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Abstract

Complex networks model the structure and function of critical technological, biological, and com-
munication systems. Network dismantling, the targeted removal of nodes to fragment a network, is
essential for analyzing and improving system robustness. Existing dismantling methods suffer from
key limitations: they depend on global structural knowledge, exhibit slow running times on large
networks, and overlook the network’s latent geometry, a key feature known to govern the dynamics
of complex systems. Motivated by these findings, we introduce Latent Geometry-Driven Network
Automata (LGD-NA), a novel framework that leverages local network automata rules to approximate
effective link distances between interacting nodes. LGD-NA is able to identify critical nodes and
capture latent manifold information of a network for effective and efficient dismantling. We show
that this latent geometry-driven approach outperforms all existing dismantling algorithms, including
spectral Laplacian-based methods and machine learning ones such as graph neural networks and . We
also find that a simple common-neighbor-based network automata rule achieves near state-of-the-art
performance, highlighting the effectiveness of minimal local information for dismantling. LGD-NA is
extensively validated on the largest and most diverse collection of real-world networks to date (1,475
real-world networks across 32 complex systems domains) and scales efficiently to large networks
via GPU acceleration. Finally, we leverage the explainability of our common-neighbor approach
to engineer network robustness, substantially increasing the resilience of real-world networks. We
validate LGD-NA’s practical utility on domain-specific functional metrics, spanning neuronal firing
rates in the Drosophila Connectome, transport efficiency in flight maps, outbreak sizes in contact
networks, and communication pathways in terrorist cells. Our results confirm latent geometry as a
fundamental principle for understanding the robustness of real-world systems, adding dismantling to
the growing set of processes that network geometry can explain.

Keywords: network robustness; network dismantling; network geometry; network science; complex
systems; network automata; graphs; network topology

1. Introduction
Complex networks are the backbone of our modern world, from the biological pathways within a

cell to global financial and transportation systems (Newman 2003). While the interconnected nature of
these systems is often a source of efficiency and strength, it also introduces profound vulnerabilities. A
localized failure can be absorbed, or it can trigger a cascade of disruptions leading to a systemic collapse.
Understanding this fragility is crucial, as the consequences are far-reaching: targeted disruptions can
compromise cellular function in metabolic networks, dictate the spread of a virus through a social
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fabric, or cause catastrophic blackouts in power grids and failures in financial markets (Albert et al.
2000; Artime et al. 2024). The formal study of these vulnerabilities is known as network dismantling. It
addresses a fundamental question: what is the most efficient way to fragment a network by removing a
minimal set of nodes or links, to disrupt its structural integrity and functional capacity? Answering this
question is essential not only for predicting the impact of malicious attacks but, more importantly, for
designing robust and resilient systems that can withstand them. The task of dismantling serves a dual
purpose. It determines whether a system is robust and how to reinforce desirable networks, for example
preventing system failure in a flight network or security compromises in internet infrastructure.
Conversely, it reveals how to disrupt undesirable systems, severing communications in terrorist cells
or halting the spread of an epidemic. Efficient network dismantling is challenging because identifying
the minimal set of nodes for optimal disruption is an NP-hard problem: no known algorithm can solve
it efficiently for large networks (Artime et al. 2024), forcing the field to rely on heuristic approximations.
This difficulty arises not only from the prohibitively large solution space but also from the structural
complexity of real-world networks, which exhibit heterogeneous, fat-tailed connectivity (Barabási &
Albert 1999; Broido & Clauset 2019; Serafino et al. 2021; Voitalov et al. 2019), modular and community
structures (Newman 2012), hierarchies (Clauset et al. 2008; Ravasz & Barabási 2003), higher-order
structures (Battiston et al. 2021; Lambiotte et al. 2019), and a latent geometry (Boguñá et al. 2021;
Krioukov et al. 2010; Muscoloni et al. 2017; Serrano et al. 2008; Wu et al. 2015).

Node Betweenness Centrality (NBC) is a network centrality measure (Freeman 1977) that quan-
tifies the importance of a node in terms of the fraction of the shortest paths that pass through it.
NBC-based attack, where nodes are removed in order of their betweenness centrality, is considered
one of, if not the best, method for network dismantling (Engsig et al. 2024; Holme et al. 2002; Motter &
Lai 2002; Servedio et al. 2025). However, like many other dismantling techniques, it requires global
knowledge of the entire network topology, and its high computational cost limits its scalability to large
networks. These limitations are shared by many other state-of-the-art dismantling methods, which
additionally rely on black-box machine learning models, and are rarely validated across large, diverse
sets of real-world networks (see Tables 1, A4, and A3).

Latent geometry has been recognized as a key principle for understanding the structure and
complexity of real-world networks. Recent works in network science suggest that the latent geometry
of complex networks could explain critical network characteristics such as small-worldness, degree
heterogeneity, clustering, and navigability, and drives critical processes like efficient information
flow (Boguñá et al. 2009, 2021; Kleinberg 2000; Krioukov et al. 2010; Muscoloni & Cannistraci 2018a,
2019; Serrano et al. 2008; Wu et al. 2015). Work by Muscoloni et al. (2017) revealed that betweenness
centrality is a global latent geometry estimator: it approximates node distances in an underlying
geometric space. They also introduced Repulsion-Attraction network automata rule 2 (RA2), a local
latent geometry estimator that uses only first-neighbor connectivity. RA2 performed comparably
to NBC in tasks such as network embedding and community detection, despite relying solely on
local information. This raises the first question: can latent geometry, whether estimated globally or
locally, guide effective network dismantling? If complex systems run on a latent manifold, estimating
it may offer a more efficient way to disrupt connectivity. The second question concerns efficiency.
While both NBC and RA2 have O(Nm) complexity (N as the number of nodes and m the number
of links), RA2 is significantly faster in practice because its local computations avoid NBC’s large
computational overhead. This motivates exploring whether local latent geometry estimators can match
the dismantling performance of global methods like NBC while offering lower running time.

Motivated by these questions, we introduce the Latent Geometry-Driven Network Automata
(LGD-NA) framework. Our first and primary contribution is the principle of (1) Latent Geometry-
Driven (LGD) dismantling, where methods estimate effective node distances on a network’s latent
manifold to expose critical structural information. Specifically, our (2) LGD-NA framework uses local
network automata rules to approximate these geometric distances; a node’s summed distance to its
neighbors estimates how critical it is for dismantling. Within this framework, we discovered that a
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(3) simple common neighbors-based rule, which we term Common Neighbor Dissimilarity (CND),
is highly effective, achieving performance close to the state-of-the-art method, NBC. We prove the
effectiveness of our approach through (4) comprehensive experimental validation on an ATLAS of
1,475 real-world networks across 32 complex systems domains, the largest and most diverse collection
to date, showing that LGD-NA consistently outperforms all other existing dismantling algorithms,
including machine learning and spectral Laplacian-based methods. To enable dismantling at large
scales, we implement (5) GPU-acceleration for LGD-NA, yielding remarkable running time advantages
over methods like NBC. Finally, using the explainability of our CND measure, we introduce a new
method for (6) engineering network robustness, substantially reducing the effectiveness of the best
dismantling methods. We further validate the practical utility of our dismantling framework and
robustness engineering method by demonstrating their impact on domain-specific functional metrics,
including neuronal firing rates in the Drosophila Connectome, flight map efficiency, epidemic sizes,
and communication reachability in terrorist cells.

Table 1. Number of real-world networks tested by dismantling algorithms, see Table A8 for more information.

Algorithm Year Networks Ref.

Collective Influence (CI) 2016 2 Morone et al. (2016)

CoreHD 2016 12 Zdeborová et al. (2016)

Explosive Immunization (EI) 2016 5 Clusella et al. (2016)

Min-Sum (MS) 2016 2 Braunstein et al. (2016)

GND 2019 10 Ren et al. (2019)

Resilience Centrality 2020 4 Zhang et al. (2020)

GDM 2021 57 Grassia et al. (2021)

CoreGDM 2023 15 Grassia & Mangioni (2023)

Domirank Centrality 2024 6 Engsig et al. (2024)

Fitness Centrality 2025 5 Servedio et al. (2025)

LGD-NA 2025 1,475 Ours

2. Related Work
Latent Geometry of Complex Networks.

Many real-world networks are shaped by latent geometric manifolds of the complex systems that
govern their topology and dynamics. These hidden geometries explain essential structural features
such as small-worldness, degree heterogeneity, clustering, and community structure (Boguñá et al.
2021; Muscoloni & Cannistraci 2018a,b; Muscoloni et al. 2017; Serrano et al. 2008; Wu et al. 2015;
Zuev et al. 2015). The underlying metric space is not only descriptive but functional: it facilitates
efficient routing and navigation with limited global knowledge (Boguñá et al. 2009; Kleinberg 2000;
Krioukov et al. 2010; Muscoloni & Cannistraci 2019). Such properties emerge consistently across
diverse systems, including biological, social, technological, and socio-ecological networks (Boguñá
et al. 2021; Wu et al. 2015). Latent geometries also enable predictive modeling of dynamical processes
such as network growth (Muscoloni & Cannistraci 2018a,b; Papadopoulos et al. 2012), and epidemic
spreading (Brockmann & Helbing 2013).

Latent Geometry Estimators.

Latent geometry estimators assign edge weights to approximate linked nodes’ pairwise dis-
tances in the hidden geometric manifold. Among them, network automata rules based on the
Repulsion-Attraction (RA) criterion use only local topological information to infer proximity in the
latent space (Muscoloni et al. 2017). RA is grounded in the theory of network navigability (Boguñá
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et al. 2009), which posits that nodes with many non-overlapping neighbors tend to occupy distant
regions in the latent space. Edges between such nodes receive higher dissimilarity scores due to strong
repulsion, while those with many common neighbors are scored lower due to attraction. RA1 and
RA2 are network automata rules for approximating linked nodes’ pairwise distances on the latent
manifold of a complex network. These rules are categorized as network automata because they adopt
only local information to infer the score of a link in the network without the need for pre-training of
the rule. Note that RA1 and RA2 are predictive network automata that differ from generative network
automata, which are rules created to generate artificial networks (Barabási & Albert 1999; Muscoloni
& Cannistraci 2018b; Papadopoulos et al. 2012). They were introduced to serve as pre-weighting
strategies for approximating angular distances associated with node similarities in hyperbolic network
embeddings. RA2 performed slightly better than RA1, so for this reason we will only consider RA2 in
this study. RA2 defines dissimilarity between nodes i and j as:

RA2(i, j) =
1 + ei + ej + ei · ej

1 + CNij
.

where CNij is the number of common neighbors of nodes i and j, and ei and ej are the external degrees
of i and j, representing the count of neighbors of i and j that are not involved in the common neighbors
interactions. In the same work, Muscoloni et al. also showed that betweenness centrality is a global
latent geometry estimator. By comparing it with RA2, they demonstrated that both global (betweenness
centrality) and local (RA) estimators can effectively capture latent geometry, achieving strong results
in network embedding and community detection. See Table A1 for a comparison of estimators and
Figure A1 for illustrative examples. See also Appendix C, where we validate the ability of these
latent-geometry estimators in identifying node importance and estimate link distances in networks
with a known geometry.

Topological centrality measures.

Degree, betweenness centrality, and their variants have all been used in the majority of dismantling
studies (Artime et al. 2024), with betweenness centrality having been found to be the most effective
strategy when applying dynamic dismantling, meaning the scores are recomputed after every step.
Degree centrality ranks nodes by their number of neighbors, and betweenness centrality (Freeman
1977) counts how frequently a node lies on shortest paths. Other centrality variants include eigenvector
centrality (Bonacich 1972), which gives higher scores to nodes connected to other influential nodes.
PageRank (Page et al. 1999), based on a random walk model, favors nodes that receive many and
high-quality links. Beyond these classical measures, several centrality indices have been developed
specifically to capture aspects of network resilience. Fitness centrality (Servedio et al. 2025), adapted
from economic complexity theory, evaluates node importance through the capabilities of neighbors
while penalizing connections to weak nodes. DomiRank (Engsig et al. 2024) centrality models a
competitive dynamic in which nodes gain or lose dominance, or importance, based on the relative
strength of their neighbors. Resilience centrality (Zhang et al. 2020), derived from a dynamical systems
reduction, quantifies how a node’s removal alters the system’s resilience. See Table A3 for more
information.

Statistical and Machine Learning Network Dismantling.

We focus on network dismantling for targeted attacks, where the goal is to fragment a network
as efficiently as possible by removing selected nodes. Message passing-based methods such as Belief
Propagation-guided Decimation (BPD) (Mugisha & Zhou 2016) and Min-Sum (MS) (Braunstein et al.
2016) use message-passing algorithms to decycle the network and then fragment the resulting forest
with a tree-breaker algorithm, while CoreHD (Zdeborová et al. 2016) achieves decycling by iteratively
removing the highest-degree nodes from the 2-core of the network and also includes a tree-breaker
algorithm. Decycling and dismantling are, in fact, closely related tasks, as a tree (or a forest) can be
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dismantled almost optimally (Braunstein et al. 2016). Generalized Network Dismantling (GND) (Ren
et al. 2019) targets nodes that maximize an approximated spectral partitioning. Collective Influence
(CI) (Morone et al. 2016) targets nodes with maximal influence on their neighborhoods, and Explosive
Immunization (EI) (Clusella et al. 2016), uses explosive percolation dynamics. Machine learning-based
methods include Graph Dismantling with Machine Learning (GDM) (Grassia et al. 2021), which trains
graph neural networks to predict optimal attack strategies in a supervised manner. FINDER (Fan
et al. 2020b) uses reinforcement learning instead to autonomously learn dismantling strategies without
needing labeled data. CoreGDM (Grassia & Mangioni 2023) combines ideas from CoreHD and GDM as
it attacks the 2-core of the network but uses machine learning models trained on optimal dismantling
solutions to guide node removal. See Table A4 for more information.

3. Latent Geometry-Driven Network Automata
We introduce the Latent Geometry-Driven Network Automata (LGD-NA) framework. LGD-NA

adopts a parameter-free network automaton rule, such as RA2, to estimate latent geometric linked
node pairwise distances and to assign edge weights based on these geometric distances. Then, it
computes for each node its network centrality as a sum of the weights of adjacent edges. The higher
this sum, the more a node dominates numerous and far-apart regions of the network, becoming a
prioritized candidate for a targeted attack in the network dismantling process. This prioritized node
is then removed from the network, and the procedure is iteratively repeated until the network is
dismantled. See Figure 1 for a full breakdown of the LGD-NA framework.

Figure 1. Overview of the LGD Network Automata framework. A: Begin with an unweighted and undirected
network. B: Estimate latent geometry by assigning a weight νij to each edge between nodes i and j using local
latent geometry estimators. C: Construct a dissimilarity-weighted network based on these weights. D: Compute
node strength as the sum of geometric weights to all neighbors in N (i):si = ∑j∈N (i) νij E–F: Perform dynamic
dismantling by iteratively computing node strengths, removing the node with the highest si and its edges, and
checking whether the normalized size of the largest connected component (LCC) has dropped below a threshold.
G–H (optional): Reinsert dismantled nodes using a selected reinsertion method.

3.1. Latent Geometry-Driven Dismantling

Our first contribution is Latent Geometry-Driven (LGD) dismantling, where any function can
be used to estimate edge weights that represent effective distances between nodes, capturing the
network’s underlying latent geometry. These inferred weights are used to construct a dissimilarity-
weighted network, encoding a hidden geometric structure beneath the observable topology and
allowing the dismantling process to prioritize nodes according to their geometric centrality in the
latent manifold. Latent geometric structures have been shown not only to explain key properties of
complex networks, but also to support the understanding of dynamical processes such as navigation,
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routing, and epidemic spreading. Building on the idea that network geometry captures essential
structural and dynamical properties of complex systems, LGD dismantling is guided by a geometric
intuition about how nodes connect distant regions in the latent space. If two nodes are connected to
many different nodes but have little overlap in their neighborhoods, they are likely to be far apart in
the network’s latent space. An edge between them, therefore, connects distant regions of the network.
A node that has many such edges is central to holding the network together, as it links otherwise
separate areas. We propose that removing those geometrically central nodes is an effective way to
fragment the network. Muscoloni et al. (2017) also offered evidence that betweenness centrality can be
used as a latent geometry estimator, hence, NBC is a global topology centrality measure which can be
used for latent geometry-driven dismantling.

3.2. LGD Network Automata
Our second contribution is the introduction of a parameter-free network automaton framework

for LGD dismantling. In this framework, node importance is estimated by aggregating edge geometric
weights into node strengths, and the network is dismantled iteratively by removing the nodes with
the highest strength and all their edges. The underlying intuition is that nodes that connect to many
external, non-overlapping regions are geometrically central and thus more structurally important,
leading to higher strength values. Formally, we begin with an undirected, unweighted network
without isolated components. A network automaton rule, such as RA2, that is able to adopt local
topology to estimate latent geometry, is applied to assign a weight νij to the edge between node i and
node j, representing the estimated geometric distance between the two nodes. We get a dissimilarity-
weighted network from these edge weights. The strength si of node i is then calculated by summing
the geometric weights of all its edges, that is, the weights to all its neighbors in the set N (i):

si = ∑
j∈N (i)

νij.

In this paper, we adopt three types of LGD network automata rules. The first rule is RA2, which
was proposed by Muscoloni et al. (2017) for hyperbolic network embedding purposes. The second rule
is proposed in this study as an ablation test of the RA2 rule. It is the denominator of the RA2, which
we call common neighbors dissimilarity (CND), defined as:

νij → CND(i, j) =
1

1 + CNij
.

where CNij is the number of common neighbors between nodes i and j. Here, the lower the
number of common neighbors two interacting nodes have, the more geometrically distant they are,
and thus a higher edge weight is assigned between these two nodes. The rationale for proposing a
network automaton rule based only on the common neighbors denominator term of RA2 is to account
for the mere attraction between a node and its neighbors. Neglecting the repulsion part associated
with the external links (the numerator of RA2) makes sense in a dismantling task because any time we
compute the common neighbors of a seed node with one of its neighbors, we indirectly account for the
exclusion of nodes that are not in the topological neighborhood of the seed node. For completeness,
we also investigate a third rule as an ablation test of RA2 in which we consider only the external
links term in the RA2 numerator, expecting that the mere RA2 numerator should also work, but not
as well as the common neighbor-based denominator. Indeed, a previous study offers evidence that
common neighbors are among the topological features most associated with community organization
and mesoscale network geometry (Bianconi et al. 2014).
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4. Experiments
4.1. Evaluation Procedure

We evaluate all dismantling methods using a widely accepted procedure in the field of network
dismantling (Artime et al. 2024). For each method, nodes are removed sequentially according to the
order it defines. After each removal, we track the normalized size of the Largest Connected Component
(LCC), defined as the ratio LCC(x)/|N|, where |N| is the total number of nodes in the original network
and LCC(x) is the number of nodes in the largest component after x removals. This process continues
until the LCC falls below a predefined threshold. A commonly accepted threshold in dismantling
studies is 10% of the original network size. To quantify dismantling effectiveness, we compute the
Area Under the Curve (AUC) of the LCC trajectory throughout the removal process, which records the
normalized LCC size at each step. A lower AUC indicates a more efficient dismantling, as it reflects an
earlier and sharper disruption of network connectivity. The AUC is computed using Simpson’s rule.
See Figures A2, A6, A10, and A15 for visual illustrations of the LCC curve.

4.2. Optional Reinsertion Step

After reaching the dismantling threshold, we optionally perform a reinsertion step to reduce
the dismantling cost, defined as the number of removals. Nodes are sequentially reinserted back
into the network, one at a time, until the LCC of the remaining network just meets or exceeds the
predetermined dismantling threshold. Reinsertion can significantly improve dismantling performance;
recent work shows that simple heuristics with reinsertion can match or outperform complex algorithms
that include reinsertion by default (Fan et al. 2020a). As a result, we enforce two constraints to ensure
the reinsertion step does not override the original dismantling method: (1) reinsertion cannot reinsert
all nodes to recompute a new dismantling order, and (2) reinsertion must use the reverse dismantling
order as a tiebreak. If a method includes reinsertion by default, we also evaluate its performance
without reinsertion for a fair comparison. See Table A5 for more information.

4.3. ATLAS Dataset
Our fourth contribution is the breadth and diversity of real-world networks tested in our experi-

ments, demonstrating the generality and robustness of LGD-NA across domains and scales. We build
an ATLAS of 1,475 real-world networks across 32 complex systems domains, which is the largest and
most diverse collection of real-world networks to date used for testing in network dismantling studies.
We first test all methods across networks of up to 5,000 nodes and 205,000 edges without reinsertion
(n = 1,296), and 38,000 edges with reinsertion (n = 1,237). To assess the practical running time of the
best performing methods, we evaluate NBC and RA2 on even larger networks of up to 23,000 nodes
and 507,000 edges (n = 1,475). Current state-of-the-art dismantling algorithms have been evaluated
on no more than 57 real-world networks (see Table 1), with most algorithms tested on fewer than a
dozen. Our experiments cover 1,475 networks, representing a substantial expansion. A key aspect of
our ATLAS dataset is the diversity of network types (see Table 2). We test across 32 different complex
systems domains, ranging from protein-protein interaction (PPI) to power grids, international trade,
terrorist activity, ecological food webs, internet systems, brain connectomes, and road maps. Since
fields vary in both the number of networks and their characteristics, we evaluate dismantling methods
using a mean field approach, ensuring that fields with more networks do not dominate the overall
evaluation. Also, because dismantling performance varies in scale across fields, we compute a mean
field ranking to make results comparable across domains.
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Table 2. Summary of real-world networks tested in this paper, see Table A7 for more information.

Field Subfields Types Networks

Biomolecular 5 PPI, Genetic, Metabolic, Molecu-
lar, Transcription

27

Brain 1 Connectome 529

Covert 2 Covert, Terrorist 89

Foodweb 1 Foodweb 71

Infrastructure 7 Flight, Nautical, Power grid,
Rail, Road, Subway, Trade

314

Internet 1 Internet 206

Misc 8 Citation, Copurchasing, Game,
Hiring, Lexical, Phone call, Soft-
ware, Vote

38

Social 7 Coauthorship, Collaboration,
Contact, Email, Friendship,
Social network, Trust

201

Total 32 1,475

4.4. LGD-NA Performance and Comparison to Other Methods
We compare our LGD-NA framework against the best-performing dismantling algorithms in

the literature. Main results are visualized in Figure2, and full quantitative results, including side-by-
side comparisons of absolute AUC and mean-field ranks for all methods and fields, are reported in
Tables A21 through A33 in the Appendix.

Figure 2. Mean field ranking for each dismantling method without reinsertion (n = 1,296; upper panel) and with
reinsertion (n = 1,237; lower panel), for dynamic dismantling. In the lower panel, a subset of the best-performing
methods from each category is paired with their respective best-performing reinsertion strategy. Methods based
on latent geometry are shown in red. NR denotes variants where the original reinsertion step was disabled. Error
bars indicate the standard error of the mean (SEM).

First, we find that all latent geometry network automata, NBC, RA2, and its variants, achieve top
dismantling performance, both with and without reinsertion. These findings show that estimating the
latent geometry of a network effectively reveals critical nodes for dismantling, confirming our first
contribution. For each method, we evaluate three reinsertion strategies and report the best result. We
show in Figure A5 that using different reinsertion methods does not change the mean field ranking
of the dismantling methods, and in Figures A7 and A8 that the improvement in performance varies
across fields and reinsertion methods (see Figure A6 for an illustrative example). We also adopt a
dynamic dismantling process for the network automata rules and all centrality measures, where we
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recompute the scores after each dismantling step, as it consistently outperforms the static variant (see
Figure A9 for an example of the improvements for CND and Figure A10 for an illustrative example).
Second, we find that local network automata rules RA2, CND, and RA2num, which adopt only the local
network topology around a node, are highly effective. In particular, RA2 and its variants consistently
outperform all other non-latent geometry-driven dismantling algorithms, including those relying
on global topological measures or machine learning. This confirms our second contribution. See
Figure A2 for illustrative examples where the local network automata rules outperform NBC. In
addition, Appendix C validates the ability of our latent-geometry-based network automata rules
in identifying node importance and estimating latent geometric distances. Third, we find that the
simplest RA2 variant, based solely on inverse common neighbors, which we refer to as common
neighbor dissimilarity (CND), achieves the best performance among all local network automata rules.
This is our third contribution and demonstrates that even minimal local topology-based information
can effectively approximate latent geometry useful for effective dismantling. NBC strictly dominates
as the top-ranking method across all fields. However, among the second-best performers, the LGD-NA
methods lead in the majority of domains: CND ranks second in Internet networks, RA2 in Biomolecular
and Brain networks, and RA2num in Covert networks. The only fields where non-LGD-NA methods
rank second are Foodweb (Fitness Centrality), Infrastructure (GDM), and Social networks (GND). LGD-
NA consistently outperforms all other non-latent geometry-driven dismantling algorithms, including
those relying on spectral Laplacian-based methods and machine learning. The only measure that still
outperforms LGD-NA is the NBC metric (which is also latent-geometry-driven), applied to dynamic
dismantling. These results strongly demonstrate the practical reliability of our latent geometry-driven
dismantling framework, LGD-NA.

4.5. GPU Acceleration of LGD-NA for Large-Scale Dismantling

We implement GPU acceleration for all three LGD-NA variants by reformulating the required
computations as matrix operations. On large networks, this enables a significant speedup in running
time. When comparing RA2 and NBC, on the largest network, GPU-accelerated RA2 is 130 times
faster than its CPU counterpart, highlighting the inefficiency of matrix multiplication on CPU. It is
also over 63 times faster than NBC running on CPU, thanks to our GPU-optimized implementation.
Note that NBC on CPU remains faster than RA2 on CPU, again due to the limitations of CPU-based
matrix operations. We report only the CPU running time for NBC, as its GPU implementation did
not yield any speedup (see Table A13). While some studies report GPU implementations of NBC
with improved performance (Bernaschi et al. 2016; Fan et al. 2017; McLaughlin & Bader 2018; Pande
& Bader 2011; Sariyüce et al. 2013; Shi & Zhang 2011), these are often limited by hardware-specific
optimizations, data-specific assumptions (e.g., small-world, social, or biological networks), and the
use of heuristics that are tailored to specific settings rather than offering general solutions. Moreover,
publicly available code is rare, making these approaches difficult to reproduce or integrate. Overall,
NBC is not naturally suited for GPU implementation, as it does not rely on matrix multiplication, but
is based on computing shortest path counts between all node pairs. Overall, while NBC achieves
better dismantling performance, its high computational cost makes it impractical for large-scale use.
In contrast, thanks to our GPU-optimized implementation, our local latent geometry estimators based
on network automata rules are the only viable option for efficient dismantling at scale. Here, we look
at the details of our matrix operations for the LGD-NA measures. First, the common neighbors matrix
is computed as

CNL2 = A ◦ (A2)

where A is the adjacency matrix and ◦ denotes element-wise multiplication. Here, A2 counts the
number of paths of length two (i.e., common neighbors) between all node pairs. The Hadamard
product with A ensures that values are only retained for existing edges. Next, we compute the number
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of external links a node has relative to each of its neighbors. Given the degree matrix D, the external
degree matrix is:

EL2 = A ◦ (D − CNL2 − A)

Each entry (i, j) of EL2 represents the external degree of node i with respect to node j: the number of
neighbors of i that are neither connected to j nor directly connected to j itself. Non-edges are zeroed
out. These matrices allow efficient construction of RA2 and its variants using only matrix operations.
The time complexity is O(N3), with the common neighbor matrix being the dominant operation, for
dense graphs, and O(Nm) for sparse graphs, N being the number of nodes and m the number of
links. On CPU, matrix multiplication is typically memory-bound and limited by sequential operations.
GPUs, however, are optimized for matrix operations, leveraging thousands of parallel threads. This
results in a substantial speedup when implementing the GPU version. Finally, we show in Appendix J
that in controlled settings with nPSO networks the GPU advantage becomes apparent when networks
exceed 1,000 nodes or 100,000 edges.

Figure 3. Runtime (in hours) is plotted against network size, measured by the number of edges, E, for dynamic
dismantling. The annotated time indicates the runtime for the largest network. Evaluated on networks of up to
23,000 nodes and 507,000 edges (n = 1,475).

4.6. Leveraging CND Explainability to Engineer Network Robustness
A key advantage of our LGD-NA framework is its explainability. Indeed, we can directly explain

why any of our network-automata-based and latent-geometry-driven measures prioritize specific
nodes for dismantling. CND, our most performant network automata rule for dismantling, makes
this explainability even more straightforward and shows that the vulnerability of a node is strongly
related to the number of links its neighbors share with one another. The higher this number, the more
common neighbors exist between the adjacent nodes of a vulnerable target node. This means that,
to enhance the robustness of the network to the failure of a critical node, we should simply increase
the number of links between its adjacent nodes. The strategy is as follows. First, identify the nodes
with the highest dismantling scores according to a given measure. Here, we consider NBC, a global
shortest-path count-based measure, and CND, a local topology common-neighbor-based network
automata measure, because they use different rationales to estimate critical nodes and are the two
best-performing measures in this study. Second, for these critical nodes, add new links between
their adjacent nodes that are not already connected to each other. Robustness is defined as the ability
of a system to continue functioning when subjected to perturbations (Artime et al. 2024). In this
initial context, we define attack tolerance, quantified by the LCC AUC, as a robustness measure itself,
representing the system’s structural integrity under dismantling attacks. We validate our reinforcement
strategy in Table A10 and Figure A11. We clearly show that adding links between the adjacent nodes of
the most critical nodes significantly increases the AUC—and therefore the robustness—by 36% to 95%
for 1% of added links, and by 59% to 259% for 10% of added links. Remarkably, by reinforcing only the
top 1% of nodes, we increase network robustness regardless of the dismantling method used—whether
it is our CND or NBC.
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4.7. Real-World Applications: Fault Tolerance, Security, and Communications

To demonstrate the practical utility of LGD-NA, we evaluate its performance on four distinct
real-world systems using domain-specific functional metrics. First, we use the Drosophila Connec-
tome (Shiu et al. 2024) (Fault Tolerance), where we utilize a Spiking Neural Network (SNN) model of
the sugar-sensing circuit. The metric is the sensory neuron firing rate required to trigger the proboscis
extension response. Second, the Terrorist Cell (Gutfraind & Genkin 2017) (Security & Communica-
tions), where we analyze the network responsible for the 2015 Paris and 2016 Brussels attacks. The
metric is Commander Reach, defined as the percentage of operatives able to communicate with at
least one of the three key commanders. Third, the Flight Map (Cardillo et al. 2013) (Fault Tolerance),
where we measure Global Efficiency (Eglob). Fourth, a School Contact Network (Mastrandrea et al.
2015) (Security/Epidemics), where we simulate an epidemic using an SEIR model (Anderson & May
1991). The metric is the Final Outbreak Size. Our results in Figure 4 show that dismantling strategies
effectively degrade the functional performance across all four systems. In the Drosophila Connectome
and Terrorist Cell, we observe particularly sharp drops in performance metrics after removing only
a small fraction of nodes ( 5%). We observe a more gradual deterioration in the global efficiency of
the Flight Map and the viral spread within the School Contact network. This functional collapse is
particularly significant for the two adversarial scenarios (Terrorist Cell and School Contact Network): it
confirms that LGD-NA is effective for security and communication disruption, efficiently suppressing
epidemic outbreaks and isolating hostile leadership with minimal intervention. We subsequently
applied our strategy for engineering network robustness to these four scenarios, demonstrating its
effectiveness. As shown in Table A11, the reinforced networks are significantly harder to dismantle,
achieving robustness gains of up to 363%. This increased resilience is evident across both our original
topological metric (LCC AUC) and the domain-specific functional metrics defined for each case. For
the Drosophila Connectome, this analysis informs the resilient and redundant design of fault-tolerant
neuromorphic circuits by mimicking its biological wiring (Ham et al. 2021; Suárez et al. 2021). In
the Flight Map, it identifies specific hubs where reinforcement prevents systemic failure. Finally, for
adversarial networks, our robustness analysis serves a diagnostic purpose when faced with incomplete
data. Since social networks, and especially covert ones, often contain unobserved links (e.g., dormant
ties or unreported contacts), calculating an empirical robustness ceiling allows us to estimate the
margin of error required for successful security operations with partial observability.

Figure 4. Dynamic dismantling process for four real-world networks with field-spceifc functional metrics, for
NBC, CND, and RA2. The final evaluation metric is the Area Under the Curve (AUC). Dashed line represents the
dynamic dismantling process for reinforced networks. See Figure A11 for full quantitative results.

5. Conclusion
The first limitation is that hardware constraints precluded testing on extremely large networks,

though our results are validated across 1,475 real-world networks across a vast range of disciplines.
Second, while practical runtimes could deviate from theoretical expectations, all methods were exe-
cuted under identical hardware and optimization settings to ensure fair comparison. In addition, we
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acknowledge the dual-use potential of this research, as understanding network vulnerabilities is critical
for both designing targeted attacks and engineering robust defensive strategies. To mitigate this, we
proactively demonstrate a constructive application for enhancing network robustness and believe the
societal benefit of openly publishing these defensive tools outweighs the risk of misuse. In summary,
we introduced Latent Geometry-Driven Network Automata (LGD-NA), a framework that achieves
state-of-the-art network dismantling using only local topological information. By applying simple
network automata rules to estimate a network’s latent geometry, LGD-NA identifies critical nodes with
significant speed advantages over global methods like Node Betweenness Centrality (NBC). Across
1,475 real-world networks and 32 complex systems domains, it consistently outperforms all other
dismantling algorithms, including those based on machine learning (e.g., Graph Neural Networks)
and spectral Laplacian-based ones. Notably, our minimalistic Common Neighbor Dissimilarity (CND)
measure matches NBC’s efficacy while being orders of magnitude faster. Leveraging the explainability
of CND, we introduce a novel strategy to engineer network robustness. Crucially, we demonstrate the
practical utility of our framework across diverse domains, from informing the design of neuromorphic
circuits and reinforcing transport hubs, to disrupting terrorist cells. This work establishes latent
geometry as a powerful and efficient principle for both explaining vulnerabilities and engineering
stronger networks.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org.

Acknowledgments: This work was supported by the Zhou Yahui Chair Professorship award of Tsinghua
University (to CVC), the National High-Level Talent Program of the Ministry of Science and Technology of China
(grant number 20241710001, to CVC).

Appendix A. Latent Geometry Estimators

Figure A1. Illustration of how RA2 measures are computed on two toy networks. Seed nodes are shown in
black; common neighbors (CN) are shown in white with a black border, and external nodes are white with a grey
border. The dashed line is the edge that is being assigned a weight. External links e denote the number of edges
connecting a node to nodes outside its CN set, here in red. In black, the links to common neighbors. For the link
νij in the top network, ei = 5, ej = 3, and CNij = 1. For the link νmn in the bottom network, em = 1, en = 1, and
CNmn = 4.
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Table A1. Comparison of latent geometry estimators and their variants. νij is the weight of the link between nodes
i and j; ei and ej denote the number of external links of nodes i and j, respectively; CNij is the number of common
neighbors shared by i and j. Information Locality denotes the type of structural information required to assign a
score to each node for dismantling. Time Complexity denotes the time complexity for dynamic dismantling using
each estimator on sparse graphs, without reinsertion. N: number of nodes. m: number of links.

Estimator Author Year Formula Information
Locality

Time Complexity

Repulsion Attraction 2 Muscoloni
et al. (2017)

2017 νRA2
ij =

1+ei+ej+ei· ej
1+CNij

Local O(N(Nm))

RA2 denominator-
ablation (CND)

Ours 2025 ν
RA2den
ij = 1

1+CNij
= CND Local O(N(Nm))

RA2 numerator-ablation Ours 2025 νRA2num
ij = 1 + ei + ej + ei· ej Local O(N(Nm))

Latent Geometry-Driven Network Automata rule.

Figure A1 illustrates how RA2-based network automata rules assign edge weights by estimating
geometric distances using only local topological features. The two toy subnetworks demonstrate how
the RA2 rule and its variants distinguish between geometrically distant and close node pairs. In the top
subnetwork, nodes i and j have only one common neighbor and are each connected to many external
nodes (ei = 5, ej = 3), indicating a weak integration in a local community and stronger connectivity to
distinct parts of the network. According to the Repulsion-Attraction rule, this suggests a larger latent
distance due to high repulsion and low attraction. In contrast, in the bottom subnetwork, nodes m and
n share four common neighbors and have only one external link each (em = 1, en = 1). This pattern
indicates a stronger local community and a higher likelihood that the nodes are geometrically close
in the latent space, with a lower dissimilarity score. These examples highlight how latent geometry-
driven RA2-based network automata rules estimate hidden distances: fewer common neighbors and
more external links suggest geometrical separation, while many common neighbors and few external
links imply proximity in the latent manifold.

Why is RA2 a latent geometry estimator?

In geometric networks, nearby nodes form dense, closed neighborhoods: they share many
common neighbors (high CNij) and have few “external” links (small e). Distant node pairs show the
opposite pattern. The Repulsion-Attraction rule 2 (RA2) captures these patterns in their formulation:
any RA variant that decreases with CNij and increases with external connectivity, e is therefore
monotonic with latent distance: small values indicate proximity; large values indicate separation.
Crucially, this relies on topological proximity, not a specific geometric space, so it applies across
hyperbolic, Euclidean, or elliptic latent geometries. The only assumption to apply this estimator of
underlying geometry is that the topology displays:

• node heterogeneity (meaning that the node degree distribution displays a standard deviation
different from zero).

• homophily (similar nodes link together), for instance geometric proximity in latent space causes
nodes that are geometrically close have overlapping neighborhoods.

We can aggregate RA2 to score node criticality by summing its pairwise RA2 to neighbors. This
turns local edge-level “distance” into a node-level bridging load:

• Few adjacent nodes (neighbors) with mostly short links yields a small RA2. This node is peripheral
and non-critical; removal has little global effect.

• Many neighbors with mostly short links still yields a modest RA2 (short links contribute little).
The node is locally redundant; removal is buffered by community structure.

• Many neighbors with a mix of short and long links yields a large RA2 because long links carry
high RA2. The node simultaneously anchors a local community and bridges distant regions;
removing it is likely to disconnect communities and degrade global connectivity.

• Few neighbors with many long links (rare under geometric attachment) still yields a large RA2;
such nodes are likewise critical inter-community hubs.
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As a result, RA2 encodes latent separation from purely local topology. Summing RA2 over a
node’s incident edges ranks nodes by how much long-range connectivity they support. Dismantling
the highest-scoring nodes precisely targets those bridges whose removal most effectively fragments
the network.

Time Complexity.

We analyze the time complexity for the full dynamic dismantling process (excluding reinsertion)
for the latent geometry-driven network automata rules in Table A1, where dynamic means recomputing
the dismantling measure after each node removal. For RA2 and its variants, the dominant operation
is the computation of the common neighbor (CN) matrix. This operation has a time complexity of
O(N3) for dense graphs and O(Nm) for sparse graphs, where N is the number of nodes and m is the
number of links. Assuming N dismantling steps in the worst-case scenario, the overall time complexity
becomes O(N(Nm)) for sparse graphs. The assumption of N dismantling steps applies to all the time
complexity analyses of dynamic dismantling methods.

Figure A2. Dynamic dismantling process on example networks comparing local network automata rule RA2 and
its variants versus NBC, when the former outperforms NBC in terms of AUC. The plot shows the normalized
size of the largest connected component (LCC) as a function of the fraction of nodes removed, with a target LCC
threshold of 10%. The final evaluation metric is the Area Under the Curve (AUC) of the LCC trajectory.

Appendix B. Theoretical Distinctions Between Graph Metrics and Latent Manifolds
To avoid ambiguity regarding the use of manifold theory in complex systems, we clarify the

distinction between topological descriptors and latent geometric spaces. In this work, we define the
latent manifold as the hidden, lower-dimensional structure that captures the essential configuration of
the system.

To infer the latent manifold from high-dimensional data, a range of general dimensionality
reduction and manifold learning techniques can be applied. These approaches seek to map the data
points into a continuous, lower-dimensional space where geometric proximity reflects similarity in
the original space. They can be broadly categorized as methods preserving local structure (e.g., t-
SNE, UMAP, and Minimum Curvilinear Embedding (MCE)), methods based on calculating intrinsic
distances (e.g., Isomap (ISO) and its variants), spectral methods (e.g., Laplacian eigenmaps and
Diffusion Maps), and deep learning techniques (e.g., Autoencoders and VAEs) that learn the latent
code necessary for data reconstruction. Finally, specialized manifold learning approaches in dynamical
systems (e.g., Koopman operator theory) can transform complex, nonlinear dynamics into simpler,
linear representations within a manifold.

When data is organized as a complex network, the latent manifold is typically inferred using
network embedding techniques specifically designed to preserve the network’s topology. These
methods fall into three broad categories: spectral methods (e.g., spectral clustering) which use the
algebraic properties of the graph matrices; deep learning approaches (e.g., DeepWalk, Node2Vec,
and Graph Autoencoders (GAE)) which learn representations using neural networks trained on
structural information like random walks, while Graph Neural Networks (GNNs) have emerged as
the state-of-the-art for learning task-specific embeddings using topology and node/edge features;
and geometric approaches such as Hyperbolic network embeddings. These geometric methods (e.g.,
Poincaré embeddings, Hypermap) utilize non-Euclidean geometries, such as negative curvature, to
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efficiently capture the hierarchical and scale-free properties of complex networks. Specific algorithms
like LPCS generate node coordinates by analyzing and ordering the network’s community structure.

We distinguish this latent manifold from graph metrics. For example, standard topological graph
descriptors such as small-worldness, community structure, and degree heterogeneity are not direct
descriptors of the manifold themselves. However, since the network is sampled from a specific latent
space, these observed properties are influenced by the manifold’s geometry. Consequently, these
topological metrics do characterize the topology of a network that is embedded in a specific latent
space: for instance, small-worldness suggests short geodesic distances, community structure can imply
stratification or clustering, and degree heterogeneity may reflect features such as local curvature or
singularities. Our approach uses the topology of the observable network to infer the geometric distance
between nodes within the network’s latent manifold, thereby allowing us to exploit the manifold’s
geometric properties for dismantling.

Note that we include a GNN-based dismantling algorithm, Graph Dismantling with Machine
learning (GDM) (Grassia et al. 2021), in our experiments. GDM is a GNN that is trained on optimally
dismantled networks, and is considered a state-of-the-art dismantling algorithm (Artime et al. 2024;
Grassia et al. 2021) that can implicitly capture features of the underlying latent geometry of the
target network. The fact that our LGD-NA methods consistently outperform GDM in all situations
suggests that our estimators might be yielding a more accurate estimation of the target network’s
latent geometry.”

Appendix C. Geometric Validation of Latent Geometry Estimators
To provide visual and empirical validation for our latent-geometry estimators, we analyze the

ability of our latent-geometry estimators to identify node importance and estimate link distances using
synthetically generated networks with a known geometry. As previously mentioned, the RA measures
were introduced to serve as pre-weighting strategies for approximating angular distances associated
with node similarities in hyperbolic network embeddings (Muscoloni et al. 2017).

To investigate this, we synthetically generate networks using the non-uniform Popularity-
Similarity Optimization (nPSO) model (Muscoloni & Cannistraci 2018b). The nPSO model is built
on the principle that radial coordinates represent hierarchy (popularity) while angular coordinates
represent similarity. It produces networks that are both scale-free (characterized by a power-law degree
distribution, meaning a network has a few highly connected hubs while the majority of nodes have few
links) and clustered with distinct communities, closely mimicking the structure of many real-world
complex systems. We utilize the nPSO network model specifically for this task because these networks
are generated with known node coordinates and a known underlying hyperbolic geometry, making
them highly suitable for validating geometry-related measures in network science.

We generate various nPSO networks keeping the number of nodes (N = 500) and communities
(C = 5) fixed. We test different network topologies by varying:

• The power-law exponent γ ∈ {2, 3} represents common bounds for real-world scale-free networks.
With γ = 3, fewer high-degree hubs exist, creating less hierarchy (seen through the radial
coordinates) and reduced network hyperbolicity (meaning that they become more similar to a
Erdos-Renyi random graph compared to when γ = 2).

• The number of nodes a new node will connect to when being added to the network, m ∈
{10, 20, 50}. This value represents approximately half of the average node degree, making the
network more or less connected. This results in networks with three different density levels
ρ ∈ {0.04, 0.08, 0.2}.

• The temperature T ∈ {0.3, 0.6, 0.9} controls clustering, where lower temperatures produce
stronger clustering. Higher temperatures reduce clustering (seen through the angular coor-
dinates) and increase the randomness of connectivity, thus reducing the generated network’s
hyperbolicity (nodes connect more by random rather than following the underlying hyperbolic
geometry).
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Figure A3. nPSO model networks visualized in the hyperbolic space. Fixed parameters are the number of nodes,
N=500, and the number of communities, C=5. Nodes are colored according to their CND measure, where red
represents higher CND scores and blue lower ones. Ranges of CND values are reported in the color bar and are
different for each density level. Node sizes are positively correlated with their degree.

Figure A3 visualizes synthetic nPSO networks with nodes colored by CND score (red: high,
blue: low) and sized by degree. The visualization clearly shows that high CND scores correspond
to nodes with highcentrality, hubs located near the center of the hyperbolic disk. This relationship
is most evident for γ = 2, where the skewed degree distribution creates a clear distinction between
central hubs and peripheral nodes. For γ = 3, the trend persists but is less pronounced due to fewer
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super-hubs, consistent with the network’s reduced hyperbolicity. These results provide strong visual
evidence that CND effectively identifies structurally important nodes in the hyperbolic latent space.

To quantitatively support our claim, we evaluate how well the latent geometry estimators approxi-
mate the true hyperbolic distances. We use the hyperbolic distance correlation (HD-correlation) metric,
the Pearson correlation between all pairwise geometrical shortest path distances in the networks’ origi-
nal hyperbolic space and the weighted shortest path distances using the latent-geometry estimators
as edge weights (Muscoloni et al. 2017). The higher this correlation, the better the latent-geometry
estimator is able to recover the geometrical distances between pairs of nodes in a network’s underlying
geometry.

Figure A2 shows a high HD-correlation for both CND and RA2 across all tested nPSO configura-
tions, confirming that these measures used in our dismantling framework are effective latent geometry
estimators. This is further supported by the statistical significance reported in Table A18.

The Pearson correlation is visualized in Figure A4 for different parameters, visualizing how well
the distance approximation changes as the network becomes less hyperbolic. As expected, for γ = 2,
the correlation decreases for both estimators with increasing temperature (i.e., reduced clustering and
hyperbolicity). For the less hyperbolic γ = 3 networks, this decreasing trend persists for CND but
not for RA2. This suggests that CND remains a robust estimator of the latent geometry even when
hyperbolic structure is less pronounced, whereas RA2’s performance is more dependent on strongly
hyperbolic conditions, consistent with our dismantling experiments.

We also conducted experiments considering only existing links, correlating their estimated weights
with the true geometrical shortest path distances in the hyperbolic space (Figures A19 and A20). The
results confirm that both CND and RA2 are effective latent geometry estimators, as the link weights
strongly correlate with the true distances.

This visual and quantitative evidence demonstrates our LGD-NA measures’ ability to accurately
estimate the geometric distance between nodes. Consequently, the node aggregation step in our
LGD-NA framework can successfully identify nodes that connect distant regions in the latent space.

Table A2. Pearson correlation between all the pairwise geometrical shortest path distances of the network nodes
in the original nPSO model and in the reconstructed hyperbolic space (HD-correlation) (Muscoloni et al. 2017).
Mean values over 10 seeds are reported, with a color gradient where green corresponds to values approaching 1
and red to values approaching -1. The power-law exponent γ represents the scale-freeness found in real-world
networks. networks. ρ is the density of the networks. The temperature T controls the level of clustering (lower
temperatures yield stronger clustering). Fixed parameters are the number of nodes, N = 500, and the number of
communities, C = 5. Standard Error of the Mean (SEM) and Fisher p-value are found in Table A18.
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Figure A4. Pearson correlation between all the pairwise geometrical shortest path distances of the network
nodes in the original nPSO model and in the reconstructed hyperbolic space (HD-correlation) (Muscoloni et al.
2017). Mean values over 10 seeds are reported, with the shaded area the Standard Error of the Mean (SEM). The
power-law exponent γ represents the scale-freeness found in real-world networks. networks. ρ is the density of
the networks.The temperature T controls the level of clustering (lower temperatures yield stronger clustering).
Fixed parameters are the number of nodes, N = 500, and the number of communities, C = 5.

Appendix D. Topological Centrality Measures

Table A3. Comparison of topological centrality measures and the associated time complexity for dynamic
dismantling using each centrality measure. Information Locality denotes the type of structural information required
to assign a score to each node. Time Complexity denotes the time complexity for dynamic dismantling using each
centrality measure on sparse graphs, without reinsertion. N: number of nodes. m: number of links.

Measure Author Year Type Information
Locality

Time Complexity

Degree Degree-based Local O(N log N)
Eigenvector Bonacich (1972) 1972 Walks-based Global O(N(N + m))
Node Between-
ness (NBC)

Freeman (1977) 1977 Shortest path-based Global O(N(Nm))

PageRank (PR) Page et al. (1999) 1999 Random walk-based Global O(N(N + m))
Resilience Zhang et al. (2020) 2020 Resilience-based Global O(N(N + m)
Domirank Engsig et al. (2024) 2024 Fitness-based Global O(N(N + m)
Fitness Servedio et al. (2025) 2025 Fitness-based Global O(N(N + m)

Time Complexity.

We analyze the time complexity of dynamic dismantling (excluding reinsertion) for the topological
centrality measures used in our experiments, summarized in Table A3. As before, the analysis assumes
N dismantling steps in the worst-case scenario. For degree, the score update after each removal is local
and can be done in O(log N) time using a binary heap. For NBC, we use Brandes’ algorithm (Brandes
2001), which computes betweenness centrality in O(Nm) time per step for unweighted networks.
Eigenvector, PageRank, Resilience, Domirank, and Fitness all rely on matrix-vector multiplications,
which has a time complexity of O(m). We also add the term N, which represents the overhead of
looping over nodes to update or normalize the resulting vector at each iteration. This leads to a
total per-step cost of O(N + m). We also omit the constant k for Eigenvector, PageRank, and Fitness
centrality, which represents the number of iterations these methods perform. In practice, reaching
full convergence to a single optimal solution is often computationally infeasible; this is why a fixed
number of k iterations is typically defined.
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Appendix E. Statistical and Machine Learning Network Dismantling

Table A4. Comparison of dismantling algorithms (Artime et al. 2024). Information Locality denotes the type of
structural information required to assign a score to each node. Dynamicity indicates whether scores are recomputed
after each removal. Reinsertion specifies whether the algorithm includes a reinsertion step after dismantling. Time
Complexity denotes the time complexity of the method on sparse graphs, without reinsertion. N: number of nodes.
m: number of links. h: number of attention heads. T: maximal diameter of the trees in the forest for BPD and MS.
ϵ is a small constant used in spectral partitioning operations. Included states whether the method was run in our
experiments; if not, a brief reason is provided.

Algorithm Type Author Year Information
Locality

Dynamicity Reinsertion Time Complexity Included

Collective Influ-
ence (CI)

Influence maxi-
mization

Morone et al.
(2016)

2016 Local Dynamic Yes O(N log N) Yes

Belief propagation-
guided decimation
(BPD)

Message passing-
based decycling

Mugisha &
Zhou (2016)

2016 Global Dynamic Optional O(mT) No -
Code
miss-
ing

Min-Sum (MS) Message passing-
based decycling

Braunstein
et al. (2016)

2016 Global Dynamic Yes O(mT) +
O(N(log N + T))

Yes

Generalized Net-
work Dismantling
(GND)

Spectral parti-
tioning

Ren et al.
(2019)

2019 Global Dynamic Optional O(N log2+ε N) Yes

CoreHD Degree-based de-
cycling

Zdeborová
et al. (2016)

2016 Global Dynamic Yes O(N) Yes

Explosive Immu-
nization (EI)

Explosive perco-
lation

Clusella et al.
(2016)

2016 Global Dynamic No O(N log N) Yes

FINDER Machine learn-
ing

Fan et al.
(2020b)

2020 Global Dynamic Optional O(N(1 + log N) +
m)

No -
Code
out-
dated

Graph Dismantling
Machine (GDM)

Machine learn-
ing

Grassia et al.
(2021)

2021 Global Static Optional O(h(N + m)) Yes

CoreGDM Machine learn-
ing

Grassia &
Mangioni
(2023)

2023 Global Static Yes O(h(N + m)) Yes

Table A4 is adapted and extended from Table 1 of Artime et al. (Artime et al. 2024), a recent and
comprehensive review which has become a key reference in the field of network dismantling. The
majority of these algorithms were included in our experiments, with the exception of BPD and FINDER
due to unavailable or outdated code, respectively.

Figure A5. Mean field ranking for a subset of the best-performing methods from each category with each
reinsertion method (R1, R2, R3) (n = 1,237). Methods based on latent geometry are shown in red. All LGD and
topological centrality measures use dynamic dismantling. Error bars indicate the standard error of the mean
(SEM). Method acronyms are defined in Tables A1, A3, and A4.
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Figure A6. Dynamic dismantling process on example networks comparing CND with and without reinsertion.
The plot shows the normalized size of the largest connected component (LCC) as a function of the fraction of
nodes removed, with a target LCC threshold of 10%. The final evaluation metric is the Area Under the Curve
(AUC) of the LCC trajectory.

Appendix F. Reinsertion Methods
Reinsertion was originally introduced in the context of immunization as a reverse process: starting

from a fully dismantled network, nodes are reinserted one by one, each time selecting the node whose
addition causes the smallest increase in the largest connected component (LCC) (Schneider et al. 2012).
This reversed sequence then defines an effective dismantling order. In subsequent studies, reinsertion
has been used as a post-processing step to improve dismantling outcomes (Artime et al. 2024): the
network is first dismantled by a given method, and nodes are reinserted until the LCC reaches the
dismantling threshold. This reduces the dismantling cost while preserving the original attack target.

In this work, dismantling cost is defined as the number of nodes removed from the network. The
reinsertion step aims to directly minimize this cost by reintroducing nodes that were initially removed
but found to be unnecessary for achieving the dismantling objective. It’s important to note that
while reinsertion reduces the number of physical removals, it does introduce a higher computational
cost as it’s a post-processing step performed after the initial dismantling. However, the primary
objective is to minimize this physical intervention, as in many real-world scenarios, the logistical and
financial implications of physically removing network components (e.g., infrastructure) far outweigh
the computational resources expended during the optimization phase. This is why we compare all
methods with and without the reinsertion step.

Several reinsertion criteria have been proposed: Braunstein et al. (2016) select the node that ends
up in the smallest resulting component after reinsertion; Morone et al. (2016) choose the node that
reconnects the fewest components; Mugisha & Zhou (2016) select the node that causes the smallest
LCC increase. See Table A5 for a full comparison.

Reinsertion can greatly enhance dismantling performance. However, recent work shows that this
step can overpower the dismantling algorithm itself, allowing weak methods to appear effective when
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paired with reinsertion (Fan et al. 2020a). To address this, we enforce two constraints to ensure fair
comparisons and prevent reinsertion from dominating the dismantling process:

1. Reinsertion must stop once the LCC exceeds the dismantling threshold. Recomputing a new
dismantling order by reinserting all nodes is not allowed.

2. Ties in the reinsertion criterion must be broken by reversing the dismantling order: nodes
removed later are prioritized.

These rules ensure that reinsertion complements rather than overrides the dismantling process,
preserving the integrity of the original method.

In our experiments, we implement three reinsertion methods, adapted from prior work, here we
explain which part of their method we change for our experiments. Those changes are marked with an
asterisk (*) in Table A5.:

• R1 (Braunstein et al. 2016): We replace their original tiebreak (smallest node index) with reverse
dismantling order.

• R2 (Morone et al. 2016): We apply the LCC stopping condition. Originally, all nodes are reinserted
to compute a new dismantling sequence.

• R3 (Mugisha & Zhou 2016): We apply reverse dismantling order as the tiebreak, as no rule is
defined in their paper, and their code is unavailable.

R3 is the most similar to the reverse immunization method proposed by Schneider et al. (2012),
where nodes are added back one by one based on minimal LCC growth. In their original method, ties
are broken by selecting the node with the fewest connections to already reinserted nodes; if multiple
candidates remain, one is chosen at random.

We note that reinsertion typically reduces the number of removals but does not always lead to a
lower AUC. Since the trajectory of the LCC changes with reinsertion, the dismantling process may
reach the threshold faster, improving AUC. However, this is not guaranteed, as we see in the first
two subplots of Figure A6 for the Foodweb and Fruit Fly Connectome networks. The methods with
reinsertion arrive at the dismantling threshold in fewer number of removals, but the change in the
LCC curve results in a worse final AUC.

We also see that the reduction in AUC is not proportional to the reduction in the number of
removals, as seen in Figures A7 and A8 for CND. Indeed, reinsertion, by definition, reinserts nodes
that were ultimately unnecessary for the dismantling process to reach its target.

A significant limitation in previous literature is the lack of differentiation between algorithms that
inherently include reinsertion and those that do not, leading to inconsistent comparisons. To ensure
a strictly fair evaluation, we standardized two critical control variables across all experiments: the
tie-breaking mechanism for the order of reinsertion and the stopping criteria. Furthermore, rather than
arbitrarily assigning a reinsertion strategy, we evaluated every method under the three reinsertion
methods. We report the best performance for each method, ensuring that the results reflect the
maximum potential of the dismantling strategy rather than an inconsistent application of reinsertion.

Ranking Stability.

Across all tested reinsertion methods, the mean-field ranking remains the same: NBC consistently
outranks CND, which in turn outranks GDM. This order holds true both when comparing specific
fixed reinsertion methods and when selecting the best-performing method for each dismantling
method. However, we observe a nuanced interaction between the dismantling algorithms and their
best reinsertion strategy: the optimal reinsertion method varies (R2 is optimal for NBC, R3 for CND,
and R1 for GDM). For all other algorithms, though, R1 is the most effective reinsertion strategy.”
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Time Complexity.

We report the total time complexity of each reinsertion method over the full reinsertion process
in Table A5, assuming all dismantled nodes are considered for reinsertion for every step and that
all nodes are reinserted. Candidates for reinsertion are denoted as r. As a result, we multiply the
per-step cost of updating for each method by the total number of reinsertion candidates. kmax is the
maximum number of components a node can connect to, equal to the maximum degree in the original
graph, and C′ is the maximum size of any connected component during the reinsertion phase. For
R1, the candidate node that ends up in the smallest resulting component is selected. Reinserting
a node may merge up to kmax components, each of size at most C′, requiring an update of at most
kmax · C′ nodes. These updates are tracked in a binary heap of size r, where at maximum kmax · C′

nodes have to be updated, giving a cost of log(kmax · C′) per update. The per-step cost is therefore
O(kmax · C′ log(kmax · C′). R2 selects the node that connects the fewest existing components. Unlike R1,
it requires inspecting not only the components merged by the candidate node, but also the neighbors
of the affected neighbors. This increases the complexity by a factor of kmax, resulting in a per-step
time complexity of O(k2

max · C′ log(k2
max · C′). R3 evaluates each candidate by explicitly computing the

resulting LCC size after reinsertion. Each evaluation requires a graph traversal to recompute connected
components, which takes O(N + m) time on sparse graphs. This has to be done for each reinsertion
candidate, at every step, so O(r2(N + m),

Table A5. Comparison of reinsertion methods. Criteria defines the criterion for selecting which node to reinsert.
Tiebreak specifies how ties are resolved. LCC Condition indicates whether all dismantled nodes are reinserted or if
reinsertion stops once the predefined LCC threshold is reached. Time Complexity denotes the time complexity of
each reinsertion method on sparse graphs, for the whole reinsertion process. N: number of nodes. m: number of
links. r: set of reinsertion candidates. kmax: maximum degree in the original graph G. C′: maximum size of any
connected component during the reinsertion phase. Used In lists the methods that use each method, in bold, the
dismantling method that originally proposed that reinsertion method. An asterisk (*) marks components of the
reinsertion method that were modified in our study, as detailed in Appendix F.

Name Author Year Criteria Tiebreak LCC
Condi-
tion

Time Complexity Used In

R1 Braunstein
et al.
(2016)

2016 Node that
ends up in
the smallest
component

Reverse dis-
mantling
order*

Yes O(r(kmax · C′ ·
log(kmax · C′)))

MS,
CoreGDM,
CoreHD,
GDM,
GND

R2 Morone
et al.
(2016)

2016 Node that
connects to
the fewest
clusters

Reverse dis-
mantling
order

Yes* O(k2
max · C′ ·

log(k2
max · C′))

CI

R3 Mugisha
& Zhou
(2016)

2016 Node that
causes the
smallest in-
crease in LCC
size

Reverse dis-
mantling
order*

Yes O(r2(N + m)) BPD
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Figure A7. Mean AUC and number of removals by field for CND without reinsertion and with each reinsertion
method (R1, R2, R3) (n = 1,237 for all methods). Error bars represent the standard error of the mean (SEM). Red
text indicates the percentage improvement achieved by using the best-performing reinsertion method for each
field. Quantitative results for the AUC and removals improvement from each reinsertion methods are reported in
Table A6.

Figure A8. Mean AUC and number of removals by field for RA2 without reinsertion and with each reinsertion
method (R1, R2, R3) (n = 1,237 for all methods). Error bars represent the standard error of the mean (SEM). Red
text indicates the percentage improvement achieved by using the best-performing reinsertion method for each
field. Quantitative results for the AUC and removals improvement from each reinsertion methods are reported in
Table A6.
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Table A6. Percentage improvement for the mean AUC and mean number of removals for each reinsertion method
over the baseline for CND and RA2 (n = 1,237). In bold the method that improves the baseline the most, by field.

Table A7. Full summary statistics of the ATLAS networks used in this study, averaged by field: number of
subfields and networks, average number of nodes ⟨N⟩, number of edges ⟨E⟩, density ⟨ρ⟩, mean degree ⟨⟨d⟩⟩,
characteristic path length ⟨ℓ⟩, assortativity ⟨r⟩ (Newman 2002), transitivity ⟨T⟩, mean local clustering coefficient
⟨⟨Loc. CC⟩⟩, maximum k-core ⟨kmax⟩, average k-core ⟨⟨k⟩⟩, LCP-corr ⟨LCPcorr⟩ (Cannistraci et al. 2013), and
modularity ⟨Q⟩ (Newman 2004)

Field Biomolecular Brain Covert Foodweb Infrastructure Internet Misc Social Total

Subfields 5 1 2 1 7 1 8 7 32

Networks 27 529 89 71 314 206 38 201 1,475

⟨N⟩ 2,997 97 107 117 664 5,708 2,880 3,267
⟨E⟩ 11,855 1,535 266 1,087 1,332 19,601 19,921 53,977
⟨ρ⟩ 0.01 0.34 0.17 0.16 0.07 0.01 0.07 0.11
⟨⟨d⟩⟩ 6.7 28.3 5.7 15.2 4.9 7.5 14.1 26.9
⟨ℓ⟩ 4.4 1.7 3 2.2 9.9 3.4 3.5 3.5
⟨r⟩ -0.21 -0.03 -0.15 -0.28 -0.52 -0.22 -0.07 -0.05
⟨T⟩ 0.06 0.55 0.39 0.19 0.06 0.11 0.22 0.29
⟨⟨Loc.CC⟩⟩ 0.13 0.63 0.46 0.22 0.11 0.31 0.34 0.36
⟨kmax⟩ 10.6 20.1 5.9 12.8 4.9 25 21.6 25.7
⟨⟨k⟩⟩ 3.6 17.5 4.2 9.2 3 4 8.3 15.4
⟨LCPcorr⟩ 0.66 0.97 0.76 0.67 0.15 0.94 0.85 0.77
⟨Q⟩ 0.59 0.25 0.48 0.26 0.46 0.5 0.49 0.5

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2025 doi:10.20944/preprints202505.2276.v3

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2276.v3
http://creativecommons.org/licenses/by/4.0/


25 of 49

Table A8. Number and size of real-world networks tested by dismantling algorithms. N denotes the number of
nodes, E the number of edges.

Algorithm Year Networks Nmax Emax

Collective Influence (CI) (Morone et al. 2016) 2016 2 14M 51M

CoreHD (Zdeborová et al. 2016) 2016 12 1.7M 11M

Explosive Immunization (EI) (Clusella et al. 2016) 2016 5 50K 344K

Min-Sum (MS) (Braunstein et al. 2016) 2016 2 1.1M 2.9M

Generalized Network Dismantling (GND) (Ren et al. 2019) 2019 10 5K 17K

Resilience Centrality (Zhang et al. 2020) 2020 4 1K 14K

Graph Dismantling Machine (GDM) (Grassia et al. 2021) 2021 57 1.4M 2.8M

CoreGDM (Grassia & Mangioni 2023) 2023 15 79K 468K

Domirank Centrality (Engsig et al. 2024) 2024 6 24M 58M

Fitness Centrality (Servedio et al. 2025) 2025 5 297 4K

LGD-NA 2025 1,475 23K 507K

Appendix G. Dynamic & Static Dismantling
In static dismantling, node scores are computed once at the beginning and are then removed

in descending order of importance until the dismantling threshold is reached. In contrast, dynamic
dismantling recomputes the scores after each removal. As shown in Figure A9, with CND given as an
example, dynamic dismantling consistently outperforms static dismantling across all fields. Dynamic
variants achieve lower AUC and fewer removals in every case, confirming the advantage of score
recomputation.

Figure A9. Mean AUC and number of removals for dynamic and static CND (n = 1,296. Error bars represent the
standard error of the mean (SEM). Red text indicates the percentage improvement achieved by using dynamic
over static variants.
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Table A9. Percentage improvement for the mean AUC and mean number of removals for dynamic CND over
static CND (n = 1,296), by field.

Figure A10. Dismantling process on example networks comparing dynamic and static CND. The plot shows the
normalized size of the largest connected component (LCC) as a function of the fraction of nodes removed, with
a target LCC threshold of 10%. Performance is evaluated using the Area Under the Curve (AUC) of the LCC
trajectory.

Appendix H. Engineering Network Robustness
Here, we would like to comment on the feasibility of our suggested network modifications in

practical scenarios. In the case of PPI networks, recent advances in structural modeling of molecules
using AlphaFold 3 (AF3) (Abramson et al. 2024) have reduced the longstanding limitations in testing
and engineering arbitrary proteins. Coupling our dismantling predictions with AF3 could impact drug
repositioning and drug design. For example, in the case of antibiotic-resistant bacteria, knowledge of
how to dismantle the bacterial PPI network could be used to identify which proteins to target with
repositioned, modified, or newly designed antibiotics. Meanwhile, to minimize side effects of newly
designed drugs that target critical proteins in bacterial PPI networks, our reinforcement strategy based
on common-neighbor generation could be applied to predict which protective bindings to promote in
the human PPI network, thereby reducing the destructive impact of a drug on a critical human protein
whose impairment could cause side effects. Finally, the application of the proposed common-neighbor
reinforcement strategy to increase the robustness of flight and shipping networks is straightforward, as
it can indicate which critical nodes should be reinforced by adding links between their adjacent nodes.

We validate our reinforcement strategy explained in Section 4.6 on three types of real-world
networks considered critical: a human PPI network (biological), a flight map network (transportation
with social and geographic constraints), and a shipping trade network (transportation with economic
and geographic constraints). We select the top 1% of highest-scoring nodes according to the chosen
measure (NBC or CND) and randomly add either 1% or 10% of the potential links between their
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respective adjacent nodes, thereby modifying the network topology according to the explainable rule
discovered via CND.

Table A10. Area Under the dismantling Curve (AUC) for NBC and CND on the original network and "reinforced"
networks, by adding 1% and 10% of the links between common neighbors of the top 1% of nodes. In parenthe-
ses the increase in the AUC compared to the original network, representing the reduction in the dismantling
effectiveness.

Human PPI 0% Links 1% Links 10% Links

NBC-
baseline

0.051

NBC-
reinforced

0.093 (+84%) 0.159 (+214%)

CND-
baseline

0.055

CND-
reinforced

0.098 ((+79%)) 0.198 ((+259%))

Flight Map
US

0% Links 1% Links 10% Links

NBC-
baseline

0.042

NBC-
reinforced

0.067 (+61%) 0.122 (+193%)

CND-
baseline

0.055

CND-
reinforced

0.098 ((+95%)) 0.172 ((+241%))

Trade
Shipping

0% Links 1% Links 10% Links

NBC-
baseline

0.138

NBC-
reinforced

0.236 (+71%) 0.240 (+74%)

CND-
baseline

0.220

CND-
reinforced

0.298 ((+36%)) 0.350 ((+59%))

Figure A11. Dismantling curve on the original (solid) and reinforced networks (dashed). The plot shows the
normalized size of the largest connected component (LCC) as a function of the fraction of nodes removed, with
a target LCC threshold of 10%. Performance is evaluated using the Area Under the Curve (AUC) of the LCC
trajectory.
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Our results in Figure 4 and Table A11 also confirm that engineering robustness translates into
functional gains across the four real networks studied. Regarding Fault Tolerance, in the Drosophila
Connectome and Flight Map, the analysis informs the design of fault-tolerant neuromorphic circuits
and identifies critical hubs where reinforcement prevents systemic transport failure. For Security and
Communications, in the adversarial systems (Terrorist Cell and School Contact Network), we can
calculate the theoretical robustness ceiling, by accounting for unobserved links (e.g., dormant ties in
covert networks) and quantify the margin of error required to successfully disrupt communications or
secure the network against epidemics despite incomplete data.

Appendix I. Functional Metrics and Real-World Application Details

Table A11. Network-specific evaluation metric and the original LCC AUC performance metric for four real-world
networks, for NCB, CND, and RA2. N denotes the number of nodes, E the number of edges. Reinforced are the
those reinforced by adding 10% of the links between common neighbors of the top 5% of nodes according to each
method, as detailed in Appendix H. In red the improvement in robustness compared ot thhe baseline network,
assuming that a higher value indicates worse dismantling performance, meaning the network is more robust.
Specific functional metrics are detailed in Appendix I. In bold the best method for each metric and network.

We now provide the specific experimental setup for the real-world functional experiments de-
scribed in Section I. Unlike topological metrics (e.g., LCC size), these experiments measure the func-
tional performance of the systems under dismantling.

Drosophila Connectome:

We utilize the central brain connectome of Drosophila melanogaster (FlyWire), comprising over
125,000 neurons and 50 million synaptic connections. To assess functional performance, we employ a
Leaky Integrate-and-Fire (LIF) spiking computational model, as established by Shiu et al. (2024). We
focus on the sugar-sensing gustatory circuit (which results in a smaller subnetwork of 377 nodes and
13,671 edges), a critical pathway for feeding initiation. We simulate the activation of sugar-sensing
Gustatory Receptor Neurons (GRNs), with a stimulation frequency of 100 Hz. We use the default
parameters provided by Shiu et al. (2024), with the trial duration adjusted to 100 ms for the sake
of time. The performance metric is the Motor Neuron Firing Rate, MN9. A dismantling attack is
considered successful if the removal of specific interneurons prevents the propagation of the signal
from the sensory GRNs to the motor neurons, causing the firing rate to drop.
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Paris/Brussels Terrorist Cell

We analyze the network of the terrorist cell responsible for the November 2015 Paris attacks and
the 2016 Brussels bombings (Gutfraind & Genkin 2017), with 77 nodes and 271 edges. In adversarial
networks, the ability of the leadership to communicate with the rest of the operational network, and
vice versa, is crucial. As a result, we define Commander Reach as the percentage of network operatives
(nodes) that retain a valid communication path to at least one of the three identified cell commanders.

Ryanair Flight Map:

This network represents the flight routes of Ryanair in Europe (Cardillo et al. 2013), with 128
nodes and 601 edges. Nodes represent airports, and edges represent direct flight connections. We
measure the functional integrity of the transport system using Global Efficiency (Eglob), rather than
the Average Shortest Path Length (APL), because: APL is mathematically undefined (or diverges to
infinity) when a network fragments into disconnected components, which inevitably occurs during
dismantling. Global Efficiency avoids this divergence by averaging the inverse geodesic distances.

Eglob =
1

N(N − 1) ∑
i ̸=j

1
dij

Where N is the number of airports and dij is the shortest path length between airport i and j. If no path
exists, 1

dij
= 0. This metric correctly quantifies the remaining communication capacity of a fragmented

network.

School Contact Network:

We utilize a contact network collected from a French high school (Mastrandrea et al. 2015), with
327 nodes and 5,818 edges, where nodes represent students and edges represent close-proximity
physical contacts capable of disease transmission. We simulate the spread of an infectious disease
using a classic Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental model (Anderson
& May 1991). Unlike basic SIR models, SEIR includes an "Exposed" state to account for the latency
period typical of real-world pathogens. The simulation begins with 5% of nodes infected; over 200
discrete time steps, individuals progress from Susceptible (S) to Exposed (E) (based on contact with
infected neighbors and rate β = 0.01), then to Infected (I) (based on latency rate α = 0.01), and finally
to Recovered R (based on recovery rate γ = 0.01). These uniform parameters were selected to establish
a generic baseline, ensuring that observed variations in outbreak size are attributable to network
topology rather than pathogen-specific characteristics. We average the results of 50 independent
simulations. The functional integrity of the network is measured by the Final Outbreak Size, defined
as the total percentage of the population that was infected and subsequently recovered. The size is
normalized with the size of the largest connected component, from which the epidemic starts from.

Engineering Network Robustness Protocol:

To validate our method for "engineering robustness", we also reinforce these networks as defined
in Section 4.7, choosing the top 5% of nodes and adding 10% of links, and rerun the dismantling
process under the exact same conditions.

Table A11 shows the quantitative results for our original dismantling metric, LCC AUC, alongside
the functional metrics defined above. Notably, both metrics yield highly similar rankings of the top
methods, further validating our choice of LCC AUC as a robust evaluation standard.”
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Appendix J. GPU Acceleration

Figure A12. Running time (in seconds) comparison between CND on GPU and NBC on CPU on synthetic nPSO
networks, as a function of network size in terms of edges. Experiments were conducted with network sizes
ranging from 10 to 2,499,500 edges with densities (ρ) of 4%, 8%, and 20%, using fixed temperature T = 0.3 and
community counts scaled by network size (C = 2 for N ∈ {10, 50, 100}, C = 5 for N ∈ {500, 1, 000}, C = 10 for
N = 5, 000). See Figure A35 for quantitative results.

Figure A13. Running time (in seconds) comparison between CND on GPU and NBC on CPU on synthetic nPSO
networks, as a function of network size in terms of nodes. Experiments were conducted with network sizes
ranging from 10 to 5,000 nodes with densities (ρ) of 4%, 8%, and 20%, using fixed temperature T = 0.3 and
community counts scaled by network size (C = 2 for N ∈ {10, 50, 100}, C = 5 for N ∈ {500, 1, 000}, C = 10 for
N = 5, 000). See Figure A35 for quantitative results.
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Figure A14. Runtime (in hours) is plotted against network size, measured by the number of edges, E, for dynamic
dismantling. The annotated time indicates the runtime for the largest network. Evaluated on networks of up to
23,000 nodes and 507,000 edges (n = 1,475). See Figure A12 for quantitative results.

Table A12. Average runtime (in seconds) and standard error of the mean (SEM) by field and method for dynamic
dismantling. Evaluated on networks of up to 23,000 nodes and 507,000 edges (n = 1,475). In bold the fastest
method per field.⟨N⟩ denotes average number of nodes and ⟨E⟩ number of edges.

Table A13. Runtime (in seconds) for NBC run on CPU (graph-tool) and GPU (cuGraph) on a subset of networks.
N denotes the number of nodes and E the number of edges.

Since the difference in running time between the three LGD-NA methods is not relevant, neither
for CPU nor GPU, we report the running time of the original RA2 in the main text (Figure 3) and
the CND in the Appendix (Figure A14). When comparing CND and NBC, on the largest network,
GPU-accelerated CND is over 46 times faster than its CPU counterpart and also over 63 times faster
than NBC running on CPU.

To empirically validate these runtime advantages in a controlled setting, we conducted additional
experiments using the nPSO model (Muscoloni & Cannistraci 2018b) with network sizes ranging
from 10 to 5,000 nodes, and 10 to 2,499,500 edges, with densities of 4%, 8%, and 20%. We keep the
temperature (lower temperature yields higher clustering) fixed (T = 0.3) and adjust the number of
communities to suit the size of the network (C = 2 for N ∈ {10, 50, 100}, C = 5 for N ∈ {500, 1, 000},
C = 10 for N ∈ {5, 000}). Our results demonstrate that GPU-accelerated LGD-NA methods begin to
show running time advantages over NBC-CPU when networks exceed approximately 1,000 nodes
(see Figure A13) or 100,000 edges (see Figure A12). This threshold aligns with our observations in
real-world networks (see Figures 3 and 3, and Table A12), where GPU methods achieve superior
running times for larger-scale networks such as biomolecular, internet, and social networks, while
offering no runtime benefit for smaller networks where CPU implementations remain efficient.

Section 4.5 details how we implement the RA-based measures for GPU, using matrix multiplica-
tion. We end up with the following formula for RA2:
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RA2 =
1 + EL2 + E⊤

L2 + EL2 ◦ E⊤
L2

1 + CNL2

and for CND:

CND =
1

1 + CNL2

In our experiments, the CPU-based RA2 and CND implementation uses Python’s NumPy (imple-
mented in C) while the GPU implementation uses Python’s CuPy (implemented in C++/CUDA).

As mentioned earlier, we report only the CPU running time for NBC, as its GPU implementation
did not yield any speedup. While some studies report GPU implementations of NBC with improved
performance (Bernaschi et al. 2016; Fan et al. 2017; McLaughlin & Bader 2018; Pande & Bader 2011;
Sariyüce et al. 2013; Shi & Zhang 2011), these are often limited by hardware-specific optimizations,
data-specific assumptions (e.g., small-world, social, or biological networks), and using heuristics that
are tailored to specific settings rather than offering general solutions. Moreover, publicly available
code is rare, making these approaches difficult to reproduce or integrate. Overall, NBC is not naturally
suited for GPU implementation, as it does not rely on matrix multiplication, but is based on computing
shortest path counts between all node pairs. In our experiments, the CPU-based NBC implementation
from Python’s graph_tool (implemented in C++), based on Brandes’ algorithm (Brandes 2001) with
time complexity O(Nm) for unweighted graphs, outperformed the GPU version from Python’s
cuGraph (implemented for C++/CUDA).

It is important to note that our LGD-NA implementation inherently utilizes a hybrid workflow: the
sequential dismantling logic is managed by the CPU, while the expensive latent geometry estimations
(relying on matrix multiplication) are offloaded to the GPU. This architecture is highly effective for
LGD-NA but is not applicable to NBC. For NBC, the core computational burden is the calculation of
all-pairs shortest paths, a task that does not lend itself well to GPU computations, meaning a hybrid
pipeline yields no significant performance gain, and thus solely runs on CPU.

Appendix K. NBC Approximators

Table A14. Average runtime (in seconds), AUC, and number of removals with their associated standard error of
the mean (SEM) by field and method for dynamic dismantling. Evaluated where Nmin = 2, 235, Nmax = 9, 885,
Emin = 10, 075, Emax = 506, 437, (n = 157). In bold the best method per field, by runtime, AUC, and number of
removals. ⟨N⟩ denotes average number of nodes and ⟨E⟩ number of edges.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2025 doi:10.20944/preprints202505.2276.v3

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

graph-tool.skewed.de/static/docs/stable/autosummary/graph_tool.centrality.betweenness.html
docs.rapids.ai/api/cugraph/stable/api_docs/api/cugraph/cugraph.centrality.betweenness_centrality
https://doi.org/10.20944/preprints202505.2276.v3
http://creativecommons.org/licenses/by/4.0/


33 of 49

While the high computational cost of Node Betweenness Centrality (NBC) has motivated
the development of numerous approximators (Bader et al. 2007; Bergamini & Meyerhenke 2015;
Haghir Chehreghani 2013; Riondato & Kornaropoulos 2014), comparing against them is challenging
due to the scarcity of standardized, publicly available code and the complexity of their sampling
algorithms, which are often performant only for specific domains or incompatible with disconnected
graph structures.

To address this, we implemented two standard randomized pivoting strategies for approximation.
NBC-20 estimates betweenness centrality using a random sample of 20% of the nodes. NBC-log uses a
random sample of 10 ∗ log2(N) nodes. NBC-20 prioritizes accuracy by always scanning a fixed slice of
the network (20%), whereas NBC-log prioritizes speed by scanning a much smaller, logarithmically
scaled subset that grows very slowly as the network gets larger. We evaluated these baselines against
the exact NBC and our CND method on a subset of 157 networks selected for their size, where exact
NBC calculation begins to become computationally expensive.

Table A14 reports the dismantling performance (AUC) and total runtime, averaged by field.
First, we see that the NBC approximators perform comparably to the exact NBC, even occasionally
outperforming it. However, this performance increase of NBC approximators should not be overstated
due to the smaller sample size of this experiment. Second, while NBC approximators are significantly
faster than exact NBC, CND remains faster than both approximation methods in almost all domains. A
notable exception occurs in the Infrastructure field. Here, the usually slowest method NBC is actually
the fastest in terms of total runtime because it takes a significantly lower number of removals to
dismantle the network. Consequently, even though CND is faster per step, the NBC-based methods
result in a lower total runtime simply because the dismantling threshold is reached much earlier.

Finally, it is critical to distinguish the theoretical foundations of these approaches. Existing NBC
approximators focus on accelerating the estimation of a global metric. In contrast, LGD-NA leverages
purely local topological information to directly estimate pairwise distances in the latent metric space.
This distinction allows LGD-NA to bypass the need for global knowledge or more complex sampling
strategies. Although approximation techniques improve NBC’s speed, their reliance on sampling
global paths is inherently less efficient than our strictly local approach, as we validate in Table A14.
Furthermore, sampling global information remains vulnerable to missing data and adversarial noise.
The strength of LGD-NA, therefore, lies in its ability to achieve high dismantling performance by
directly utilizing local geometric insights, rather than attempting to approximate a computationally
intensive global metric.

Appendix L. Application to Directed Networks
While network dismantling has primarily targeted undirected networks Artime et al. (2024), many

critical real-world systems, such as neural circuits, social media platforms, and financial transaction
systems, are inherently directed. Although our LGD-NA framework is designed for undirected
network, we explore its applicability to directed graphs. Research on directed network dismantling is
relatively underexplored. Directed Node Entanglement (DNE) (Wu et al. 2025) generalizes the network
density matrix to specifically capture and disrupt directed information flow within a system. Ma
et al. (2022) utilizes the non-backtracking matrix to identify and remove the minimum set of nodes
connecting distinct edge modules. Dismantling on Signed Networks based on Evolutionary Deep
Reinforcement Learning (DSEDR) (Ou et al. 2024) is an evolutionary deep reinforcement learning
approach designed to dismantle signed networks by optimizing a novel objective function. Embedding-
based Signed Network Dismantling (ESND) (Xie et al. 2025) combines giant component detection,
network embedding, and node clustering to identify critical nodes.

We evaluate our LGD-NA framework on directed graphs using two approaches: applying
the original method (treating the graph as undirected) and a directed variant where node scores
are computed aggregating only outgoing links. For comparison, we implement Directed Node
Entanglement (DNE) as a baseline specific to directed networks. We exclude other methods—such
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as the set-based approach of Ma et al. (2022) and the complex, multi-step frameworks of DSEDR and
ESND—to maintain a focused comparison on computationally efficient, node-ranking strategies.

Table A15. LCC AUC for the three LGD-NA estimators treating a directed network as undirected, their directed
variant, and DNE, a specific directed network dismantling method. In bold the best performing method per
network. N denotes the number of nodes and E the number of edges.

We focus on three directed networks from different fields. College Messages (Social) (Panzarasa
et al. 2009) represents private messages on a social network at UC Irvine (1,899 nodes, 20,296 edges).
Drosophila Connectome (Brain) (Shiu et al. 2024), focuses on the sugar-sensing gustatory circuit (377
nodes, 13,671 edges). Email EU (Social)(Paranjape et al. 2017) are anonymized internal emails from a
European research institution (986 nodes, 24,929 edges).

Table A15 shows two key results. First, for our LGD-NA framework, treating directed networks
as undirected yields superior dismantling performance over our directed variant. Second, even
when applied in this undirected way, LGD-NA outperforms the directed-specific DNE baseline,
demonstrating its effectiveness on directed networks.

Finally, our framework is predicated on the association between network topology and a latent
geometry. For directed networks, this relationship is less established, with only preliminary stud-
ies (Allard et al. 2024). Therefore, designing asymmetric network measures that account for directional
flow remains an open challenge, yet a promising direction for future research.

Appendix M. Experimental Setup
Baseline Topological Centrality Measures.

We selected centrality measures to cover diverse categories: shortest path-based (NBC), degree-
based (degree), walk-based (eigenvector), random walk-based (PageRank), resilience-based (Re-
silience), and fitness-based (Domirank and Fitness centrality). We also tested closeness and load
centrality, but both performed worse than NBC and rely on the same shortest-path principle; thus, we
retained NBC. Similarly, Katz centrality underperformed compared to eigenvector centrality and is
also based on spectral properties of the adjacency matrix. For DomiRank, we tested three values for the
numerator in the σ parameter formula: 0.1, 0.5, and 0.9. While the original study sometimes performs a
grid search to find the optimal σ per network, this is not feasible for our large-scale evaluation. Instead,
we selected a representative range and found that σnum = 0.5 yielded the best performance, and we
report that value. The parameter σ controls the balance between local degree-based dominance and
global network-structure-based competition. As σ → 0, the scores approximate degree centrality. As σ

increases, nodes are evaluated in increasingly competitive environments, where centrality depends
more on non-local structural dominance than individual connectivity. For Fitness centrality, we capped
the number of iterations at k = 100. Without this cap, the method took a prohibitively long time to
converge, especially on large networks.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2025 doi:10.20944/preprints202505.2276.v3

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2276.v3
http://creativecommons.org/licenses/by/4.0/


35 of 49

Baseline Dismantling Methods.

We selected the best-performing and most widely adopted dismantling algorithms from the
literature (Artime et al. 2024). As mentioned earlier, we did not include BPD and FINDER in our
experiments due to unavailable and outdated code, respectively. For Collective Influence (CI), we
tested values ℓ = 1, 2, 3, where ℓ defines the radius of a ball centered at node i, and ∂B(i, ℓ) is
the frontier at distance ℓ (i.e., nodes exactly ℓ hops away). We found that ℓ = 1 performed best
across our benchmarks and report this setting, while ℓ = 3 performed the worst. For Explosive
Immunization (EI), we evaluated both scores σ(1) and σ(2). The σ(1) score targets high-connectivity
nodes to rapidly fragment the network early on. The σ(2) score aims to prevent large cluster merges
near the percolation threshold by avoiding the connection of separate components. We found that σ(1)

consistently outperformed σ(2), and thus we use it in our final experiments. For eigenvector centrality,
we capped the number of power iterations at k = 100 to avoid long or unbounded runtimes, since
convergence can be very slow in large networks. For PageRank, we used a convergence tolerance of
ϵ = 10−6, as the algorithm runs until the change in scores falls below this threshold.

LGD-NA Measures.

Our analysis of pure win rates (draws are excluded) in Table A16 reveals distinct domain-specific
strengths. CND achieves the highest win rate in Biomolecular, Foodweb, Infrastructure, Internet, and
Social networks. In contrast, RA2 is the preferred method for Brain and Covert networks. Notably,
RA2num does not emerge as the top-performing method in any of the tested domains.

Table A16. Pure win rate (draws excluded), for LGD-NA measures, without reinsertion (n = 1,296). In bold the
method with the highest win rate per field.

Robustness to Threshold Variations.

As shown in Table A17, the mean field rankings of the methods are broadly consistent across
removal thresholds of 10%, 25%, and 50%. While permutations occur, the dominance of NBC and
CND is consistent across different thresholds, confirming that our conclusions are not artifacts of the
10% threshold.
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Table A17. Mean field ranking with standard error of the mean (SEM), for different threshold levels (n = 1,296).
In bold the best method per threshold.

Note on Reinsertion.

We did not apply reinsertion techniques on all networks included in the initial dismantling
experiments. In some cases, certain methods performed so poorly that applying reinsertion became
prohibitively slow. To ensure consistency, we excluded these networks from the reinsertion analysis
for all methods. Specifically, we imposed a cutoff: networks were excluded if any method required
more than 800 node removals to reach the dismantling threshold. Based on this criterion, 59 networks
were excluded.

LCC AUC as the evaluation metric.

We employ LCC AUC as our primary evaluation metric because it provides a unified standard for
comparing methods across 32 distinct complex system domains. As the established standard in the vast
majority of dismantling studies (Artime et al., 2024), it allows for direct comparisons between diverse
networks from disparate fields and different dismantling algorithms. While dynamical metrics offer
specific insights, simulating ’live’ system dynamics for every network is computationally unfeasible
and conceptually inconsistent given the broad scope of domains. Crucially, our functional analysis
in Section 4.7 demonstrates that rankings based on LCC AUC align closely with domain-specific
functional metrics, validating LCC fragmentation as a reliable proxy for functional disruption. Note
that a lower number of removals does not always imply a lower AUC. Our AUC metric rewards
methods that fragment the network early, even if they require more steps to reach the dismantling
threshold. As shown in Figure A15, we show cases where a method that reaches the threshold with
more removals can still achieve a lower AUC, due to earlier damage to the network structure.
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Figure A15. Dynamic dismantling process on example networks comparing CND, RA2 and RA2num, showing a
lower removal number does not necessarily mean a lower Area Under the Curve (AUC) of the LCC trajectory. The
plot shows the normalized size of the largest connected component (LCC) as a function of the fraction of nodes
removed, with a target LCC threshold of 10%.

Appendix N. Technical Implementation and Reproducibility
Code.

All our methods are implemented in our codebase, available in the supplementary material. We
implement RA2, RA2num, CND, NBC, as well as degree and eigenvector centrality. We also adapt and
integrate the original implementations of Domirank centrality and Fitness centrality. Since no code
was available for Resilience centrality, we implemented it ourselves based on the original description
in the paper. Instructions for running these methods and reproducing the experiments are included in
the supplementary material. We also provide a representative network from the ATLAS dataset for
testing purposes. For GDM, CoreGDM, GND, CI, EI, MS, and CoreHD, we use the publicly available
code from Artime et al. (2024)’s review.

Computational Resources.

All experiments were conducted on a machine equipped with an AMD Ryzen Threadripper
PRO 3995WX CPU (64 cores), 251 GiB of RAM, and a single NVIDIA RTX A4000 GPU with 16 GiB of
memory. All code was implemented in Python, with dependencies and library versions specified in
the supplementary material to ensure full reproducibility.

Quantitative Results.

All results are in Tables A21, A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32, and A33 in
the Appendix.

Appendix O. Discussion, Limitations, and Future Work
Missing or Manipulated Data.

The robustness of our LGD-NA methods to missing or manipulated information, such as missing
neighbor data or adversarial modifications to neighborhood structure, is a crucial question for practical
applications of any network analysis method, especially those relying on local information. Our LGD-
NA methods, by design, are inherently more robust to global missing or manipulated information
compared to methods that require a complete global view of the network (e.g., exact NBC). Since
our methods rely solely on local neighborhood information, random missing data across the network
would primarily affect only the scores of directly impacted nodes, rather than propagating errors
throughout the entire graph. Similarly, adversarial modifications would need to target specific local
neighborhoods to significantly alter a node’s dismantling score, making large-scale, coordinated
attacks more challenging than for global metrics. However, we acknowledge that direct adversarial
manipulation of a node’s immediate neighborhood could indeed impact its calculated score.
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Weighted Networks.

While many real-world systems, such as citation networks, neural synaptic connections, trans-
portation and trade networks, contain directed interactions, our LGD-NA measures focus on un-
weighted topologies for two key reasons. First, in practical dismantling contexts, weight data is often
dynamic, temporal, or unavailable, whereas topology is more robust. Second, current state-of-the-art
dismantling algorithms focus on unweighted graphs (Artime et al. 2024), making fair comparisons
impossible. Consequently, we consider the extension of latent-geometry approaches to weighted
graphs as a promising avenue for future work.

Limitations.

A limitation of this study is the mismatch between theoretical and observed runtimes, which can
vary across methods. These differences stem from factors such as the programming language used,
hardware acceleration, and implementation-level optimizations. However, all experiments were run
on the same CPU and GPU to ensure a fair comparison, and we made a strong effort to optimize all
methods both in terms of runtime and dismantling performance. For example, we tested different
parameters for Domirank, CI, and EI, and evaluated multiple variants of shortest path-based and
spectral partitioning-based centrality measures. Furthermore, we were unable to test on extremely
large networks due to hardware constraints and the high computational cost of running a broad
set of dismantling methods. However, we are confident that our results would generalize to larger
networks, given the diversity of the 1,475 networks tested, spanning a wide range of domains and
sizes from very small to large. Another limitation relates to the parameter tuning required by some
baseline methods, especially machine learning-based approaches and Domirank. Due to the scale
of our experimental setup—both in the number and size of networks—we were unable to perform
extensive tuning. Although targeted tuning could enhance performance for specific methods on
individual networks, it would compromise consistency across the wide range of complex systems
domains considered. In contrast, LGD-NA requires no parameter tuning and consistently achieves
strong, generalizable performance across all tested networks.

Future Work.

Future research could further explore latent geometry, particularly how to effectively combine
local and global information in dismantling strategies. Improving the scalability of matrix-based
computations, especially for very large and sparse networks, is another important direction. There
is also a need for more cost-efficient dynamic dismantling strategies that reduce the overhead of
recomputing scores after every node removal without significantly sacrificing performance. In addition,
edge dismantling remains a relatively underexplored area compared to node-based dismantling, and it
would be valuable to investigate whether latent geometry-driven principles can also guide the efficient
removal of links in complex networks. Targeting edges can be just as important as targeting nodes, and
in many real-world systems, such as transportation networks (railroads, roads, subways, or shipping
trade routes), edge removal may represent the more realistic and sensible threat scenario, making it
highly relevant for dismantling strategies. Finally, our work can also be of interest to Explainable AI
(XAI) for models like GNNs and Reservoir Computers (RC). By identifying critical (dismantling) or
unimportant (percolation) nodes in a network, we can conduct "perturbation experiments" to assess
their impact on an ML model’s performance. This process reveals which parts of the graph are most
crucial for the model’s predictions or computations, effectively opening the model’s “black box” and
providing crucial insights into its internal decision-making, robustness, and vulnerabilities.

Appendix P. Ethics Statement
The research on network dismantling presented in this paper has a potential for dual use. The

techniques developed to identify and exploit network vulnerabilities could theoretically be used to
design targeted attacks on critical systems, such as communication, transportation, or power grid
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networks. However, it can also be used for defensive strategies. A thorough understanding of network
vulnerabilities is a prerequisite for designing robust systems. To directly address the dual-use concern,
we demonstrate the constructive potential of our work by presenting a novel technique for proactively
engineering network robustness using our latent geometry-based methods (see Section 4.6). This
application moves beyond vulnerability analysis to provide an explainable framework for modifying a
network to enhance its resilience. Finally, by openly publishing our theoretical foundations, source
code, and comprehensive evaluations, we aim to ensure that the benefits of this research, namely the
ability to secure critical networks, are accessible to all. We believe the societal benefit of advancing
defensive capabilities significantly outweighs the risk of potential misuse.

Appendix Q. Reproducibility Statement
To ensure full reproducibility, we have made our source code publicly available, including detailed

instructions on how to replicate all experiments. The codebase includes an implementation of our
LGD-NA framework (illustrated in Figure 1), the exact formulas used (detailed in Appendix A), and an
example network for demonstration. The code is compatible with both CPU and GPU environments
and also provides the necessary tools to engineer network robustness as described in this work. The
baseline methods were implemented using the code from the review by Artime et al. (2024). The exact
topological measures of all networks used in our study are provided in Appendix A7. Further details
regarding the experimental setup, including hardware specifications, are described in Appendix M
and N.

Appendix R. Claim of the LLM Usage
We used LLM-based tools to improve the language and flow; the principles, core logic, and

innovations are entirely the authors’.

Supplementary Material

Table A18. Pearson correlation between between all the pairwise hyperbolic distances of the network nodes in the
original nPSO model and in the reconstructed hyperbolic space (HD-correlation) (Muscoloni et al. 2017). Mean
values over 10 seeds and Standard Error of the Mean (SEM) are reported, and the Fisher p-value in parentheses.
The power-law exponent γ represents the scale-freeness found in real-world networks. networks. ρ is the density
of the networks. Fixed parameters are the number of nodes, N = 500, and the number of communities, C = 5.
The temperature T controls the level of clustering (lower temperatures yield stronger clustering).
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Table A19. Pearson correlation between estimated link weights from CND and RA2 versus true geometric
distances in nPSO networks. Mean values over 10 seeds are reported, with a color gradient where green
corresponds to values approaching 1 and red to values approaching -1. The power-law exponent γ represents
the scale-freeness found in real-world networks. networks. ρ is the density of the networks. The temperature T
controls the level of clustering (lower temperatures yield stronger clustering). Fixed parameters are the number of
nodes, N = 500, and the number of communities, C = 5. Standard Error of the Mean (SEM) and Fisher p-value
are found in Table A20.

Table A20. Pearson correlation between estimated link weights from CND and RA2 versus true geometric
distances in nPSO networks. Mean values over 10 seeds is reported and Standard Error of the Mean (SEM) are
reported, and the Fisher p-value in parentheses. The power-law exponent γ represents the scale-freeness found
in real-world networks. networks. ρ is the density of the networks. Fixed parameters are the number of nodes,
N = 500, and the number of communities, C = 5. The temperature T controls the level of clustering (lower
temperatures yield stronger clustering).
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Table A21. Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method (n = 1,296).
In bold the best method per field.

Table A22. Mean and standard error of the mean (SEM) for the number of removals per field, by dismantling
method (n = 1,296). In bold the best method per field.

Table A23. Ranking per field for selected dismantling method (n = 1,296). In bold the best method per field.

Table A24. Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method, for
reinsertion method R1, (n = 1,237). In bold the best method per field.

Table A25. Mean and standard error of the mean (SEM) for the number of removals per field, by dismantling
method, for reinsertion method R1, (n = 1,237).In bold the best method per field.
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Table A26. Ranking per field for selected dismantling method, for reinsertion method R1, (n = 1,237). In bold the
best method per field.

Table A27. Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method, for
reinsertion method R2, (n = 1,237). In bold the best method per field.

Table A28. Mean and standard error of the mean (SEM) for the number of removals per field, by dismantling
method, for reinsertion method R2, (n = 1,237). In bold the best method per field.

Table A29. Ranking per field for selected dismantling method, for reinsertion method R2, (n = 1,237). In bold the
best method per field.

Table A30. Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method, for
reinsertion method R3, (n = 1,237). In bold the best method per field.
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Table A31. Mean and standard error of the mean (SEM) for the number of removals per field, by dismantling
method, for reinsertion method R3, (n = 1,237). In bold the best method per field.

Table A32. Ranking per field for selected dismantling method, for reinsertion method R3, (n = 1,237). In bold the
best method per field.

Table A33. Ranking per field for selected dismantling method with their best-performing reinsertion method
(n = 1,237). In bold the best method per field.

Table A34. Average AUC by field for top two performing methods: NBC and CND, under different reinsertion
methods (n = 1,237) and without reinsertion (n = 1,296). In bold the best method per field and reinsertion
method.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2025 doi:10.20944/preprints202505.2276.v3

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2276.v3
http://creativecommons.org/licenses/by/4.0/


44 of 49

Table A35. Running time (in seconds) comparison between CND on GPU and NBC on CPU on synthetic nPSO
networks. Experiments were conducted with network sizes ranging from 10 to 5,000 nodes and densities (ρ) of
4%, 8%, and 20%, using fixed temperature T = 0.3 and community counts scaled by network size (C = 2 for
N ∈ {10, 50, 100}, C = 5 for N ∈ {500, 1, 000}, C = 10 for N = 5, 000). In bold the fastest method per network. N
denotes number of nodes and E number of edges.
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