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Abstract: We aim to provide detailed derivation and analytical investigation that lead to closed-form 

mathematical equations that describe how various plasma properties (such as the electric 

conductivity and the travel speed) affect the resultant electric behavior of the plasma as a supersonic 

electrically conductive medium that flows under the influence of an applied magnetic field to 

produce direct current electricity within a linear channel. This magnetohydrodynamic problem can 

take four main forms, depending on the geometric design and electric connectivity of electrodes. 

Starting from basic principles and using informative sketches, we explain the equations governing 

the performance of this power generation technique, and contrast the operational conditions for the 

four different channel cases. 
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1. Introduction 

1.1. Background 

Electricity is a main driver for modern civilization [1,2,2–8]. Global electricity generation and 

demand have been generally increasing steadily since 2000, except for irregularities in 2009 due to 

the 2008 economic recession and in 2020 due to the COVID-19 pandemic [9–12]. While conventional 

power systems (i.e., power plants that burn fossil fuels [13–19]) are reliable methods for generating 

large amounts of electricity, their harmful GHG (greenhouse gas) emissions [20–28] and other 

pollutants encourage the shift to non-conventional alternatives, such as renewable energy sources 

[29,30](such as solar energy [31–36], wind energy [37–39], and crop-based bioenergy [40]), and low-

carbon hydrogen [41–45]. 

Another method for non-conventional electricity generation is the magnetohydrodynamic 

(MHD) generator [46]. Such generators utilize the Lorentz force and electromagnetic principles to 

extract energy from a moving ionized gas (plasma) to produce direct current (DC) electricity without 

rotating or reciprocating elements as found in conventional heat engines [47–50]. 

There are two broad categories of MHD generators. One category of MHD generators is the 

open-cycle generators, where combustion products (such as carbon dioxide “CO2” and steam “H2O”) 

are seeded with alkaline compounds (e.g., potassium carbonate “K2CO3”), and they form weakly-

ionized thermal (equilibrium) plasma that is accelerated within a channel while subject to a magnetic 

field to induce electric fields and electric currents [51,52]. Such a channel may be viewed as an 

“electromagnetic turbine”. Being in thermal equilibrium (or thermodynamic equilibrium) means that 

the electrons (the effective charge carriers due to their light mass and thus high mobility) and the 

heavy particles in the plasma gas (ions, atoms, and molecules) in such combustion plasmas can be 

treated as having one common temperature due to the high collision frequencies and high energy 

transfer per collision [53,54]. Being open-cycle means that the working plasma is not recirculated back 

after energy is extracted from it for electricity generation. 

The other broad category of MHD generators is the closed-cycle type, in which MHD generators 

utilize a heated inert gas (e.g., argon “Ar”) [55,56] whose temperature is elevated using a heat 
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exchanger (rather than a direct combustion process), and this heated gas is seeded with an alkaline 

metal, such as cesium vapor (Cs) to form a non-equilibrium plasma medium. It should be noted here 

that the alkali metal cesium, which has an atomic number of 55, vaporizes at a relatively low 

temperate of about 944 K (671 °C) [57,58], while it readily melts near room temperatures at only 302 K 

(29 °C) [59,60]. Being a non-equilibrium plasma means that its constituent gas particles (electrons, 

ions, atoms, and molecules) are not in a state of thermal equilibrium, with electrons characterized by 

a higher temperature compared to heavy particles (ions, atoms, and molecules) [61,62]. The higher 

temperature of electrons in inert gas plasmas is necessary for keeping a sufficient level of electric 

conductivity despite the relatively low bulk temperatures. This state of non-equilibrium (two-

temperature plasma) can be achieved by ohmic heating (Joule heating) under a relatively small 

frequency of collisions between the electrons and the neutral gas atoms [63,64]. Being closed-cycle 

means that the working plasma is recirculated back after energy is extracted from it for electricity 

generation. Before repeating the energy extraction process, energy is added again to the depleted 

plasma (e.g., by a heat exchanger) to restore its initial state [65]. 

Closed-cycle magnetohydrodynamic (CCMHD) generators typically have a disc shape [66–70], 

and this design allows efficient utilization of the magnets [71]. The compactness of CCMHD 

generators renders them of special interest in space applications, especially in space missions 

reaching trajectories far from the sun, where solar irradiation and photovoltaic power conversion 

become ineffective [72].  

On the other hand, open-cycle magnetohydrodynamic (OCMHD) generators pertain more to 

terrestrial electricity generation; where they can provide much larger production capacities. Such 

OCMHD generators may be used either in a continuous mode as power plants or in a pulsed mode 

for geological prospecting.  

The performance of MHD generators can be described in terms of three percentage metrics 

[73,74].  

First, we have the enthalpy extraction or enthalpy extraction ratio (𝐸𝐸) metric, which is the ratio 

of the drop in static enthalpy (Δℎ) within the MHD generator to the inlet static enthalpy (ℎ𝑖𝑛) at the 

entrance of the MHD generator. Thus, 

𝐸𝐸 =
Δℎ

ℎ𝑖𝑛
= 1 −

ℎ𝑜𝑢𝑡

ℎ𝑖𝑛
 ( 1) 

where (ℎ𝑖𝑛) and (ℎ𝑜𝑢𝑡) are the specific static enthalpy of the plasma at the entrance and at the exit 

of the MHD generator. A high enthalpy extraction (𝐸𝐸 ) of 38% was successfully demonstrated 

experimentally for a disc-type MHD generator [75]. 

Second, there is the MHD generator isentropic efficiency (𝜂𝑖𝑠𝑒𝑛) [76], which relates the actual 

relative drop in the static enthalpy to the ideal relative drop in the total (stagnation) enthalpy (ℎ0) in 

the case of an isentropic process under the assumption of a calorically-perfect gas (thus, having 

constant specific heat capacities and constant specific heat ratio) [77–81]. This MHD isentropic 

efficiency is 

𝜂𝑖𝑠𝑒𝑛 =
Δℎ ℎ𝑖𝑛⁄

Δℎ0 ℎ0,𝑖𝑛⁄
 ( 2) 

where (ℎ0,𝑖𝑛) is the specific total enthalpy of the plasma at the entrance of the MHD generator. 

The above equation can be written in terms of the total pressure (the stagnation pressure, which 

is the sum of the static pressure and the dynamic pressure [82]) at the entrance of the MHD generator 

(𝑝0,𝑖𝑛 ) and at the exit of the MHD generator (𝑝0,𝑜𝑢𝑡 ) using standard expressions for isentropic 

compressible calorically-perfect flows [83] as 
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𝜂𝑖𝑠𝑒𝑛 =
Δℎ ℎ𝑖𝑛⁄

1 − (p0,out 𝑝0,𝑖𝑛⁄ )
𝛾−1

𝛾

 ( 3) 

where (𝛾) is a constant specific heat ratio (ratio of the specific heat capacity at constant pressure 

to the specific heat capacity at constant volume). A high MHD isentropic efficiency (𝜂𝑖𝑠𝑒𝑛) of 63% was 

successfully demonstrated experimentally for a disc-type MHD generator [84]. 

Third, there is the MHD generator electric (𝜂𝑒𝑙𝑒𝑐), which is defined as the ratio of the electric 

power to the mechanical power. Mathematically, this is expressed as 

𝜂𝑒𝑙𝑒𝑐 =
− ∭ 𝐽 ∙ 𝐸⃑⃑0 𝑑𝑉

𝑣𝑜𝑙𝑢𝑚𝑒

− ∭ 𝑢⃑⃑ ∙ (𝐽 × 𝐵⃑⃑) 𝑑𝑉
𝑣𝑜𝑙𝑢𝑚𝑒

 ( 4) 

Open-cycle magnetohydrodynamic (MHD) generators are primarily in the form of a linear 

channel, in which the weakly-ionized plasma moves at a high speed while subject to a strong applied 

magnetic field [85]. The inlet plasma speed can be subsonic (Mach < 1) [86–88] or supersonic (Mach > 

1) [89–97]. Contrary to subsonic and incompressible flows [98–109], supersonic flows at the MHD 

channel entrance need a divergent MHD channel in order to allow the supersonic flow to expand and 

accelerate [110–112]. Attached electrodes are used to transmit the collected electric current to an 

external eclectic load. There are four common designs for the open-cycle MHD channels; namely, (1) 

continuous-electrode Faraday channel [113–115], (2) segmented-electrode Faraday channel [116–118], 

(3) linear Hall channel (always have segmented electrodes) [119–121], and (4) diagonal channel or 

diagonal-electrode channel or diagonally-shorted channel (always have segmented electrodes) [122–

124]. Each of these designs has a unique layout of its electrodes, hence the name of its type.  

1.2. Goal of the Study  

This work can be viewed as an extension of our earlier studies about mathematical modeling for 

magnetohydrodynamic (MHD) power generation. We previously presented the governing electric 

equations in the MHD channel under various levels of modeling approximation [125]. We also 

proposed three mathematical approaches for resolving the electric field within the MHD domain 

[126]. In addition, we discussed a mathematical model for relating the electric conductivity of MHD 

plasma with its local temperature, pressure, and chemical composition [127]. 

In continuation to our work about mathematical modeling for magnetohydrodynamic (MHD) 

generators, we here aim to present mathematical expressions for the electric field and electric current-

density field within the plasma of an open-cycle MHD generator, and the resulting output power 

density under the four types of linear MHD channels [128]. We supplement the mathematical analysis 

with illustrative sketches and logical derivation starting from elementary equations. 

Our review of these mathematical expressions here and organized presentation and contrasting 

have a number of benefits. First, they serve as a guide for readers interested in open-cycle MHD 

(OCMHD) power generation and the difference in their performance according to the different 

channel configurations. Second, our review provided here involves explicit algebraic scalar 

expressions, enabling parametric and visual investigation of the nonlinear influence of some 

parameters on various variables of importance in the OCMHD channel [129–131]. For example, the 

penalty in the electric output power density (𝑃) due to the Hall parameter (𝛽) in the case of a 

continuous-electrode Faraday channel can be easily identified through the presented mathematical 

expressions in the current study. Third, the directions of the vector fields under each channel 

configuration are clarified, and this is useful in understanding the operation of the MHD generator 

for each case, and can help in optimizing or controlling the performance [132–135]. For example, the 

load factor in the linear Hall channel can be optimized for maximum power output through the 

presented mathematical expressions in this study. Fourth, the content of this study may be used in 

an educational environment [136–143], where students are exposed to the application of mathematics 

in an interdisciplinary subject this combines electric engineering, energy engineering, and physics 
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[144]. The analysis presented here is simple, and can be viewed as reduced-order modeling [145] that 

takes advantage of a set of assumptions such that no computationally-demanding solutions of the 

partial differential equations using computational fluid dynamics (CFD) are needed [146–151]. 

2. Research Method 

The method followed in the current study is the symbolic mathematical manipulation of a 

fundamental generic equation for electrically-conducting moving plasma. This equation is the 

generalized (extended) Ohm’s law in its vector form, which accounts for the Hall effect (Hall current-

density) as well as the electromagnetic induction effect (Faraday current-density).  

We expand this vector equation into three scalar equations (corresponding to the three Cartesian 

components). Then, we apply our assumptions to deduce two scalar equations for the axial 

component (along the plasma’s travel direction) and the vertical components (perpendicular to the 

magnetic field and the plasma velocity). We drop the third scalar equation (in the direction of the 

magnetic field) because it becomes trivial in our case.  

These two derived scalar equations are analyzed further for each of the four linear channel 

configurations; and this leads to the aimed mathematical expressions for the electric field, electric 

current-density, and power density for each configuration. 

The common assumptions made in this study are: 

• The MHD channel has a divergent geometry, with a trapezoidal cross-section (in the 𝑥 − 𝑦 

plane). Such a simple MHD channel has been realized in the Sakhalin pulsed MHD generator 

[152–154]. The width (along the magnetic field) is constant, and its influence is disregarded 

here (this is equivalent to assuming infinite width, thus two-dimensional channels). 

• The charge carriers are only the free electrons in the plasma (liberated as a result of thermal 

ionization). This means that while ions also exist (to ensure the overall neutrality of the 

plasma), their contribution to the electric current is neglected [155,156]. This is a reasonable 

assumption given the much stronger mobility of the lighter electrons compared to the heavier 

ions [157–159]. 

• Unidirectional magnetic field (magnetic-field flux density) that points in the positive 𝑧-axis. 

Therefore, the magnetic-field flux density vector (𝐵⃑⃑) can be expressed as 𝐵 𝑘̂, where (𝑘̂) is a 

unit vector in the direction of the positive 𝑧-axis. Because the magnetic field is externally 

applied, this assumption can be justified. In such a case, special electromagnetic designs can be 

made to approximate this assumption. This treatment of the magnetic field as being fully 

controllable implies a low magnetic Reynolds number assumption [160–163], where auxiliary 

induced magnetic-field flux density due to the moving plasma (the self-excitation 

phenomenon) is neglected [164–167]. This “inductionless” assumption [168] of a low magnetic 

Reynolds number is reasonable for MHD generators [169–171].  

• Unidirectional plasma velocity that points in the positive 𝑥-axis. Therefore, the plasma 

velocity vector (𝑢⃑⃑) can be expressed as 𝑢 𝑖̂, where (𝑖̂) is a unit vector in the direction of the 

positive 𝑥-axis. Although this assumption neglects turbulence and no-slip effects in the plasma 

flow, it can be regarded as an acceptable treatment for deriving system-level laws, where the 

time-averaged bulk velocity of the plasma should be primarily in the axial direction. This 

assumption becomes more valid when the divergence angle of the channel decreases, so the 

channel height approaches uniformity. In addition, turbulence tends to be suppressed as the 

Mach number increases [172,173]; and our study is for supersonic channels. In addition, 

adopting a one-dimensional approximation for a channel flow or exterior flow has been 

implemented in other studies [174–177].  

• No electric field along the lateral direction (along the direction of the magnetic field). This 

assumption is aligned with the unidirectionality assumption for the magnetic field. Even if the 

plasma has a three-dimensional flow velocity, the unidirectional magnetic field along the 𝑧-

axis is not able to induce an electric field in the same 𝑧-direction. Therefore, the electric field 

along the 𝑧-axis within the MHD plasma can only be caused by an externally applied electric 
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field; but such a case is not considered in the current study, where there are no electrodes 

along the 𝑧-axis to permit this. 

3. Base Scalar Equations for Electric Fields in MHD Plasma  

In this section, we derive the two base scalar equations for the conventional electric current-

density and the load-consumed electric field, under the assumptions made in the previous section; 

particularly the unidirectional magnetic field and the unidirectional plasma velocity. These scalar 

equations are the 𝑥-component and the 𝑦-component of the generalized Ohm’s law, which applies 

to a three-dimensional conductor medium (rather than a conductive wire).  

The generalized Ohm’s law (for plasma with neglected ion drift) relates the electric current-

density (𝐽) to the electric field (𝐸⃑⃑), electric conductivity (𝜎), and the applied magnetic field (𝐵⃑⃑) [178–

180]. It should be noted that we adopt the conventional current here, rather than the electron current 

[181–183]. The only difference if the electron current is adopted rather than the conventional current 

is that the electric current-density (𝐽) should have a minus sign in each appearance for it in our 

presented mathematical formulations. 

The generalized Ohm’s law can be expressed in different forms, we start with the following 

convenient form for it, which facilitates our discussion and subsequent analysis: 

𝐽 = 𝜎 𝐸⃑⃑ − 𝜇 𝐽 × 𝐵⃑⃑ ( 5) 

where (𝜇) is the electron mobility. 

The Hall parameter (𝛽) is the electron mobility (𝜇) divided by the magnitude of the applied 

magnetic-field flux density (𝐵). Mathematically, this is expressed as 

𝜇 =
𝛽

𝐵
 ( 6) 

It is useful to add here that the electric conductivity of the plasma (𝜎) due to the free electrons 

(ions contribution is neglected as mentioned earlier) is [184–186] 

𝜎 = 𝑒 𝑛𝑒 𝜇 ( 7) 

where (𝑛𝑒) is the number density of the charge-carrier electrons, and (𝑒) is the elementary charge 

(the absolute electric charge of an electron; 𝑒 = 1.6021766 × 10−19 C [187–189]).  

Therefore, the generalized Ohm’s law form in Equation (5) can be expressed in an alternative 

form as 

𝐽 = 𝜎 𝐸⃑⃑ − 𝛽 𝐽 × 𝑛̂𝐵 ( 8) 

where (𝑛̂𝐵) is a unit vector in the direction of the applied magnetic-field flux density vector (𝐵⃑⃑). 

Thus, this unit vector is defined as 

𝑛̂𝐵 ≡
𝐵⃑⃑

𝐵
 ( 9) 

The first term in Equation (8), the term (𝜎 𝐸⃑⃑), is an extended version of the classical Ohm’s law 

for a one-dimensional solid conductor. To demonstrate this; one can multiply both sides of the 

equation by the area (𝐴) perpendicular to the electric current-density, and then replace the vector 

electric field (𝐸⃑⃑) by the negative value of the scalar gradient of the electric potential (Φ). This gives 

𝐽 𝐴 = 𝜎 𝐴 (−
ΔΦ

𝛿
) ( 10) 

where (𝐽) is the magnitude of the unidirectional current density; and (− ΔΦ 𝛿⁄ ) is a numerical 

approximation for the gradient of the electric potential (Φ), and it becomes exact in the case of a linear 

decrease of the electric potential in the direction of the conventional electric current density. 

The product (𝐽 𝐴) in the above equation is the electric current (𝐼). 

𝐼 = 𝐽 𝐴 ( 11) 

Also, the quantity (𝜎 𝐴 𝛿⁄ ) is the reciprocal of the resistance (𝑅) of the conductor. Therefore, 
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𝑅 =
𝛿

𝜎 𝐴
 ( 12) 

Using Equation (11) and Equation (12) in Equation (10) gives the classical Ohm’s law, as 

𝐼 = −
ΔΦ

𝑅
 ( 13) 

The minus sign in the above equation indicates that the electric potential drops in the direction 

of the electric current. This minus sign is normally dropped when Ohm’s law is expressed, with the 

understanding that the electric potential drops across the conductor or the load. 

The second term in Equation (8), the term (−𝛽 𝐽 × 𝑛̂𝐵), is the Hall electric current-density due to 

the Hall effect, where an electric voltage is induced as a result of the movement of the electrons under 

the effect of the applied magnetic field, and this leads to a “secondary” Hall current density 

perpendicular to both the “primary” current density (𝐽) and the applied magnetic field (𝐵⃑⃑) [190–192]. 

The magnitude of this “secondary” or Hall current density, | − 𝛽 𝐽 × 𝑛̂𝐵|, is proportional to the Hall 

parameter ( 𝛽 ). Thus, from Equation (6), The magnitude of this “secondary” or Hall current 

density,  |−𝛽 𝐽 × 𝑛̂𝐵| = | − 𝜇 𝐵 𝐽 × 𝑛̂𝐵| ,  is proportional to either the magnitude of the applied 

magnetic field (𝐵) or the electron mobility (𝜇). 

In the current study, the applied magnetic-field flux density vector is assumed to be totally in the 

𝑧-axis, whose unit vector is (𝑘̂). Therefore, we have 

𝑛̂𝐵 = 𝑘̂ ( 14) 

Using Equation (14) in Equation (8) gives a third form for the generalized Ohm’s law, which is 

𝐽 = 𝜎 𝐸⃑⃑ − 𝛽 𝐽 × 𝑘̂ ( 15) 

The cross product (𝐽 × 𝑘̂) leads to a vector that has two non-trivial components in the 𝑥-axis and 

𝑦-axis only, as 

𝐽 × 𝑘̂ = (𝐽𝑥 𝑖̂ + 𝐽𝑦 𝑗̂ + 𝐽𝑧 𝑘̂) × 𝑘̂ = −𝐽𝑦 𝑖̂ + 𝐽𝑥 𝑗̂ ( 16) 

Using Equation (16) in Equation (15), and collecting terms for the three Cartesian components 

gives the following three scalar equations: 

𝐽𝑥 = 𝜎 𝐸𝑥 − 𝛽 𝐽𝑦 ( 17) 

𝐽𝑦 = 𝜎 𝐸𝑦 + 𝛽 𝐽𝑥 ( 18) 

𝐽𝑧 = 𝜎 𝐸𝑧 ( 19) 

Given that the 𝑧-component of the within-channel electric field vector (𝐸⃑⃑) is zero here 

𝐸𝑧 = 0 ( 20) 

then, Equation (19) implies also that the 𝑧-component of the electric current-density is zero  

𝐽𝑧 = 0 ( 21) 

Equation (17) and Equation (18) are implicit expressions for the  𝑥 -component and the 𝑦 -

component of the electric current-density, and these two components (𝐽𝑥 and 𝐽𝑦) are clearly coupled. 

However, these two coupled equations can be solved simultaneously to obtain two explicit 

uncoupled expressions for these two components (𝐽𝑥 and 𝐽𝑦), with the result being as follows: 

𝐽𝑥 =
𝜎

1 + 𝛽2
 (𝐸𝑥 − 𝛽 𝐸𝑦) ( 22) 

𝐽𝑦 =
𝜎

1 + 𝛽2
 (𝐸𝑦 + 𝛽 𝐸𝑥) ( 23) 

The electric field vector within the plasma (𝐸⃑⃑) is the vector sum of the electric field source vector 

or the open-circuit electric field vector (𝐸⃑⃑𝑂𝐶) that is induced due to the motion of the electrically-

conductive plasma under the effect of the applied magnetic field vector, and the electric field sink 

(𝐸⃑⃑0) that is consumed by the external electric load (if a load is connected). Thus, 
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𝐸⃑⃑ = 𝐸⃑⃑0 + 𝐸⃑⃑𝑂𝐶 ( 24) 

The load electric field (𝐸⃑⃑0) in MHD power generation is dependent on the connected load. 

However, if the MHD channel is used in a reverse mode as a plasma accelerator (a 

magnetohydrodynamic drive), then this electric field (𝐸⃑⃑0) can be then viewed as an applied one, and 

the electric current is applied to the MHD electrodes from a powerful external DC (direct current) 

source, rather than being collected from the MHD electrodes [193–195]. 

The induced or convection open-circuit electric field vector (𝐸⃑⃑𝑂𝐶) is related to the bulk velocity 

of the plasma (𝑢⃑⃑) and the applied magnetic field vector (𝐵⃑⃑), while being perpendicular to both of 

them [196,197]. Thus, 

𝐸⃑⃑𝑂𝐶 = 𝑢⃑⃑ × 𝐵⃑⃑ ( 25) 

From the two previous equations, Equation (24) and Equation (25), we can write the following: 

𝐸⃑⃑ = 𝐸⃑⃑0 + 𝑢⃑⃑ × 𝐵⃑⃑ ( 26) 

For our case of unidirectional magnetic field (𝐵⃑⃑ = 𝐵 𝑘̂) and unidirectional convective plasma 

velocity (𝑢⃑⃑ = 𝑢 𝑖̂), the 𝑥-component and the 𝑦-component of the above vector equation are 

𝐸𝑥 = 𝐸0𝑥 ( 27) 

𝐸𝑦 = 𝐸0𝑦 − 𝑢 𝐵 ( 28) 

Using the above two expressions for (𝐸𝑥) and (𝐸𝑦) in Equation (22) and Equation (23) gives 

𝐽𝑥 =
𝜎

1 + 𝛽2
 (𝐸0𝑥 − 𝛽 𝐸0𝑦 + 𝛽 𝑢 𝐵) ( 29) 

𝐽𝑦 =
𝜎

1 + 𝛽2
 (𝐸0𝑦 − 𝑢 𝐵 + 𝛽 𝐸0𝑥) ( 30) 

These two scalar expressions are to be analyzed further and their customized form is to be 

discussed for each case of the four designs of the linear magnetohydrodynamic (MHD) channels. This 

is presented in the next four sections, with one section dedicated to each channel design. 

In the case of Faraday-type MHD linear channels (the continuous-electrode version or the 

segmented-electrode version), it is the 𝑦-component of the current density (𝐽𝑦) and load electric field 

(𝐸𝑜𝑦 ) that are useful because these are the current densities effectively collected by the channel 

electrodes (the anode and cathode, which are separated vertically “along the 𝑦-axis”). In such cases, 

a Faraday load factor (𝐾𝐹) can be introduced as the ratio of the load electric field (𝐸0𝑦) to the induced 

electric field (𝑢 𝐵). So, mathematically we have 

𝐾𝐹 ≡
𝐸0𝑦

𝑢 𝐵
 ( 31) 

Equivalently, this Faraday load factor can be viewed as the ratio of the electric resistance of the 

load (𝑅𝐿) to the total series resistance encountered by the electric current flow due to both the external 

electric resistance of the load and the effective internal electric resistance within the MHD generator 

itself that is designated by the symbol (𝑅𝐺) (this internal resistance is caused by the bulk plasma 

region, the boundary layer near the wall [198,199], and any solid slag layer formed on the electrodes 

[200,201]). Therefore, the Faraday load factor (𝐾𝐹) can be mathematically described as 

𝐾𝐹 ≅
𝑅𝐿

𝑅𝐿 + 𝑅𝐺
 ( 32) 

Therefore, the Faraday load electric field (𝐸0𝑦) can be expressed as 

𝐸0𝑦 = 𝐾𝐹 𝑢 𝐵 ( 33) 

The value of (𝐾𝐹) is bounded between 0 and 1. At the extreme condition of 𝐾𝐹 = 1, the circuit is 

open (the external load is disconnected). This corresponds to setting the load resistance to infinity 

(𝑅𝐿 = ∞) in Equation (32). At the other extreme condition of 𝐾𝐹 = 0 , the circuit is shorted (the 

external load is replaced with a perfect electric conductor). This corresponds to setting the load 

resistance to zero (𝑅𝐿 = 0) in Equation (32). It can be shown that maximum power delivery to the 

“matched” external load occurs at an optimum Faraday load factor of 𝐾𝐹 = 0.5 [202,203]. 
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In general, the direct current (DC) electric power delivered to the load powered by a 

magnetohydrodynamic channel is [204] 

𝑃𝑤 = − ∭ 𝐽. 𝐸⃑⃑0
volume

𝑑𝑉 ( 34) 

where (𝑑𝑉) is an infinitesimal volume element. 

The direct current (DC) electric power delivered to the load in the case of a Faraday-type MHD 

generator per unit volume of plasma is  

𝑃𝐹 = 𝐸0𝑦 | 𝐽𝑦| = 𝐾𝐹 𝑢 𝐵 | 𝐽𝑦| ( 35) 

where | 𝐽𝑦| is the absolute value of the vertical “i.e., parallel to the 𝑦-direction” current density 

(since it actually has a negative value due to pointing in the negative 𝑦-direction). 

In the case of Hall-type linear MHD channels, it is the 𝑥-component of the current density (𝐽𝑥) 

and load electric field (𝐸0𝑥) that are useful because these are the current densities effectively collected 

by the channel electrodes (the anode and cathode, which are separated axially “along the 𝑥-axis”). In 

such cases, a Hall load factor (𝐾𝐻) can be introduced as the ratio of the load electric field (𝐸0𝑥) to the 

induced (open circuit) axial electric field (𝛽 𝑢 𝐵). So, mathematically we have 

𝐾𝐻 ≡
|𝐸0𝑥|

𝛽 𝑢 𝐵
 ( 36) 

where |𝐸0𝑥| is the absolute value of the axial load electric field (since it is actually having a 

negative value due to pointing in the negative 𝑥-direction). 

As in the case of the Faraday load factor, the Hall load factor can be viewed as the ratio of the 

electric resistance of the load (𝑅𝐿) to the total series resistance encountered by the electric current flow 

due to both the external electric resistance of the load and the effective internal electric resistance 

within the MHD generator itself (𝑅𝐺). Therefore, the Hall load factor (𝐾𝐻) can be mathematically 

described as 

𝐾𝐻 ≅
𝑅𝐿

𝑅𝐿 + 𝑅𝐺
 ( 37) 

Therefore, the absolute value of the Hall load electric field (|𝐸0𝑥|) can be expressed as 

|𝐸0𝑥| = 𝐾𝐻 𝛽 𝑢 𝐵 ( 38) 

As in the case of the Faraday load factor, the value of (𝐾𝐻) is bounded between 0 and 1. At the 

extreme condition of 𝐾𝐻 = 1, the circuit is open. At the other extreme condition of 𝐾𝐻 = 0, the circuit 

is shorted. Maximum power delivery to the “matched” external load occurs at an optimum Hall load 

factor of 𝐾𝐻 = 0.5 [205]. 

The direct current (DC) electric power delivered to the load in the case of a linear Hall MHD 

generator per unit volume of plasma is 

𝑃𝐻 = |𝐸0𝑥| 𝐽𝑥 = 𝐾𝐻 𝛽 𝑢 𝐵 𝐽𝑥 ( 39) 

4. Continuous-Electrode Faraday Channel 

The first MHD channel design we review in this study is the continuous-electrode Faraday 

configuration. This is the simplest configuration among the four linear MHD channels in terms of 

physical construction and electric connectivity.  

Using Equation (33) in Equation (29) and Equation (30) gives a customized form for the electric 

current-density components suitable for Faraday-type channels as 
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𝐽𝑥 =
𝜎

1 + 𝛽2
 (𝐸0𝑥 − 𝛽 𝐾𝐹 𝑢 𝐵 + 𝛽 𝑢 𝐵) =

𝜎

1 + 𝛽2
 (𝐸0𝑥 + 𝛽 𝑢 𝐵 [1 − 𝐾𝐹]) ( 40) 

𝐽𝑦 =
𝜎

1 + 𝛽2
 (𝐾𝐹 𝑢 𝐵 − 𝑢 𝐵 + 𝛽 𝐸0𝑥) =

𝜎

1 + 𝛽2
 (𝛽 𝐸0𝑥 − 𝑢 𝐵 [1 − 𝐾𝐹]) ( 41) 

In Figure 1, we illustrate the geometric layout of this channel in the 𝑥 − 𝑦 plane. The top side 

represents the anode electrode, which has a negative (or grounded) polarity. The bottom side 

represents the cathode electrode, which has a positive polarity. In this sketch, the channel height (the 

separating distance between the two electrodes) is assumed to increase linearly with the axial 

distance (𝑥). This is not necessary, and nonlinear profiles are permitted as well [206]. However, in the 

shown linearly-divergent channel, the equipotential surfaces (the virtual surfaces with constant 

electric potential Φ) become flat planes (straight lines in the shown two-dimensional sketch). These 

potential planes are projected in the 𝑥 − 𝑦 plane as inclined straight lines, with their inclination 

gradually change from being coincident with the anode at the top to being coincident with the 

cathode at the bottom. In our sketch, we provide arbitrary values for sample intermediate 

equipotential lines, in addition to the top anode (which is also an equipotential line), and the bottom 

cathode (which is an equipotential line). We assign an electric potential of 30 V to the cathode, and a 

reference zero potential to the anode. These are not realistic values because they are small (actual 

cathode potential can exceed hundreds of volts [207–209]), but they are provided just to improve the 

explanation through numerical examples. 

The 𝑦-component of the load electric field (𝐸0𝑦) is positive in the case of the continuous-electrode 

Faraday channel, meaning that it is pointing vertically up, from the bottom positive cathode to the 

top negative (or grounded reference) anode. The load electric field vector is in the direction of 

decreasing electric potential [210–212], and this justifies the upward direction of (𝐸0𝑦). 

 

Figure 1. Graphical illustration of a linearly-divergent continuous-electrode Faraday channel, with sample 

equipotential lines. 

In Figure 2, we further highlight the local direction of the load electric field vectors (𝐸⃑⃑0), which 

is perpendicular to the local equipotential lines, making the load electric field vectors take the shape 

of circular arcs pointing from the bottom cathode to the top anode. Due to the anti-symmetry, the 

overall 𝑥-component of the load electric field vanishes, because in the upper half of the channel, the 

component (𝐸0𝑥 ) is negative (upstream with respect to the moving plasma), while it is positive 

(downstream with respect to the moving plasma) in the lower half of the channel as shown in the 

sketch.  
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Figure 2. Graphical illustration of a continuous-electrode Faraday channel, with a demonstration of the direction 

of the current density and the load electric field. 

So, at the entire generator level, we have 

𝐸0𝑥 = 0 ( 42) 

We also repeat below the general expression for (𝐸0𝑦) for Faraday-type channels, which was 

presented earlier. 

𝐸0𝑦 = 𝐾𝐹 𝑢 𝐵 ( 33) 

If the MHD channel is uniform in height (no geometric divergence), then the condition (𝐸0𝑥 = 0) 

becomes applicable locally, not just at an integrated level.   

Thus, the overall load electric field is effectively upward (from the bottom cathode to the top 

anode). 

The absolute value of the local acute inclination angle (𝜃Φ) of the equipotential line (measured 

from the “vertical” 𝑦-axis) is determined from the local values of the absolute 𝑥-component and the 

𝑦-component (always positive here) of the load electric field; namely (|𝐸0𝑥|) and (𝐸0𝑦), respectively. 

Therefore, mathematically we have 

𝜃Φ = tan−1 (
𝐸0𝑦

|𝐸0𝑥|
) ( 43) 

For example, the centerline equipotential line is exactly horizontal, thus the local load electric 

field vector is exactly vertical (thus, |𝐸0𝑥| = 0). Therefore, the centerline equipotential line has 

𝜃Φ = tan−1 (
𝐸0𝑦

|0|
) = tan−1(∞) = 90° ( 44) 

Applying the condition (𝐸0𝑥 = 0) to the two base equations, Equation (40) and Equation (41), 

gives the following two customized relations for the electric current-density vectors in the case of the 

continuous-electrode Faraday channel: 

𝐽𝑥 =
𝜎

1 + 𝛽2
 𝛽 𝑢 𝐵 (1 − 𝐾𝐹) ( 45) 

𝐽𝑦 = −
𝜎

1 + 𝛽2
 𝑢 𝐵 (1 − 𝐾𝐹) ( 46) 

Since the values of (𝜎), (𝛽), (𝑢), (𝐵), and (1 − 𝐾𝐹) in the above equation are positive; the two 

previous equations imply that the 𝑥-component of the current density (𝐽𝑥) is positive, while the 𝑦-

component of the current density (𝐽𝑦) is negative. Therefore, the electric current-density vector (𝐽) in 

the case of the continuous-electrode Faraday channel is inclined right-down. Furthermore, the 
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magnitude of this inclination angle (𝜃𝐽), which is the acute angle measured from the vertical 𝑦-axis, 

is governed by 

𝜃𝐽 = tan−1 (
𝐽𝑥

|𝐽𝑦|
) ( 47) 

 However, it can be seen from Equation (45) and Equation (46) that the ratio (𝐽𝑥 |𝐽𝑦|⁄ ) reduces to 

the Hall parameter (𝛽). Therefore 

𝜃𝐽 = tan−1(𝛽) ( 48) 

Because the Hall parameter (𝛽) depends on the electron mobility, which in turn depends on the 

local chemical composition, the temperature, and the pressure of the plasma gas [213–215]; the 

direction of the current density vectors (𝐽) may change spatially from one point to another within the 

MHD channel (but still pointing in the right-down direction). In the special case of uniform 

isothermal plasma, the value of (𝛽) becomes constant throughout the MHD channel, and thus the 

electric field vectors (𝐽) become parallel. 

From Equation (35), the direct current (DC) electric power delivered to the load in the case of the 

continuous-electrode Faraday channel per unit volume of plasma (𝑃𝐹−𝑐𝑜𝑛𝑡) is 

𝑃𝐹−𝑐𝑜𝑛𝑡: 𝐾𝐹 𝑢 𝐵 | 𝐽𝑦| = 𝐾𝐹 𝑢 𝐵 
𝜎

1 + 𝛽2
 𝑢 𝐵 (1 − 𝐾𝐹)

=
𝜎

1 + 𝛽2
 𝑢2 𝐵2 𝐾𝐹 (1 − 𝐾𝐹) 

( 49) 

When the above expression is optimized with respect to the Faraday load factor (𝐾𝐹 ), the 

optimum case occurs at (𝐾𝐹 = 0.5). This means that the external resistance of the matched (optimized) 

load is equal to the internal resistance of the MHD generator, or 

𝑅𝐿,𝑜𝑝𝑡−𝐹 = 𝑅𝐺 ( 50) 

In such a case of (𝐾𝐹 = 0.5), the matched-load optimized power dissipation to the load (per unit 

plasma volume) in the continuous-electrode Faraday channel is 

𝑃𝐹−𝑐𝑜𝑛𝑡,𝑜𝑝𝑡 = 0.25 
1

1 + 𝛽2
 𝜎 𝑢2 𝐵2 ( 51) 

The factor (1 (1 + 𝛽2)⁄ ) in the above equation represents a power penalty due to the uncollected 

“parasitic” Hall current density (𝐽𝑥). 

In the limiting case of zero Hall effect (𝛽 = 0), the above expression for the optimized load power 

(per unit plasma volume) becomes 

𝑃𝐹−𝑐𝑜𝑛𝑡,𝑜𝑝𝑡,𝑖𝑑𝑒𝑎𝑙 = 0.25 𝜎 𝑢2 𝐵2 ( 52) 

However, practically this ideal condition is not achievable with the continuous-electrode 

Faraday channel, because the theoretical condition that (𝛽 = 0) also implies zero electron mobility 

( 𝜇 = 0 ) according to Equation (6). From Equation (7), such a condition implies zero electric 

conductivity (𝜎 = 0), and thus the MHD generator ceases to produce electricity.  

The inevitable Hall effect loss associated with the continuous-electrode Faraday channel is a 

major disadvantage, making this channel type suitable only for a restricted regime of low (𝛽). For 

example, at a Hall parameter value of (𝛽 = 0.5), 20% of the ideal power limit is lost, which is a 

reasonable loss; while at a Hall parameter of (𝛽 = 1), 50% of the ideal power limit is lost; and at a Hall 

parameter of (𝛽 = 2), 80% of the ideal power limit is lost and this is high. All these three values of (𝛽) 

are possible in open-cycle MHD generator plasma [216]. The use of continuous-electrode Faraday 

channel may be regarded as acceptable up to a limit of approximately (𝛽 = 2) [217]. 

To avoid the aforementioned power loss problem, alternative MHD channel designs should 

be used, and this leads to the three alternative configurations of linear MHD channels to be 

discussed in the next three subsections. 
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We conclude this section by deriving an expression for the electric efficiency of the continuous-

electrode Faraday channel. From the general expression in Equation (4), a reduced version can be 

obtained if the channel has uniform electromagnetic properties, and this reduced form is 

𝜂𝑒𝑙𝑒𝑐,𝐹−𝑐𝑜𝑛𝑡 =
|𝐽𝑥 𝐸0𝑥| + |𝐽𝑦 𝐸0𝑦|

𝑢 | 𝐽𝑦| 𝐵
=

| 𝐽𝑦| 𝐸0𝑦

𝑢 | 𝐽𝑦| 𝐵
=

𝐸0𝑦

𝑢 𝐵
=

𝐾𝐹 𝑢 𝐵

𝑢 𝐵
= 𝐾𝐹 ( 53) 

 Thus, the electric efficiency reduces to the Faraday load factor (𝐾𝐹) in the case of a continuous-

electrode Faraday channel with uniform properties.  

5. Linear Hall Channel 

After discussing the operation of the continuous-electrode Faraday MHD channel in the 

previous section, and highlighting the deficiency caused by the Hall effect causing that type of linear 

MHD channels to be undesirable at high Hall parameters exceeded unity; we discuss here the 

operation of an alternative type, which is the linear Hall MHD channel. 

Unlike the continuous-electrode Faraday MHD channel, where a high Hall parameter ( 𝛽 ) 

beyond unity renders that type undesirable; the linear Hall channel actually is designed for high 

values of the Hall parameter (𝛽) (as high as 10 [218]), and it becomes undesirable at low values of (𝛽). 

Figure 3 illustrates the configuration of the linear Hall channel. Instead of separating the 

electrodes (anode and cathode) vertically, as was the case in the continuous-electrode Faraday 

channel; they are here separated axially. The positive cathode is at the rear of the channel, while the 

negative (or reference grounded) anode is at the front of the channel. Multiple vertical short-circuit 

links are inserted. Each vertical link is an equipotential line, and the electric potential increases 

downstream toward the cathode. We added some numerical example values, from 0 V at the anode 

to 30 V at the cathode (these are for explaining the variation of the electric potential, but they are not 

realistic values due to being very small) [219].  

 

Figure 3. Graphical illustration of a linear Hall channel, with a demonstration of the direction of the current 

density and the load electric field. 

It can be seen in the sketch that the load electric field is purely horizontal, pointing upstream in 

the direction of decreasing electric potential (Φ). The load electric field vector (𝐸⃑⃑0) is the opposite of 

the gradient of electric potential (Φ). Mathematically, this can be expressed as 
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𝐸⃑⃑0 = −∇Φ ( 54) 

 Due to the vertical shorting introduced in the linear Hall MHD channel (making the 

equipotential lines vertical), the load electric field vector (𝐸⃑⃑0) is purely horizontal, in the direction of 

the negative 𝑥-axis. Thus, the vertical component of the load electric field vector (𝐸0𝑦) vanishes in 

the linear Hall channel. Therefore, 

𝐸0𝑦 = 0 ( 55) 

𝐸⃑⃑0 = 𝐸0𝑥 𝑖̂ = −|𝐸0𝑥| 𝑖̂ ( 56) 

𝜃Φ = tan−1 (
𝐸0𝑦

|𝐸0𝑥|
) = tan−1 (

0

|𝐸0𝑥|
) = 0° 

( 57) 

Recognizing that (𝐸0𝑥) has a negative value (𝐸0𝑥 = −|𝐸0𝑥|), then from Equation (38), we can write 

𝐸0𝑥 = −𝐾𝐻 𝛽 𝑢 𝐵 ( 58) 

 Using the above equation and Equation (55) in Equation (29) and also in Equation (30), gives a 

customized form for the electric current-density components suitable for linear Hall channels as 

𝐽𝑥 =
𝜎

1 + 𝛽2
 (−𝐾𝐻 𝛽 𝑢 𝐵 + 𝛽 𝑢 𝐵) =

𝜎

1 + 𝛽2
 𝛽 𝑢 𝐵 (1 − 𝐾𝐻) ( 59) 

𝐽𝑦 =
𝜎

1 + 𝛽2
 (−𝑢 𝐵 − 𝛽2 𝐾𝐻 𝑢 𝐵) = −

𝜎

1 + 𝛽2
 𝑢 𝐵 (1 + 𝛽2 𝐾𝐻) ( 60) 

The above two equations show that the current density vector in linear Hall channels has a 

positive 𝑥-component (𝐽𝑥 = |𝐽𝑥|) but a negative 𝑦-component (𝐽𝑦 = −|𝐽𝑦|). This is illustrated in the 

previous sketch, with the tilt angle (acute angle, measured from the 𝑦-axis) of the current-density 

vector (𝜃𝐽) when measured from the vertical is mathematically expressed as 

𝜃𝐽 = tan−1 (
𝐽𝑥

|𝐽𝑦|
) = tan−1 (

𝛽 (1 − 𝐾𝐻)

 1 + 𝛽2 𝐾𝐻
) ( 61) 

In order for the current density vector (𝐽) to be parallel, the Hall parameter (𝛽) has to be uniform, 

and this implies uniformity in the plasma thermo-chemical properties (chemical composition, 

temperature, and pressure). 

From Equation (39), the direct current (DC) electric power delivered to the load per unit volume 

of plasma in the case of the linear Hall channel (𝑃𝐻) is 

𝑃𝐻: 𝐾𝐻 𝛽 𝑢 𝐵 𝐽𝑥 = 𝐾𝐻 𝛽 𝑢 𝐵 
𝜎

1 + 𝛽2
 𝛽 𝑢 𝐵 (1 − 𝐾𝐻)

=
𝜎

1 + 𝛽2
 𝑢2 𝐵2 𝛽2𝐾𝐻 (1 − 𝐾𝐻) 

( 62) 

Similar to the case of continuous-electrode Faraday channels, when the above expression is 

optimized with respect to the Hall load factor (𝐾𝐻), the optimum case occurs at (𝐾𝐻 = 0.5). This means 

that the external resistance of the matched (optimized) load is equal to the internal resistance of the 

MHD generator, or 

𝑅𝐿,𝑜𝑝𝑡−𝐻 = 𝑅𝐺 ( 63) 

 In such a case of (𝐾𝐻 = 0.5), the matched-load optimized power dissipation to the load (per unit 

plasma volume) in the linear Hall channel is 

𝑃𝐻,𝑜𝑝𝑡 = 0.25 
𝛽2

1 + 𝛽2
 𝜎 𝑢2 𝐵2 ( 64) 

Comparing this expression for (𝑃𝐻,𝑜𝑝𝑡) to the one derived earlier for (𝑃𝐹,𝑜𝑝𝑡) shows that the power 

penalty factor (1 (1 + 𝛽2)⁄ ) in the continuous-electrode Faraday becomes (𝛽2 (1 + 𝛽2)⁄ ) in the linear 

Hall channel. This Hall power penalty factor approaches unity (thus, the penalty diminishes) at high 

values of the Hall parameter (𝛽 ≫ 1). This explains how the linear Hall channel is favored over the 

continuous-electrode Faraday for high (𝛽). On the other, the continuous-electrode Faraday channel 

exhibits a smaller power penalty at (𝛽 < 1). The power penalty factors for both channel types become 
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equal to 50% at (𝛽 = 1). The ratio of the matched-load volumetric power density for the linear Hall 

channel compared to the continuous-electrode Faraday channel is the square of the Hall parameter. 

Therefore, 

𝑃𝐻,𝑜𝑝𝑡

𝑃𝐹,𝑜𝑝𝑡−𝑐𝑜𝑛𝑡
= 𝛽2 ( 65) 

 To help quantify the advantage of continuous-electrode Faraday MHD generators at low (𝛽), 

and the advantage of linear Hall MHD generators at high (𝛽), we compare in Table 1 the power 

penalty factors for both types of MHD linear channels (continuous-electrode and Hall) for a wide 

range of (𝛽) from 0 to 10. It is apparent that at (𝛽 = 2), the linear Hall channel is four times more 

useful than the continuous-electrode Faraday channel. 

Table 1. Gain in the power output for the linear Hall channel compared to the continuous-electrode Faraday 

channel at different Hall parameters. 

Hall 

Parameter 

Power Penalty Factor 𝑷𝑯,𝒐𝒑𝒕

𝑷𝑭,𝒐𝒑𝒕−𝒄𝒐𝒏𝒕
= 𝜷𝟐 

Continuous-electrode Faraday Linear Hall 

0 100% 0% 0 

0.25 94.1176% 5.8824 0.0625 

0.5 80% 20% 0.25 

0.75 64% 36% 0.5625 

1 50% 50% 1 

1.25 39.0244% 60.9756% 1.5625 

1.5 30.7692% 69.2308% 2.25 

1.75 24.6154% 75.3846% 3.0625 

2 20% 80% 4 

2.5 13.793% 86.2069% 6.25 

3 10% 90% 9 

4 5.8824% 94.1176% 16 

5 3.8462% 96.1538% 25 

6 2.7027% 97.2973% 36 

7 2% 98% 49 

8 1.5385% 98.4615% 64 

9 1.2195% 98.7805% 81 

10 0.9901% 99.0099% 100 

We point out here that in the linear Hall channel, because there are multiple electric connections 

(the shorting links) between the anode and cathode pairs, and each of these intermediate electric 

connections has an electric potential exceeding that of the anode; each of these intermediate links can 

be used as an intermediate cathode that powers a separate electric load (connected from the other 

terminal to the global anode at the entrance of the MHD channel). This possibility is illustrated in 

Figure 4. However, in the current study, we assume in the analysis the simple case of a single electric 

load connected between the MHD overall anode and overall cathode. This allows consistency when 

comparing this channel type with the continuous-electrode Faraday channel (which admits only a 

single electric load). 
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Figure 4. Graphical illustration of a linear Hall channel, in the case of three external loads being powered 

simultaneously. 

We conclude this section by deriving a special expression for the electric efficiency of the linear 

Hall channel. From the general expression in Equation (4), a reduced version can be obtained if the 

channel has uniform electromagnetic properties, and this reduced form is 

𝜂𝑒𝑙𝑒𝑐,𝐻 =
|𝐽𝑥 𝐸0𝑥| + |𝐽𝑦 𝐸0𝑦|

𝑢 | 𝐽𝑦| 𝐵
=

𝐽𝑥 |𝐸0𝑥|

𝑢 | 𝐽𝑦| 𝐵
=

𝜎
1 + 𝛽2  𝛽 𝑢 𝐵 (1 − 𝐾𝐻) 𝐾𝐻 𝛽 𝑢 𝐵

𝑢 
𝜎

1 + 𝛽2  𝑢 𝐵 (1 + 𝛽2 𝐾𝐻) 𝐵
 ( 66) 

This can be simplified to 

𝜂𝑒𝑙𝑒𝑐,𝐻 =
 𝛽2 (1 − 𝐾𝐻) 𝐾𝐻 

1 + 𝛽2 𝐾𝐻
=

 𝛽2

1 + 𝛽2 𝐾𝐻

(1 − 𝐾𝐻) 𝐾𝐻  ( 67) 

At high Hall parameters (𝛽 → ∞), the above expression approaches the following limit: 

𝜂𝑒𝑙𝑒𝑐,𝐻(𝛽 → ∞) = 1 − 𝐾𝐻 ( 68) 

At the optimum Hall load factor (𝐾𝐻 = 0.5), the electric efficiency expression in Equation (67) 

can be further simplified to 

𝜂𝑒𝑙𝑒𝑐,𝐻(𝐾𝐻 = 0.5) = 0.25 
 𝛽2 

1 + 0.5 𝛽2
=

 𝛽2 

4 + 2 𝛽2
 ( 69) 

At high Hall parameters (𝛽 → ∞), the above expression approaches the following limit: 

𝜂𝑒𝑙𝑒𝑐,𝐻(𝐾𝐻 = 0.5, 𝛽 → ∞) =
1

2
 or 50% ( 70) 

6. Segmented-Electrode Faraday Channel 

After discussing the operational conditions and performance of the continuous-electrode 

Faraday MHD channel and the linear Hall MHD channel, we here discuss a third configuration of 

MHD generator channels, which is the segmented-electrode Faraday channel. 

In Figure 5, we provide a graphical illustration of the segmented-electrode Faraday channel, 

which clearly differs from both the continuous-electrode Faraday channel and the linear Hall channel. 

Like the continuous-electrode Faraday channel, the electrodes are separated vertically (along the 𝑦-
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axis); but unlike the continuous-electrode Faraday channel, each electrode (the bottom positive 

cathode and the top negative anode) is now divided into multiple electrode segments that are 

electrically insulated from the adjacent segments.  

 

Figure 5. Graphical illustration of a segmented-electrode Faraday channel, with a demonstration of the direction 

of the current density and the load electric field. 

The motivation behind the segmented-electrode Faraday channel can be clarified by recalling 

the adverse effect of the Hall current density (𝐽𝑥) in the continuous-electrode Faraday channel due to 

the Hall effect, which causes power loss for the continuous-electrode Faraday channel, in the form of 

a penalty factor (1 (1 + 𝛽2)⁄ ). Operating under a condition of vanishing Hall parameter (𝛽 = 0) 

eliminates is penalty because the penalty factor becomes unity. However, such a condition of zero 

Hall parameter means also zero electric conductivity, as implied by Equation (6) and Equation (7). 

Therefore, an alternative method of avoiding the power loss under non-zero Hall parameter is 

to adapt the electric connectivity such that the Hall current density (𝐽𝑥 ) vanishes, even with the 

presence of the unavoidable Hall effect.  

In order to suppress the Hall current density, the top and bottom electrodes are segmented into 

multiple segments, and this arrangement does not give a chance for the Hall current density to 

develop. Ideally, there should be an infinite number of segments. However, a finite number of 

segments is practically possible. This resembles the lamination of a solid iron core in an electric 

transformer in order to suppress the undesirable but unavoidable eddy currents [220–222].  

For each pair of opposite segments (cathode and anode), an external load is connected. This 

might be a drawback in this channel configuration, where having multiple individual loads may not 

represent the exact demand pattern. 

When assuming that the Hall current density successfully vanishes, the following condition 

becomes a characteristic feature of the segmented-electrode Faraday channel: 

𝐽𝑥 = 0 ( 71) 

Consequently, this means that the inclination angles of the electric current-density vectors (𝐽), 

measured from the vertical are zero. Therefore, each electric current-density vector (𝐽) is perfectly 

vertical (pointing down, from the top anode segment to the bottom cathode segment). 

Mathematically, this is expressed as 
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𝜃𝐽 = tan−1 (
𝐽𝑥

|𝐽𝑦|
) = tan−1 (

0

|𝐽𝑦|
) = 0° ( 72) 

Therefore, in the segmented-electrode Faraday channel; the direction of the current density 

vectors is restricted to the vertical orientation. However, the load electric field vectors are not subject 

to such a constraint. In fact, the load electric field possesses an axial component (𝐸0𝑥) and a vertical 

component (𝐸0𝑦). Like the continuous-electrode Faraday channel, Equation (33) for (𝐸0𝑦) is still valid, 

and we repeat it below. 

𝐸0𝑦 = 𝐾𝐹 𝑢 𝐵 ( 33) 

This means that (𝐸0𝑦) is positive (pointing upward toward the negative anodes). 

However, the axial component of the load electric field vector (𝐸0𝑥) is no longer zero in the 

segmented-electrode Faraday channel as was the case in the continuous-electrode Faraday channel. 

The expression for (𝐸0𝑥) can be derived from its general expression in Equation (40). After setting 

(𝐽𝑥 = 0) in Equation (40), we obtain a condition on (𝐸0𝑥) as 

0 =
𝜎

1 + 𝛽2
 (𝐸0𝑥 + 𝛽 𝑢 𝐵 [1 − 𝐾𝐹]) ( 73) 

This leads to the following expression for (𝐸0𝑥) in the case of a segmented-electrode Faraday 

channel: 

𝐸0𝑥 = −𝛽 𝑢 𝐵 (1 − 𝐾𝐹) ( 74) 

This shows that (𝐸0𝑥) is negative, which in turn means that the electric potential (Φ) decreases in 

the axial direction, as the 𝑥-coordinate increases. 

The absolute value of the local acute inclination angle (𝜃Φ) of the equipotential lines (measured 

from the “vertical” 𝑦-axis) in the segmented-electrode Faraday channel can be described as 

𝜃Φ = tan−1 (
𝐸𝑜𝑦

|𝐸𝑜𝑥|
) = tan−1 (

𝐾𝐹 𝑢 𝐵

𝛽 𝑢 𝐵 (1 − 𝐾𝐹)
) = tan−1 (

𝐾𝐹

𝛽 (1 − 𝐾𝐹)
) ( 75) 

Due to the dependence on the Hall parameter (𝛽), the angle (𝜃Φ) is not necessarily constant 

throughout the MHD channel, and thus the equipotential lines are not necessarily parallel. However, 

we illustrate them in Figure 6 in the special case where these equipotential lines are parallel straight 

lines (for simplicity), and we also show in this figure how the angle (𝜃Φ) is defined. 

 

Figure 6. Graphical illustration of a segmented-electrode Faraday channel, with a demonstration of the direction 

of the current density and the load electric field. 
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From Equation (41), the 𝑦-component of the current density in the segmented-electrode Faraday 

channel is obtained by using Equation (74), which gives 

𝐽𝑦 =
𝜎

1 + 𝛽2
 (−𝛽2 𝑢 𝐵 [1 − 𝐾𝐹] − 𝑢 𝐵 [1 − 𝐾𝐹])

= −
𝜎

1 + 𝛽2
 𝑢 𝐵 (1 − 𝐾𝐹) (1 + 𝛽2) 

( 76) 

Thus, 

𝐽𝑦 = −𝜎 𝑢 𝐵 (1 − 𝐾𝐹) ( 77) 

This shows that the electric current-density is downward (having a negative sign). 

From Equation (35), the direct current (DC) electric power delivered to the load (treating the 

multiple connected loads as a single one) in the case of the segmented-electrode Faraday channel per 

unit volume of plasma (𝑃𝐹−𝑠𝑒𝑔) is 

𝑃𝐹−𝑠𝑒𝑔: 𝐾𝐹 𝑢 𝐵 | 𝐽𝑦| = 𝐾𝐹 𝑢 𝐵 𝜎 𝑢 𝐵 (1 − 𝐾𝐹) = 𝜎 𝑢2 𝐵2 𝐾𝐹 (1 − 𝐾𝐹) ( 78) 

By comparing this expression for (𝑃𝐹−𝑠𝑒𝑔) to the counterpart expression of (𝑃𝐹−𝑐𝑜𝑛𝑡) in the case 

of the continuous-electrode Faraday channel in Equation (49), it is evident that the penalty factor of 

(1 (1 + 𝛽2)⁄ ) does not appear in the case of the segmented-electrode Faraday channel. Thus, the 

electrode segmentation in the Faraday-type channel is successful in making the channel performance 

independent of the Hall effect, but multiple electrode pairs and loads replace the simpler 

configuration of a single electrode pair and single load in the case of the continuous-electrode 

Faraday channel. 

As in the case of the continuous-electrode Faraday channel, the optimized output DC (direct 

current) power to the load occurs at a matched load with (𝐾𝐹=0.5) or (𝑅𝐿,𝑜𝑝𝑡−𝐹 = 𝑅𝐺). The optimized 

(matched-load) volumetric power density in the case of the segmented-electrode Faraday channel is 

𝑃𝐹−𝑠𝑒𝑔,𝑜𝑝𝑡 = 0.25 𝜎 𝑢2 𝐵2 ( 79) 

This is the same as the ideal (at the theoretical limit of vanishing Hall parameter) volumetric 

power density for the continuous-electrode Faraday channel with optimized (matched) load in 

Equation (52). 

Comparing this expression for (𝑃𝐹−𝑠𝑒𝑔,𝑜𝑝𝑡) to the expression of (𝑃𝐻,𝑜𝑝𝑡) in the case of the linear 

Hall channel in Equation (64), it becomes clear that the penalty factor of (𝛽2 (1 + 𝛽2)⁄ ) no longer 

appears for the case of the segmented-electrode Faraday channel. 

We conclude this section by deriving a special expression for the electric efficiency of the 

segmented-electrode Faraday channel. From the general expression in Equation (4), a reduced 

version can be obtained if the channel has uniform electromagnetic properties, and this reduced form 

is 

𝜂𝑒𝑙𝑒𝑐,𝐹−𝑠𝑒𝑔 =
|𝐽𝑥 𝐸0𝑥| + |𝐽𝑦 𝐸0𝑦|

𝑢 | 𝐽𝑦| 𝐵
=

| 𝐽𝑦| 𝐸0𝑦

𝑢 | 𝐽𝑦| 𝐵
=

𝐸0𝑦

𝑢 𝐵
=

𝐾𝐹 𝑢 𝐵

𝑢 𝐵
= 𝐾𝐹 ( 80) 

Thus, the electric efficiency reduces to the Faraday load factor (𝐾𝐹) in the case of a segmented-

electrode Faraday channel with uniform properties. This is the same result obtained for the 

continuous-electrode Faraday channel. 

7. Diagonal-Electrode Channel 

In the previous section, we showed how the segmented-electrode Faraday MHD 

(magnetohydrodynamic) channel possesses desirable performance through ideal utilization of the 

MHD volume without being affected by the Hall parameter. However, we showed that this ideal 

condition comes at the expense of complicating the construction and electric connectivity, while a 

large number (theoretically infinite number) of anode-cathode pairs are needed for powering a large 

number of individual loads. 
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It is desirable to design a fourth configuration of linear MHD channels that maintains the 

excellent performance of the segmented-electrode Faraday channel while being less demanding in 

terms of the construction complexity and being able to power a single load if wanted. We here discuss 

this design, referred to as the (diagonal-electrode channel) or the (diagonal channel). 

In the diagonal-electrode MHD channel, the suppression of the Hall current is achieved but not 

through complicated segmentation as in the case of the segmented-electrode Faraday channel. 

Rather, this condition of (𝐽𝑥 = 0) attained though manipulating the direction of the electric field 

vectors such that their direction is the same as those implied in the segmented-electrode Faraday 

channel. This also means that the inclination angle of the equipotential lines (measured from the 

vertical) should also match the one found in the segmented-electrode Faraday channel.  

It is useful to repeat here the mathematical expression arrived in the previous section for the 

absolute value of the local acute inclination angle (𝜃Φ) of the equipotential line (measured from the 

“vertical” 𝑦-axis) in the segmented-electrode Faraday channel, which is repeated below 

𝜃Φ = tan−1 (
𝐸𝑜𝑦

|𝐸𝑜𝑥|
) = tan−1 (

𝐾𝐹 𝑢 𝐵

𝛽 𝑢 𝐵 (1 − 𝐾𝐹)
) = tan−1 (

𝐾𝐹

𝛽 (1 − 𝐾𝐹)
) ( 75) 

This means that the tangent of the equipotential inclination is 

tan (𝜃Φ) =
𝐾𝐹

𝛽 (1 − 𝐾𝐹)
 ( 81) 

The above expression can be manipulated to derive a mathematical expression for the Faraday 

load factor (𝐾𝐹) as a function of the equipotential lines angle (𝜃Φ). The result is 

𝐾𝐹 =
𝛽 tan (𝜃Φ)

1 + 𝛽 tan (𝜃Φ)
 ( 82) 

The control of the direction of the equipotential lines in the diagonal channel is achieved by 

introducing inclined short-circuit links, tilted at the desired inclination angle (𝜃Φ) from the vertical 

as shown in Figure 7. In this sketch, we assume a variation of the electric potential from 0 V at the 

MHD anode (located at the entrance of the MHD channel) to 20 V at the MHD cathode (located at the 

rear of the MHD channel). We also assume a single external load connected between these two 

primary electrodes (the primary anode and the primary cathode).  

 

Figure 7. Graphical illustration of a diagonal-electrode channel, with a demonstration of the direction of the 

current density and the load electric field. 

From Equation (75), we can also extract a geometric condition of the load electric field vector 

(𝐸⃑⃑0), whose negative axial component (𝐸0𝑥 ) and its positive vertical component (𝐸0𝑦 ) should be 

related according through the angle (𝜃Φ) as 
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𝐸0𝑥 = −
𝐸0𝑦

tan(𝜃Φ)
= −𝐸0𝑦 cotan(𝜃Φ) ( 83) 

As in the Faraday-type channels, we repeat Equation (33) below. 

𝐸0𝑦 = 𝐾𝐹 𝑢 𝐵 ( 33) 

Therefore, in the diagonal MHD channel, the (negative) axial component of the load electric field 

can be expressed using Equation (83) and Equation (33) as 

𝐸0𝑥 = −
𝐾𝐹 𝑢 𝐵

tan(𝜃Φ)
= −𝐾𝐹 𝑢 𝐵 cotan(𝜃Φ) ( 84) 

Using the expression of (𝐸0𝑥) in Equation (84)  and the expression of (tan (𝜃Φ)) in Equation (81) 

gives another form for expressing the axial component (𝐸0𝑥), which is 

𝐸0𝑥 = −
𝐾𝐹 𝑢 𝐵

𝐾𝐹

𝛽 (1 − 𝐾𝐹)

= −𝑢 𝐵 𝛽 (1 − 𝐾𝐹) 
( 85) 

It is useful now to repeat the general expression of the axial component (𝐽𝑥 ) of the electric 

current-density vector (𝐽) for Faraday-type channels, which is 

𝐽𝑥 =
𝜎

1 + 𝛽2
 (𝐸0𝑥 − 𝛽 𝐾𝐹 𝑢 𝐵 + 𝛽 𝑢 𝐵) =

𝜎

1 + 𝛽2
 (𝐸0𝑥 + 𝛽 𝑢 𝐵 [1 − 𝐾𝐹]) ( 40) 

Using the expression for the target profile of (𝐸0𝑥) for a diagonal channel, as provided through 

Equation (85), in the above equation for (𝐽𝑥) shows that the component (𝐽𝑥) automatically vanishes, 

as follows 

𝐽𝑥 =
𝜎

1 + 𝛽2
 (−𝑢 𝐵 𝛽 [1 − 𝐾𝐹] + 𝑢 𝐵 𝛽 [1 − 𝐾𝐹]) =

𝜎

1 + 𝛽2
 𝑢 𝐵 𝛽 (0) = 0 ( 86) 

The vanishing of the axial component of the electric current-density vectors (𝐽) means that these 

vectors are exactly vertical (parallel to the 𝑦-axis). Consequently, the inclination angles of these 

vectors (𝜃𝐽), measured from the vertical, are zero. This situation is identical to the one obtained in the 

segmented-electrode Faraday channel, and we repeat it below  

𝜃𝐽 = tan−1 (
𝐽𝑥

|𝐽𝑦|
) = 0° ( 72) 

We also repeat the general expression of the vertical component (𝐽𝑦) of the electric current-

density vector (𝐽) for Faraday-type channels, which is 

𝐽𝑦 =
𝜎

1 + 𝛽2
 (𝐾𝐹 𝑢 𝐵 − 𝑢 𝐵 + 𝛽 𝐸0𝑥) =

𝜎

1 + 𝛽2
 (𝛽 𝐸0𝑥 − 𝑢 𝐵 [1 − 𝐾𝐹]) ( 41) 

Using the earlier expression for (𝐸0𝑥), as given in Equation (85), shows that for the diagonal 

channel, the component (𝐽𝑦) becomes 

𝐽𝑦 =
𝜎

1 + 𝛽2
 (−𝑢 𝐵 𝛽2 [1 − 𝐾𝐹] − 𝑢 𝐵 [1 − 𝐾𝐹])

= −
𝜎

1 + 𝛽2
 𝑢 𝐵 [1 − 𝐾𝐹](1 + 𝛽2) 

( 87) 

Thus, for the diagonal channel, we have the same expression for (𝐽𝑦) as the one reached earlier 

for the segmented-electrode Faraday channel, which is repeated below 

𝐽𝑦 = −𝜎 𝑢 𝐵 (1 − 𝐾𝐹) ( 77) 

The direct current (DC) electric power delivered to the load (treating the multiple connected 

loads as a single one) in the case of the diagonal-electrode channel per unit volume of plasma (𝑃𝐷) is 

the same as the one provided earlier for the segmented-electrode Faraday channel (𝑃𝐹−𝑠𝑒𝑔 ). The 

mathematical expression for (𝑃𝐷) is 
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𝑃𝐷: 𝐾𝐹 𝑢 𝐵 | 𝐽𝑦| = 𝐾𝐹 𝑢 𝐵 𝜎 𝑢 𝐵 (1 − 𝐾𝐹) = 𝜎 𝑢2 𝐵2 𝐾𝐹 (1 − 𝐾𝐹) ( 88) 

Therefore, neither the penalty factor (1 (1 + 𝛽2)⁄ ) nor the penalty factor (𝛽2 (1 + 𝛽2)⁄ ) appear in 

the present case of a diagonal-electrode channel. 

As in the case of the continuous-electrode Faraday channel and the segmented-electrode 

Faraday channel, the optimized value of (𝐾𝐹) is 0.5; and optimized power density in the case of the 

diagonal-electrode channel is 

𝑃𝐷,𝑜𝑝𝑡 = 0.25 𝜎 𝑢2 𝐵2 ( 89) 

We would like to add three remarks about the diagonal MHD channel.  

The first remark is that despite the attractive performance of the diagonal channel as described 

above, it should be noted that this is constrained to a particular value of (𝐾𝐹) and a corresponding 

uniform value of (𝛽). In reality, it is difficult to maintain such a specific operating point, and thus 

operating at off-design regimes is likely to happen [223–225]. In the off-design condition, the 

expressions we provided for the diagonal channel break, as these assume a perfect design point.  

The second remark is that the diagonal-electrode channel reduces to a linear Hall channel in the 

special value of (𝜃Φ = 0°), which corresponds to vertical shorting links. 

The third remark is that, as was the case for the linear Hall channel, the diagonal-electrode 

channel permits powering multiple loads simultaneously because there are multiple electric 

connections (the shorting links) that offer multiple levels of electric potential. This possibility is 

illustrated in Figure 8.  

 

Figure 8. Graphical illustration of a diagonal-electrode channel, in the case of three external loads being powered 

simultaneously. 

As done for the previous three sections, we conclude this section by deriving a special expression 

for the electric efficiency of the diagonal-electrode channel. From the general expression in 

Equation (4), a reduced version can be obtained if the channel has uniform electromagnetic properties 

and it is operating at its design point, and this reduced form is 
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𝜂𝑒𝑙𝑒𝑐,𝐷 =
|𝐽𝑥 𝐸0𝑥| + |𝐽𝑦 𝐸0𝑦|

𝑢 | 𝐽𝑦| 𝐵
=

| 𝐽𝑦| 𝐸0𝑦

𝑢 | 𝐽𝑦| 𝐵
=

𝐸0𝑦

𝑢 𝐵
=

𝐾𝐹 𝑢 𝐵

𝑢 𝐵
= 𝐾𝐹 ( 90) 

 Thus, the electric efficiency is reduced to (𝐾𝐹). This is the same result obtained for either the 

continuous-electrode Faraday channel or the segmented-electrode Faraday channel. 

8. Conclusions 

In the current study, we provided a detailed mathematical analysis of the four main types of 

linear magnetohydrodynamic (MHD) channels for power generation applications. Namely, these are 

the (1) continuous-electrode Faraday channel, (2) segmented-electrode Faraday channel, (3) linear 

Hall channel, and (4) diagonal-electrode channel. Through applying some assumptions 

(unidirectional applied magnetic field, unidirectional plasma velocity, low magnetic Reynolds 

number, and two-dimensional electric field), closed-form analytical expressions were derived to 

describe the operation and power generation performance of these four channel types. 

We compare in Table 2 various key characteristics of the continuous-electrode Faraday channel 

and the linear Hall channel, whose geometric and electric connectivity are very different.  

Then in Table 3, we provide a similar comparison, but between the segmented-electrode Faraday 

channel and its performance-equivalent diagonal-electrode channel (when operating at is design 

point). It can be seen these two types are very similar in terms of their operation. 

Table 2. Comparison between two types of linear magnetohydrodynamic channels. 

Quantity Continuous-electrode Faraday Linear Hall 

𝑬𝟎𝒙 0 −𝐾𝐻 𝛽 𝑢 𝐵 

𝑬𝟎𝒚 𝐾𝐹 𝑢 𝐵 0 

𝜽𝚽 90° 0° 

𝑱𝒙 
𝜎

1 + 𝛽2
 𝛽 𝑢 𝐵 (1 − 𝐾𝐹) 

𝜎

1 + 𝛽2
 𝛽 𝑢 𝐵 (1 − 𝐾𝐻) 

𝑱𝒚 −
𝜎

1 + 𝛽2
 𝑢 𝐵 (1 − 𝐾𝐹) −

𝜎

1 + 𝛽2
 𝑢 𝐵 (1 + 𝛽2 𝐾𝐻) 

𝜽𝑱 tan−1(𝛽) tan−1 (
𝛽 (1 − 𝐾𝐻)

 1 + 𝛽2 𝐾𝐻
) 

P 
𝜎

1 + 𝛽2
 𝑢2 𝐵2 𝐾𝐹 (1 − 𝐾𝐹) 

𝜎

1 + 𝛽2
 𝑢2 𝐵2 𝛽2𝐾𝐻 (1 − 𝐾𝐻) 

𝑷𝒐𝒑𝒕 0.25 
1

1 + 𝛽2
 𝜎 𝑢2 𝐵2 0.25 

𝛽2

1 + 𝛽2
 𝜎 𝑢2 𝐵2 

𝜼𝒆𝒍𝒆𝒄 𝐾𝐹 
 𝛽2 (1 − 𝐾𝐻) 𝐾𝐻 

1 + 𝛽2 𝐾𝐻
 

Number 

of loads 
1 1 or more 

Table 3. Comparison between the other two types of linear magnetohydrodynamic channels. 

Quantity Segmented-electrode Faraday Diagonal-electrode 

𝑬𝟎𝒙 −𝛽 𝑢 𝐵 (1 − 𝐾𝐹) Same as segmented-electrode Faraday 

𝑬𝟎𝒚 𝐾𝐹 𝑢 𝐵 Same as segmented-electrode Faraday 
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𝜽𝚽 tan−1 (
𝐾𝐹

𝛽 (1 − 𝐾𝐹)
) Same as segmented-electrode Faraday 

𝑱𝒙 0 Same as segmented-electrode Faraday 

𝑱𝒚 −𝜎 𝑢 𝐵 (1 − 𝐾𝐹) Same as segmented-electrode Faraday 

𝜽𝑱 0° Same as segmented-electrode Faraday 

P 𝜎 𝑢2 𝐵2 𝐾𝐹 (1 − 𝐾𝐹) Same as segmented-electrode Faraday 

𝑷𝒐𝒑𝒕 0.25 𝜎 𝑢2 𝐵2 Same as segmented-electrode Faraday 

𝜼𝒆𝒍𝒆𝒄 𝐾𝐹 Same as segmented-electrode Faraday 

Number 

of loads 
multiple 1 or more 
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