power penalty factor approaches unity (thus, the penalty diminishes) at high

PH,Opt = 0.25

values of the Hall parameter (8 > 1). This explains how the linear Hall channel is favored over the
continuous-electrode Faraday for high (8). On the other, the continuous-electrode Faraday channel
exhibits a smaller power penalty at (8 < 1). The power penalty factors for both channel types become
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equal to 50% at (f = 1). The ratio of the matched-load volumetric power density for the linear Hall
channel compared to the continuous-electrode Faraday channel is the square of the Hall parameter.
Therefore,

ho__ g (65)
P F,opt—cont
To help quantify the advantage of continuous-electrode Faraday MHD generators at low (f8),
and the advantage of linear Hall MHD generators at high (8), we compare in Table 1 the power
penalty factors for both types of MHD linear channels (continuous-electrode and Hall) for a wide
range of () from 0 to 10. It is apparent that at (f = 2), the linear Hall channel is four times more
useful than the continuous-electrode Faraday channel.

Table 1. Gain in the power output for the linear Hall channel compared to the continuous-electrode Faraday

channel at different Hall parameters.

Hall Power Penalty Factor Py opt _ g
Parameter Continuous-electrode Faraday Linear Hall Pr opt-cont
0 100% 0% 0
0.25 94.1176% 5.8824 0.0625
0.5 80% 20% 0.25
0.75 64% 36% 0.5625
1 50% 50% 1
1.25 39.0244% 60.9756% 1.5625
15 30.7692% 69.2308% 2.25
1.75 24.6154% 75.3846% 3.0625
2 20% 80% 4
25 13.793% 86.2069% 6.25
3 10% 90% 9
4 5.8824% 94.1176% 16
5 3.8462% 96.1538% 25
6 2.7027% 97.2973% 36
7 2% 98% 49
8 1.5385% 98.4615% 64
9 1.2195% 98.7805% 81
10 0.9901% 99.0099% 100

We point out here that in the linear Hall channel, because there are multiple electric connections
(the shorting links) between the anode and cathode pairs, and each of these intermediate electric
connections has an electric potential exceeding that of the anode; each of these intermediate links can
be used as an intermediate cathode that powers a separate electric load (connected from the other
terminal to the global anode at the entrance of the MHD channel). This possibility is illustrated in
Figure 4. However, in the current study, we assume in the analysis the simple case of a single electric
load connected between the MHD overall anode and overall cathode. This allows consistency when
comparing this channel type with the continuous-electrode Faraday channel (which admits only a
single electric load).
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short-circuit links
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z, B 13
\/\N\Load 3 <

Figure 4. Graphical illustration of a linear Hall channel, in the case of three external loads being powered

simultaneously.

We conclude this section by deriving a special expression for the electric efficiency of the linear
Hall channel. From the general expression in Equation (4), a reduced version can be obtained if the
channel has uniform electromagnetic properties, and this reduced form is

o
Ux Eoxl + Iy Eoyl _ Jx |Eoxl _—1 Tz FuBQ—Ky) Ky fuB

NetecH = = = (66)
ulsy|B wl|B u g uB (L+B2Ky) B
Y1¥ ,B
This can be simplified to
B? (1 —Ky) Ky B’
= 1-Ky) K, 67
Nelec,H = 1 +,32 KH 1 +ﬁ2 KH( H) H ( )
At high Hall parameters (§ — o), the above expression approaches the following limit:
neleC,H(,B - o) =1-Ky (68)

At the optimum Hall load factor (Ky = 0.5), the electric efficiency expression in Equation (67)
can be further simplified to

p? B’

Ky =0.5 69
77elecH(H ) 1+05ﬁ2 4+2,32 ( )
At high Hall parameters (§ — o), the above expression approaches the following limit:
1
77elec,H(KH =0.5,8 - oo) = E or 50% (70)

6. Segmented-Electrode Faraday Channel

After discussing the operational conditions and performance of the continuous-electrode
Faraday MHD channel and the linear Hall MHD channel, we here discuss a third configuration of
MHD generator channels, which is the segmented-electrode Faraday channel.

In Figure 5, we provide a graphical illustration of the segmented-electrode Faraday channel,
which clearly differs from both the continuous-electrode Faraday channel and the linear Hall channel.
Like the continuous-electrode Faraday channel, the electrodes are separated vertically (along the y-
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axis); but unlike the continuous-electrode Faraday channel, each electrode (the bottom positive
cathode and the top negative anode) is now divided into multiple electrode segments that are
electrically insulated from the adjacent segments.

Load 3 I de 4
no
Load2 1, :‘__LJ]__T
“““’de ! J— " an()de 3
—
I, anode Al

Load 1 H ]—zl E El %Load 4
y X

Eq, (positive)
Cathoge 1 :[I l}:
Cathode 2 Cathode 3

caf|
hode 4 |E,, (negative)|

X, U

z, B
insulating spacers

Figure 5. Graphical illustration of a segmented-electrode Faraday channel, with a demonstration of the direction

of the current density and the load electric field.

The motivation behind the segmented-electrode Faraday channel can be clarified by recalling
the adverse effect of the Hall current density (J,) in the continuous-electrode Faraday channel due to
the Hall effect, which causes power loss for the continuous-electrode Faraday channel, in the form of
a penalty factor (1/(1+ ?)). Operating under a condition of vanishing Hall parameter (8 = 0)
eliminates is penalty because the penalty factor becomes unity. However, such a condition of zero
Hall parameter means also zero electric conductivity, as implied by Equation (6) and Equation (7).

Therefore, an alternative method of avoiding the power loss under non-zero Hall parameter is
to adapt the electric connectivity such that the Hall current density (J,) vanishes, even with the
presence of the unavoidable Hall effect.

In order to suppress the Hall current density, the top and bottom electrodes are segmented into
multiple segments, and this arrangement does not give a chance for the Hall current density to
develop. Ideally, there should be an infinite number of segments. However, a finite number of
segments is practically possible. This resembles the lamination of a solid iron core in an electric
transformer in order to suppress the undesirable but unavoidable eddy currents [220-222].

For each pair of opposite segments (cathode and anode), an external load is connected. This
might be a drawback in this channel configuration, where having multiple individual loads may not
represent the exact demand pattern.

When assuming that the Hall current density successfully vanishes, the following condition
becomes a characteristic feature of the segmented-electrode Faraday channel:

Jx=0 (71)
Consequently, this means that the inclination angles of the electric current-density vectors (J),
measured from the vertical are zero. Therefore, each electric current-density vector (/) is perfectly

vertical (pointing down, from the top anode segment to the bottom cathode segment).
Mathematically, this is expressed as
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Jx a0
6, = tan™! = tan™* = 0° 72
; = tan <|]y|> tan <|]y|> (72)

Therefore, in the segmented-electrode Faraday channel; the direction of the current density
vectors is restricted to the vertical orientation. However, the load electric field vectors are not subject
to such a constraint. In fact, the load electric field possesses an axial component (Ey,) and a vertical
component (Ey, ). Like the continuous-electrode Faraday channel, Equation (33) for (Ey,) is still valid,
and we repeat it below.

Eoyy = KruB (33)

This means that (Ey,) is positive (pointing upward toward the negative anodes).

However, the axial component of the load electric field vector (E,,) is no longer zero in the
segmented-electrode Faraday channel as was the case in the continuous-electrode Faraday channel.
The expression for (Ey,) can be derived from its general expression in Equation (40). After setting
(Jx = 0) in Equation (40), we obtain a condition on (E,) as

g
0=—— (Eox tfuB[1—-K
11 B2 (Eox + B [ r]) (73)
This leads to the following expression for (Ey,) in the case of a segmented-electrode Faraday
channel:
Eox =—BuB (1—Kp) (74)

This shows that (Ey,) is negative, which in turn means that the electric potential (®) decreases in
the axial direction, as the x-coordinate increases.
The absolute value of the local acute inclination angle (64) of the equipotential lines (measured
from the “vertical” y-axis) in the segmented-electrode Faraday channel can be described as
E, KruB Ky
Oy = tan™?! (—y> =tan~! < ) =tan~! (—) (75)
|on| .BuB(l_KF) ﬁ(l_KF)

Due to the dependence on the Hall parameter (f), the angle (64) is not necessarily constant

throughout the MHD channel, and thus the equipotential lines are not necessarily parallel. However,
we illustrate them in Figure 6 in the special case where these equipotential lines are parallel straight
lines (for simplicity), and we also show in this figure how the angle (64) is defined.

I
Load 3 3 anode 4
Load 2 I,
anode 1 %aﬂode%_ —’Im?s
— 0o I
11 q Q 4
®” ° °
Load 1 &QQ £o Load 4
\
y = N
rLQ
q
Cathode 1 :[IZJK ‘7»6
XU cat -[Ié
5 hode 3 / Cathode 3
z, Cathode 4

insulating spacers

Figure 6. Graphical illustration of a segmented-electrode Faraday channel, with a demonstration of the direction

of the current density and the load electric field.
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From Equation (41), the y-component of the current density in the segmented-electrode Faraday
channel is obtained by using Equation (74), which gives

Jy (—B*uB[1—Kp] —uB[1-Kg])

T 142
. (76)
= _Tﬁz UB(l—KF) (1+‘Bz)
Thus,
Jy=—0cuB (1—-Kg) (77)

This shows that the electric current-density is downward (having a negative sign).

From Equation (35), the direct current (DC) electric power delivered to the load (treating the
multiple connected loads as a single one) in the case of the segmented-electrode Faraday channel per
unit volume of plasma (Pr_gg) is

Pr_seg:KpuB |Jy| =KruBouB (1—Kg) =0 u?B*Ks (1 —Kg) (78)

By comparing this expression for (Pr_s.g4) to the counterpart expression of (Pr_con:) in the case
of the continuous-electrode Faraday channel in Equation (49), it is evident that the penalty factor of
(1/(1 4+ B?)) does not appear in the case of the segmented-electrode Faraday channel. Thus, the
electrode segmentation in the Faraday-type channel is successful in making the channel performance
independent of the Hall effect, but multiple electrode pairs and loads replace the simpler
configuration of a single electrode pair and single load in the case of the continuous-electrode
Faraday channel.

As in the case of the continuous-electrode Faraday channel, the optimized output DC (direct
current) power to the load occurs at a matched load with (Kz=0.5) or (R}, opt—r = Rg). The optimized
(matched-load) volumetric power density in the case of the segmented-electrode Faraday channel is

Pp_segopt = 0.25 0 u® B? (79)

This is the same as the ideal (at the theoretical limit of vanishing Hall parameter) volumetric
power density for the continuous-electrode Faraday channel with optimized (matched) load in
Equation (52).

Comparing this expression for (Pp_seg 0p¢) t0 the expression of (Py p¢) in the case of the linear
Hall channel in Equation (64), it becomes clear that the penalty factor of (82/(1+ B?)) no longer
appears for the case of the segmented-electrode Faraday channel.

We conclude this section by deriving a special expression for the electric efficiency of the
segmented-electrode Faraday channel. From the general expression in Equation (4), a reduced
version can be obtained if the channel has uniform electromagnetic properties, and this reduced form
is

Ux EOxl + Uy EOyl |]y| EOy EOy KF uB
Nelec,F—seg = u|]y|B :u|]y|B:ﬁ= W B = Kp (80)

Thus, the electric efficiency reduces to the Faraday load factor (Ky) in the case of a segmented-

electrode Faraday channel with uniform properties. This is the same result obtained for the
continuous-electrode Faraday channel.

7. Diagonal-Electrode Channel

In the previous section, we showed how the segmented-electrode Faraday MHD
(magnetohydrodynamic) channel possesses desirable performance through ideal utilization of the
MHD volume without being affected by the Hall parameter. However, we showed that this ideal
condition comes at the expense of complicating the construction and electric connectivity, while a
large number (theoretically infinite number) of anode-cathode pairs are needed for powering a large
number of individual loads.
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It is desirable to design a fourth configuration of linear MHD channels that maintains the
excellent performance of the segmented-electrode Faraday channel while being less demanding in
terms of the construction complexity and being able to power a single load if wanted. We here discuss
this design, referred to as the (diagonal-electrode channel) or the (diagonal channel).

In the diagonal-electrode MHD channel, the suppression of the Hall current is achieved but not
through complicated segmentation as in the case of the segmented-electrode Faraday channel.
Rather, this condition of (J, = 0) attained though manipulating the direction of the electric field
vectors such that their direction is the same as those implied in the segmented-electrode Faraday
channel. This also means that the inclination angle of the equipotential lines (measured from the
vertical) should also match the one found in the segmented-electrode Faraday channel.

It is useful to repeat here the mathematical expression arrived in the previous section for the
absolute value of the local acute inclination angle (8¢) of the equipotential line (measured from the
“vertical” y-axis) in the segmented-electrode Faraday channel, which is repeated below

E KruB Kr
Oy = tan™?! (£> =tan™! ( dl ) = tan~! (—) (75)
? |Eox| BuB(1-Kp) B (1-Kp)
This means that the tangent of the equipotential inclination is
K
tan (64) = (81)

B (1K)
The above expression can be manipulated to derive a mathematical expression for the Faraday
load factor (Kr) as a function of the equipotential lines angle (64). The result is

x, - _b1an ) (82
1+ pBtan (64)

The control of the direction of the equipotential lines in the diagonal channel is achieved by
introducing inclined short-circuit links, tilted at the desired inclination angle (64) from the vertical
as shown in Figure 7. In this sketch, we assume a variation of the electric potential from 0 V at the
MHD anode (located at the entrance of the MHD channel) to 20 V at the MHD cathode (located at the
rear of the MHD channel). We also assume a single external load connected between these two

primary electrodes (the primary anode and the primary cathode).

short circuit links ~_

E,, (positive)

xu| Y Ux By ‘L\algllde h
\N\/\ |Eq, (negative)|

1 (conventlonal)

z, B

Figure 7. Graphical illustration of a diagonal-electrode channel, with a demonstration of the direction of the

current density and the load electric field.

From Equation (75), we can also extract a geometric condition of the load electric field vector
(Ey), whose negative axial component (Ep,) and its positive vertical component (E, ) should be
related according through the angle (64) as
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Ey, = _ Loy = —E,, cotan(6y) (83)
tan(Oy) Y
As in the Faraday-type channels, we repeat Equation (33) below.
Eoy =KruB (33)

Therefore, in the diagonal MHD channel, the (negative) axial component of the load electric field
can be expressed using Equation (83) and Equation (33) as
E KruB
0% = T tan(0y)
Using the expression of (Ey,) in Equation (84) and the expression of (tan (64)) in Equation (81)

—Kp u B cotan(64,) (84)

gives another form for expressing the axial component (E,,), which is
KruB

—

B (1 —Kr)

It is useful now to repeat the general expression of the axial component (J,) of the electric

Eox = — =—uBp (1-Kg)

(85)

current-density vector (J) for Faraday-type channels, which is
g o
]x:Tﬁz(EOx_BKFuB-l'BuB):TﬁZ(E0x+BuB[1_KF]) (40)

Using the expression for the target profile of (Ey,) for a diagonal channel, as provided through
Equation (85), in the above equation for (/,) shows that the component (J,.) automatically vanishes,
as follows

Je=11p 1+ ﬁz

The vanishing of the axial component of the electric current-density vectors (J) means that these

(-uBB[1-Kr]+uBB[1-Kp]) = uBp(0)=0 (86)

vectors are exactly vertical (parallel to the y-axis). Consequently, the inclination angles of these
vectors (6;), measured from the vertical, are zero. This situation is identical to the one obtained in the
segmented-electrode Faraday channel, and we repeat it below

Jx
0, = tan™ (W) =0° (72)

We also repeat the general expression of the vertical component (J,) of the electric current-
density vector (J) for Faraday-type channels, which is

o
=17 B? 1+ /32
Using the earlier expression for (Ej,), as given in Equation (85), shows that for the diagonal
channel, the component (/,,) becomes

(KruB—uB+ B Ey) = (B Eox —u B [1 - Kg]) (41)

Jy =Ty CuB [ = Kel —uB [1—Ky))
. (87)

Thus, for the diagonal channel, we have the same expression for (/,) as the one reached earlier
for the segmented-electrode Faraday channel, which is repeated below
Jy=—cuB(1—Kp) (77)
The direct current (DC) electric power delivered to the load (treating the multiple connected
loads as a single one) in the case of the diagonal-electrode channel per unit volume of plasma (Pp) is
the same as the one provided earlier for the segmented-electrode Faraday channel (Pr_g.4). The
mathematical expression for (Pp) is
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Py:KeuB|J)|=KeuBouB (1—Kp) =o0u?B? Ky (1—Kg) (88)

Therefore, neither the penalty factor (1/(1 + $?)) nor the penalty factor (8%/(1 + %)) appear in
the present case of a diagonal-electrode channel.

As in the case of the continuous-electrode Faraday channel and the segmented-electrode
Faraday channel, the optimized value of (Kr) is 0.5; and optimized power density in the case of the
diagonal-electrode channel is

Pp opt = 0.25 0 u? B? (89)

We would like to add three remarks about the diagonal MHD channel.

The first remark is that despite the attractive performance of the diagonal channel as described
above, it should be noted that this is constrained to a particular value of (Kr) and a corresponding
uniform value of (f). In reality, it is difficult to maintain such a specific operating point, and thus
operating at off-design regimes is likely to happen [223-225]. In the off-design condition, the
expressions we provided for the diagonal channel break, as these assume a perfect design point.

The second remark is that the diagonal-electrode channel reduces to a linear Hall channel in the
special value of (64 = 0°), which corresponds to vertical shorting links.

The third remark is that, as was the case for the linear Hall channel, the diagonal-electrode
channel permits powering multiple loads simultaneously because there are multiple electric
connections (the shorting links) that offer multiple levels of electric potential. This possibility is
illustrated in Figure 8.

short circuit links

I
Load 2\/\/\/\ < I3
WA <
Load 3

Figure 8. Graphical illustration of a diagonal-electrode channel, in the case of three external loads being powered

simultaneously.

As done for the previous three sections, we conclude this section by deriving a special expression
for the electric efficiency of the diagonal-electrode channel. From the general expression in
Equation (4), a reduced version can be obtained if the channel has uniform electromagnetic properties
and it is operating at its design point, and this reduced form is
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Ux EOxl + Uy EOyl |]y| EOy EOy KF uB

Thus, the electric efficiency is reduced to (Kr). This is the same result obtained for either the
continuous-electrode Faraday channel or the segmented-electrode Faraday channel.

8. Conclusions

In the current study, we provided a detailed mathematical analysis of the four main types of
linear magnetohydrodynamic (MHD) channels for power generation applications. Namely, these are
the (1) continuous-electrode Faraday channel, (2) segmented-electrode Faraday channel, (3) linear
Hall channel, and (4) diagonal-electrode channel. Through applying some assumptions
(unidirectional applied magnetic field, unidirectional plasma velocity, low magnetic Reynolds
number, and two-dimensional electric field), closed-form analytical expressions were derived to
describe the operation and power generation performance of these four channel types.

We compare in Table 2 various key characteristics of the continuous-electrode Faraday channel
and the linear Hall channel, whose geometric and electric connectivity are very different.

Then in Table 3, we provide a similar comparison, but between the segmented-electrode Faraday
channel and its performance-equivalent diagonal-electrode channel (when operating at is design
point). It can be seen these two types are very similar in terms of their operation.

Table 2. Comparison between two types of linear magnetohydrodynamic channels.

Quantity Continuous-electrode Faraday Linear Hall
EOx 0 _KH B u B
E()y KF u B 0
04 90° 0°
o o
g _uB(-K) 7 uB(1+B%Ky)
Jy 1152 7 1152 z
B (1—Ky)
2] -1 -1
/l tan~'(B) tan ( 11 52K,
P 1+ B2 u® B? Kp (1 — Kp) 1+ B2 u® B? B*Ky (1 — Ky)
1 2 p2 2
P 2 p2
Popt 0-251+ﬁZUUB 0.251+BZJuB
B? (1 — Ky) Ky
Nelec K 1Yk,
Number
1 1 or more
of loads

Table 3. Comparison between the other two types of linear magnetohydrodynamic channels.

Quantity Segmented-electrode Faraday Diagonal-electrode
Eox —BuB(1—-Kp) Same as segmented-electrode Faraday
Ey, KruB Same as segmented-electrode Faraday
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(7] tan™! (L) Same as segmented-electrode Farada

¢ BA-Kp) & Y

Jx 0 Same as segmented-electrode Faraday

Iy —ouB (1-Kg) Same as segmented-electrode Faraday

0, 0° Same as segmented-electrode Faraday

P ou?B? Kz (1 - Kz) Same as segmented-electrode Faraday

- 0.25 0 u? B? Same as segmented-electrode Faraday

Nelec Kg Same as segmented-electrode Faraday
Number

multiple 1 or more

of loads
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