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Abstract: We present a formal reconstruction of number systems over a finite field F𝑝, based on the
principle of relational finitude. Rather than assuming actual infinity, we define arithmetic and algebra
as observer-dependent constructs grounded in finite field symmetries. The conventional number
classes—integers, rationals, reals, and complex numbers—are reinterpreted as pseudo-numbers, ex-
pressed relationally with respect to a chosen reference frame. We define explicit mappings for each
number class, preserving their algebraic and computational properties while eliminating ontolog-
ical dependence on infinite structures. This approach establishes a finite, coherent foundation for
mathematics and physics in ontologically finite informational systems.

Keywords: finite fields; modular arithmetic; relativistic algebra; symmetry transformations; pseudo-
numbers; observer framing; discrete manifolds; approximate lie groups; finite informational systems;
structural mathematics; modular exponentiation; cyclic groups; finite field morphology; relational
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1. Introduction
A growing body of work in mathematics and physics suggests that foundational structures

are best understood through a relational or relativistic lens [1–3]. In such a paradigm, mathematical
entities acquire meaning not as intrinsic absolutes but through their role within a system defined by
internal symmetries and reference frames. Constants like 0, 1, or 𝑖 are not metaphysical primitives, but
relational markers—origins, units, or axes—assigned by a chosen framing.

This perspective invites a re-evaluation of one of the most entrenched assumptions in mathematics:
the acceptance of actual infinity. From real analysis to Hilbert spaces, infinity has been treated as
foundational, despite its lack of empirical or computational realization. Under a relational view, such
constructs may instead be interpreted as emergent limits or symbolic artifacts—arising when finite
systems attempt to encode relationships that exceed their internal scope.

In previous work [4], we argued that concepts like infinity, randomness, and undecidability are
not ontological features of nature, but epistemic placeholders—signals of representational saturation
in finite informational systems. Here, we extend this view into a concrete formalism: a relativistic
algebra constructed entirely over a finite field F𝑝, with observer-relative arithmetic and emergent
pseudo-numbers.

The present framework resonates with several contemporary perspectives that question the
ontological status of the continuum and advocate for finitely constructed alternatives. In particular,
Smolin has emphasized the need for a relational, observer-dependent formulation of physical laws,
suggesting that the continuum is merely an idealization beyond the reach of internal observers [5,6].
Similarly, D’Ariano and collaborators have reconstructed quantum theory from finite, informationally
grounded axioms, demonstrating that core features of quantum mechanics can emerge without
invoking infinite-dimensional Hilbert spaces [7]. From a mathematical standpoint, the approach aligns
with the ultrafinitist program developed by Benci and Di Nasso, which offers a rigorous alternative to
classical cardinality through the theory of numerosities and bounded arithmetic [8,9].

Furthermore, the ultrafinitist school—pioneered by Yessenin-Volpin and Parikh—takes finitude
even further by denying the meaningful existence of “too large” numbers and insisting on feasibility
as a foundational constraint. Formalizations of ultrafinitism and feasibility arithmetic appear in works
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such as [10–13], which explore the proof-theoretic and computational consequences of enforcing strict
constructive bounds on arithmetic.

Ultrafinitism enforces an a priori cutoff on numerical existence—only those magnitudes deemed
“feasible” within a human or machine resource bound are admitted. By contrast, our relativistic frame-
work treats finiteness not as a hard barrier but as a contextual framing condition: We allow arbitrarily
large numbers, so “size” is always relative to the chosen frame. Infinite structures, such as integers and
rationals emerge asymptotically or as coordinate projections, rather than being forbidden. Arithmetic
operations become internal symmetries of a finite system, rather than operations constrained by
external feasibility checks. This shift replaces the ultrafinitist’s absolute feasibility threshold with a
relational notion of scope: any number “exists” within some finite frame, while “infinity” itself appears
as a relative point beyond the horizon of observability and algebraic accessibility.

To support this framework, we further draw upon several key developments in mathematics
and physics. The foundational critique of actual infinity has been explored in works such as [14,15],
which emphasize the constructive and finitist approaches to mathematics. The relational perspective
on mathematical objects aligns with category theory [1], where objects are defined by their morphisms
and relationships rather than intrinsic properties. Additionally, the parallels between relativistic
mathematics and modern physics are inspired by the symmetry principles in [2,3], which highlight the
role of invariance and frame-dependence in physical laws. Finally, the informational limits of finite
systems and their implications for mathematical representation are discussed in [16,17].

2. Finite Field Framing
Let F𝑝 = {0, 1, 2, . . . , 𝑝 − 1} be the finite field of integers modulo an odd prime 𝑝. The elements

of F𝑝 form a complete and closed set of relational representations of F𝑝 under modular addition,
multiplication and exponentiation. However, the specific numeric labels assigned to these elements—
particularly the designation of 0 and 1 as the additive and multiplicative identities—are intrinsically
relative and carry no absolute meaning within the field itself. The field F𝑝 is invariant under relabeling
of its elements via any bijective affine transformation of the form

𝑘 ↦→ 𝑎 · 𝑘 + 𝑏 mod 𝑞,

where 𝑎 ∈ F×
𝑝 and 𝑏 ∈ F𝑝 . Such transformations preserve the field structure and allow any element to

be reinterpreted as the origin. In this sense, the element labeled 0 is not uniquely privileged; it simply
represents the additive identity with respect to a chosen reference frame. The same applies to the label
1, which identifies the multiplicative unit only relative to a particular scaling.

Therefore, in the absence of an externally imposed or contextually declared frame—such as
one defined by a designated pair (0, 1)—the labels in F𝑝 are relational rather than absolute. The
roles of “zero” and “one” are thus not the fundamental properties of the elements themselves, but a
consequence of the system’s framing, making all representations in F𝑝 symmetric and interchangeable
under coordinate transformation. To define our system unambiguously, we must specify a reference
frame or coordinate system (0, 1) within the context of F𝑝, which then becomes a framed finite ring
F𝑝 (0, 1). We will henceforth assume all such systems to be framed systems F𝑝 (0, 1) and will denote
the corresponding finite ring as F𝑝 for simplicity, unless explicitly stated otherwise.

3. Finite Field as Discrete Geometric Structure
Let 𝑝 be an odd prime and let F𝑝 denote the finite field with 𝑝 elements [18]. The additive group

(F𝑝 ,+) is a cyclic group of order 𝑝, and the multiplicative group of nonzero elements (F×
𝑝 , ·) is a cyclic

group of order 𝑝 − 1 [19]. We associate the cardinality degree of freedom 𝑝 and the three fundamental
arithmetic operations with 4 distinct symmetry classes in a symbolic geometry as in [20]:

1. Counting — defines the number of elements in the ring.
2. Addition (+) — defines rotational symmetry on a linear periodic axis.
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3. Multiplication (×) — defines scaling symmetry on a multiplicative periodic axis.
4. Exponentiation — defines cyclic phase-like symmetry from repeated powers of a generator [21].

The choice of cardinality itself defines a linear—radial—degree of translation, and each cyclic
operation corresponds to a spherical axis of rotational transformation in a four-dimensional abstract
symmetry space. For a fixed odd prime 𝑝, the described mathematical construct forms the geometric
scaffold of a discrete spheroidal system. The three spherical axes are mutually orthogonal, but
algebraically dependent forming a 2D spheroid in the 4D symmetry space.

The resultant 2D spheroid for F13 is depicted in Figure 1, where the prime meridian depicts
the additive group (F13,+) and the latitudes represent multiplicative group (F×

13, ·) generated by the
minimum multiplicative generator 𝑔min = 2 [20].

Figure 1. State diagram for finite framed field F13 as a 2D spheroid in 4D symmetry space combining the
additive—along the prime meridian—, and multiplicative—along the latitudes for multiplicative generator
𝑔min = 2—symmetries.

4. Pseudo-Numbers
4.1. Pseudo-Integers

Define a mapping 𝑘 : Z → F𝑝 , with 𝑘 (𝑧) = 𝑧 mod 𝑝. This wraps Z onto F𝑝 . The observer, located
at 0 and bounded by horizon 𝐻 ≪ 𝑝, perceives the wrapped axis as infinite. Thus, the apparent integer
line emerges as a pseudo-integer class Z/F𝑝 , where negation, order, and comparison are reconstructed
locally [22].

The resulting class of relativistic pseudo-integers Z/F𝑝 exhibits all the characteristic properties of
the conventional integer set Z, including sign, order, addition, subtraction and multiplication. This
framework allows us to recover the intuitive and logical structure of integers — including signed
quantities and magnitude comparison — entirely within the finite, self-contained system F𝑝, while
preserving consistency with its modular arithmetic.
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Figure 2. Class of signed pseudo-integers Z over the finite framed field Z13. Black labels indicate the newly
defined signed integers 𝑧 ∈ Z, while the purple labels represent the corresponding elements 𝑘 (𝑧) ∈ Z13. The blue
line indicates the periodicity of the finite field. The unlabeled gray dots indicate the off-axis elements of Z13 as
they are observed from the top of the 2D spheroid described in Figure 1.

4.2. Pseudo-Rationals

Let

Q𝑝 :=

{
𝑎

𝑏
| 𝑎 ∈ Z, 𝑏 =

∏
𝑖

𝑘𝑖 , 𝑘𝑖 ∈ F×
𝑝

}
.

The corresponding field value is

𝑘

( 𝑎
𝑏

)
:= 𝑎 · 𝑏−1 mod 𝑝.

Multiple representations can map to the same 𝑘 ∈ F𝑝, forming equivalence classes. We show Q𝑝 is
dense in Q under a metric induced by bounded denominators 𝑏 = (𝑝 − 1)𝑛 [23]. For any 𝑞 ∈ Q and
𝜖 > 0, there exists 𝑞′ ∈ Q𝑝 such that |𝑞 − 𝑞′ | < 𝜖 .

The validity of such definition is ensured by the fact that all elements 𝑘𝑖 constituting the de-
nominator product 𝑏 =

∏
𝑖 𝑘𝑖 have a multiplicative inverse 𝑘−1

𝑖
∈ F×

𝑝. A selection of some simple
examples of such pseudo-rational numbers is depicted in Figure 3, where for each position along the
prime meridian 𝑞 = 𝑎/𝑏 ∈ Q𝑝 indicated as a black label on top, the corresponding finite field element
𝑘 (𝑞) ∈ F𝑝 is indicated as purple label on the bottom.

Proposition 1. Let 𝑝 > 2 be an odd prime number, and let 𝑞 = 𝑎/𝑏 ∈ Q be any conventional rational number.
Then for any 𝜖 > 0, there exists an integer 𝑛 ∈ N and an integer 𝑥 ∈ Z such that����𝑎𝑏 − 𝑥

(𝑝 − 1)𝑛

���� < 𝜖 .

Proof. Let 𝑎
𝑏
∈ Q be given, and let 𝜖 > 0 be arbitrary small number.

Since 𝑝 is a fixed prime, the expression (𝑝 − 1)𝑛 grows without bound as 𝑛 → ∞. Therefore, there
exists an integer 𝑛 ∈ N such that

1
(𝑝 − 1)𝑛 < 𝜖 .

Now consider the set of rational points of the form{
𝑘

(𝑝 − 1)𝑛

���� 𝑘 ∈ Z
}
,

as illustrated in Figure 4. This set is a uniform grid of rational numbers with step size 1
(𝑝−1)𝑛 , which is

less than 𝜖 by construction. There exists therefore an integer 𝑥 ∈ Z such that����𝑎𝑏 − 𝑥

(𝑝 − 1)𝑛

���� < 𝜖 ,

which completes the proof. □
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Figure 3. Few examples of rational numbers 𝑞 ∈ Q13 in a finite framed field Z13 (0, 1). Note the pseudo-rational
numbers 6/5, 12/10 as well as 11/7 that all represent the exact same element 9 ∈ Z13 (0, 1).

Figure 4. Uniform grid of rational numbers of the form 𝑞 = 𝑘
(𝑝−1)𝑛 with step size 1

(𝑝−1)𝑛 . Here, we have 𝑝 = 13
and 𝑛 = 1. Black labels indicate the pseudo-rational numbers 𝑞 ∈ Q13, while the purple labels represent the
corresponding finite field elements 𝑘 (𝑞) ∈ Z13. The blue line indicates the periodicity of the finite field.

It is very important to reiterate the meaning of this construct from an ontological viewpoint. More
specifically, we stipulate that what actually “exists” are the 𝑝 representations of the finite field F𝑝,
while the derivative class of pseudo-rationals 𝑞 ∈ Q𝑝 constitute an abstract mathematical construct
derived from the inherent relational properties of the framed instance F𝑝 .

In other words, the resultant field of pseudo-rational numbers Q𝑝 will exhibit all the properties
of the field of conventional numbers Q and can further approximate it with any arbitrary precision.
Furthermore, for an observer with a limited observability horizon and sufficiently large values of
cardinality 𝑝, the pseudo-rational field Q𝑝 becomes completely indistinguishable from its conventional
counterpart, as all the desired rational numbers of the form 𝑞 = 𝑎/𝑏, where 𝑏 < 𝑝 are represented not
approximately, but exactly within the scope of the pseudo-rational numbers Q𝑝 .

4.3. Pseudo-Reals

Define truncated pseudo-rationals:

Q≤𝐻
𝑝 = {[𝑥, 𝑛] : 0 ≤ 𝑥 < 𝑝, 0 ≤ 𝑛 ≤ 𝐻}, [𝑥, 𝑛] :=

𝑥

(𝑝 − 1)𝑛 .

This set is finite and totally bounded under the metric:

𝑑𝐻 ( [𝑥, 𝑛], [𝑦,𝑚]) :=
���� 𝑥

(𝑝 − 1)𝑛 − 𝑦

(𝑝 − 1)𝑚

����.
Define R𝑝 as the closure of Q≤𝐻

𝑝 . We show all computable real numbers can be approximated within
2−𝑘 by some element [𝑥, 𝑛] ∈ Q≤𝐻

𝑝 , where 𝐻 ≥ ⌈𝑘 log2 𝑝⌉ [24].

Proposition 2 (Finite Total Boundedness). For each fixed 𝐻, the metric space
(
Q≤𝐻

𝑝 , 𝑑𝐻
)

is finite and thus
totally bounded.

Proof. Since 0 ≤ 𝑥 < 𝑝 and 0 ≤ 𝑛 ≤ 𝐻, there are (𝑃) × (𝐻 + 1) elements in Q≤𝐻
𝑝 . Any finite metric space

is trivially totally bounded. □
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Theorem 1 (Approximation of Computable Reals). Let 𝑟 ∈ R be a computable real number. For any integer
𝑘 ≥ 1 there exist integers 𝑎𝑘 , 𝑏𝑘 with 𝑏𝑘 ≠ 0 such that��� 𝑟 − 𝑎𝑘

𝑏𝑘

��� < 2−𝑘 .

Moreover, if the observer’s horizon 𝐻 satisfies

𝐻 ≥
⌈
𝑘 log2 𝑝

⌉
,

then one can construct [𝑥𝑘 , 𝑛𝑘] ∈ Q≤𝐻
𝑝 with��� 𝑟 − [𝑥𝑘 , 𝑛𝑘]

��� < 2−𝑘−1.

Proof. By computability of 𝑟 there is a rational approximation 𝑎𝑘/𝑏𝑘 with |𝑟 − 𝑎𝑘/𝑏𝑘 | < 2−𝑘 . Since
gcd(𝑝, 𝑝 − 1) = 1, the extended Euclidean algorithm yields an exponent 𝑛𝑘 ≤ 𝑘 log2 𝑝 such that

𝑏𝑘 (𝑝 − 1)𝑛𝑘 ≡ 1 (mod 𝑝).

Set 𝑥𝑘 ≡ 𝑎𝑘 𝑏
−1
𝑘

(mod 𝑝). Then

[𝑥𝑘 , 𝑛𝑘] =
𝑥𝑘

(𝑝 − 1)𝑛𝑘

differs from 𝑎𝑘/𝑏𝑘 by at most
(
2 𝑏𝑘 (𝑝 − 1)𝑛𝑘

)−1
< 2−𝑘−1. If 𝐻 ≥ 𝑛𝑘 , then [𝑥𝑘 , 𝑛𝑘] ∈ Q≤𝐻

𝑝 and��𝑟 − [𝑥𝑘 , 𝑛𝑘]
�� ≤ ��𝑟 − 𝑎𝑘

𝑏𝑘

�� + �� 𝑎𝑘

𝑏𝑘
− [𝑥𝑘 , 𝑛𝑘]

�� < 2−𝑘 + 2−𝑘−1 = 𝑂 (2−𝑘) ,

as desired. □

The resulting pseudo-real field R𝑝 is thus defined as the topological closure of Q𝑝 under modular
convergence. For any finite observer with bounded resolution and limited horizon of observability, R𝑝

is indistinguishable from the conventional real number continuum.
In conclusion, the field of pseudo-real numbers R𝑝 is not a metaphysical continuum but a layered

epistemic utilitarian construct. It combines:

• Exact pseudo-reals that satisfy algebraic equations within F𝑝 , and
• Approximated pseudo-reals that are limits of converging sequences in Q𝑝 .

This framework provides all the functional properties of the real numbers—continuity, density, and
completeness—without invoking actual infinity. It affirms that, in a finite and informationally com-
plete universe, continuum-like behavior is a pragmatic illusion emerging from local reasoning over a
fundamentally finite arithmetic substrate.

Having established the construction of pseudo-integers, rationals and reals over the finite field F𝑝

as relativistic, frame-dependent analogs of their classical counterparts, we seek to further extend this
framework to encompass the algebraic closure of the pseudo-real field. In conventional mathematics,
the introduction of complex numbers C is necessitated by the absence of solutions to certain polynomial
equations, such as 𝑥2 + 1 = 0, within the real numbers. Analogously, in the finite framed context, we
are motivated to introduce complex-like elements in order to achieve closure under operations that are
otherwise impossible within the pseudo-rational or alone.

Moreover, the construction of a relativistic complex plane enables the representation of rotations,
oscillations, and other phenomena that are fundamental in both mathematics and physics, all within a
finite and self-contained system. This approach not only mirrors the classical extension from R to C,
but also demonstrates that the essential properties and utility of complex numbers can be realized as
emergent features of a finite, relational arithmetic—thereby reinforcing our framework’s central theme
of relativistic, context-dependent number systems.
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5. Complex Plane over Finite Framed Field
As is commonly known, the field of real numbers R does not contain any solutions of certain

polynomial equations, such as the prominent equation 𝑥2 + 1 = 0. But that is not the case for many
finite fields F𝑝, where depending on the value and properties of their cardinality 𝑃, such solutions
can readily exist. For example, in the finite field Z5, the equation 𝑥2 + 1 = 0 has two solutions: 𝑥 = 2
and 𝑥 = 3. More generally, it is evident that the equation 𝑥2 + 1 = 0 can be satisfied in a finite field
F𝑝 if and only if 𝑃 − 1 is devisable by 4, or in other words 𝑝 ≡ 1 mod 4. This is due to the fact that
the multiplicative group of non-zero elements in such fields is cyclic and contains elements—and
the corresponding rotational symmetry—of order 4, which allows for the existence of square roots
of −1. In this case, we can define a special element 𝑖 ∈ F𝑝 that satisfies the equation 𝑖2 + 1 = 0. The
element 𝑖 is not unique, instead we have a pair of pseudo-integer elements 𝑖 and −𝑖 in Z/F𝑝 that satisfy
the equation, in the same way as we have pairs 𝑥 and −𝑥 of solutions for quadratic equations in the
conventional complex plane C.

Let us now observe the “North Pole” frame of reference of the spherical representation of the finite
field F𝑝 with its prime meridian of pseudo-reals R𝑝 forming the horizontal axis around the origin. The
order-4 rotational symmetry of the finite field F𝑝 can be represented as a vertical axis of imaginary
numbers 𝑐 = 𝑧 · 𝑖, where 𝑧 ∈ Z, that are perpendicular to the prime meridian, as illustrated in Figure 5.
The imaginary numbers 𝑐 are represented by their respective red labels, while the corresponding
elements 𝑘 (𝑐) are depicted in purple.

Figure 5. Pseudo-complex numbers plane C𝑝 in a finite framed field Z13 (0, 1). Horizontal axis represents the
pseudo-reals R𝑝 on the prime meridian and the vertical axis represents the imaginary numbers 𝑐 = 𝑧 · 𝑖 indicated
by their respective red labels. The corresponding elements 𝑘 (𝑐) are depicted in purple. The blue line indicates the
periodicity of the finite field.

More generally, we can define a class of pseudo-complex numbers C𝑝 as the Cartesian product of
the pseudo-reals R𝑝 and the imaginary numbers 𝑟 · 𝑖, 𝑟 ∈ R. The pseudo-complex numbers are defined
as follows:

C𝑝 :=
{
𝑐 = 𝑎 + 𝑏 · 𝑖

�� 𝑎, 𝑏 ∈ R𝑝

}
, (1)

where 𝑎 and 𝑏 are the real and imaginary components of the pseudo-complex number 𝑐, respectively.
The pseudo-complex numbers can be represented as points in the complex plane, where the horizontal
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axis corresponds to the pseudo-reals R𝑝 and the vertical axis corresponds to the imaginary numbers
𝑟 · 𝑖. The pseudo-complex numbers form a field and can be added, subtracted, multiplied, and divided
in a manner analogous to conventional complex numbers, with the additional consideration of their
finite field properties.

The pseudo-complex numbers form a relativistic algebraic field and can be added, subtracted,
multiplied, and divided in a manner analogous to conventional complex numbers, subject to the
selection of the arbitrary frame of reference, as well as the properties and constraints of the underlying
finite field.

6. Unification and Ontological Perspective
We assert that only the 𝑝 representations of F𝑝 truly exist. All pseudo-number classes are epistemic

constructs derived from relational symmetries and observer framing. The observer’s bounded horizon
𝐻 ≪ 𝑝 induces the illusion of infinite domains [25].

6.1. Infinity as the Unknowable “far-far away”

Let us revisit the ontological concept of infinity as described in [4]. In the previous sections, we
have established the finite framed field F𝑝 as an abstract pseudo-sphere F𝑝 (0, 1) with a limited-horizon
observer at its origin 0. We would like now to consider the geometric point on our pseudo-sphere that
is the furthest away from the observer. This point is evidently the South Pole—the antipodal point on
the prime meridian—of the pseudo-sphere, which we will denote as 𝑠𝑃 for now. We would like to
emphasize the following important properties of 𝑠𝑃 .

1. 𝑠𝑃 is a unique point on the pseudo-sphere that is the farthest away from the observer at 0.
2. 𝑠𝑃 is invisible to the observer at 0, that is to say that is located beyond any conceivable definition

of the observer’s limited observability horizon.
3. Finally, 𝑠𝑃 is algebraically inaccessible to the observer at 0, in the sense that 𝑠𝑃 ∉ F𝑝 ,Q𝑝 , and cannot

be reached by any finite number of arithmetical steps along the surface of the pseudo-sphere.

We would like to provide a formal proof of the less evident Property 3 as follows.

Theorem 2 (No South Pole in F𝑝). Let 𝑃 > 2 be an odd prime. Then the only solution 𝑠 ∈ Z𝑃 to

2𝑠 ≡ 0 (mod 𝑃)

is 𝑠 ≡ 0. Equivalently, there is no nonzero pseudo-rational 𝑞 ∈ 𝑄𝑃 whose image in Z𝑃 has additive order 2.

Proof. 1. Since 𝑝 is prime, the additive group (F𝑝,+) is cyclic of order 𝑝. An element 𝑠 ∈ F𝑝 has
order 2 precisely if

2 𝑠 ≡ 0 (mod 𝑃).

2. Because gcd(2, 𝑝) = 1, multiplication by 2 is invertible in F𝑝. Hence, from 2𝑠 ≡ 0 (mod 𝑝) it
follows immediately that 𝑠 ≡ 0 (mod 𝑃). There is no nontrivial order-2 element.

3. By definition, each pseudo-rational 𝑞 = 𝑎
𝑏
∈ Q𝑝 is represented in the field by

𝑘 (𝑞) = 𝑎 𝑏−1 mod 𝑃 ∈ F𝑝 ,

so Q𝑝 ⊆ F𝑝 under the embedding 𝑘 . If some 𝑞 ∈ Q𝑝 mapped to a nonzero order-2 element
𝑠 = 𝑘 (𝑞) ≠ 0, then 2𝑠 ≡ 0 would force 𝑠 ≡ 0, a contradiction.
Therefore, no “South Pole” antipodal point exists in Q𝑝 or Z𝑝 , completing the proof. □

These properties of the geometrical point 𝑠𝑃 are unmistakably consistent with the properties of
the concept of infinity in its conventional sense. This gives us the justification to identify the relativistic
antipodal point 𝑠𝑃 with the concept of infinity in the context of F𝑝 , and thus denote it as ∞.
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To exemplify, let us now consider the concrete example of 𝑝 = 13 and the corresponding finite
framed field F13. We can identify the following values for the constants 𝑖, 𝑒 and 𝜋 in F13:

𝑝 = 13, 𝑔min = 2, 𝑖 = 5.

The corresponding visual representation of the finite field F13 is shown in Figure 6. The figure shows
the state space of the finite field F13 as a circle on a 2D plane, with the major structural elements
−1, 0, 1, 𝑔min, 𝑖, as well as ∞ indicated. The antipodal point ∞ is located at the South Pole of the
pseudo-sphere, which is the farthest point from the observer at 0.

Figure 6. State space of a finite framed field F13, visualized as a circle on a 2D plane with the major structural
elements −1, 0, 1, 𝑔min, 𝑖, as well as ∞ indicated.

6.2. Approximate Lie Groups over Finite Fields

Continuous Lie groups such as SO(2), SU(𝑛), and GL(𝑛,R) are approximated in F𝑝 by discrete
symmetry groups generated by modular exponentiation and cyclic subgroup structures [26].

Let 𝐺 𝑝 ⊆ F×
𝑝 be a multiplicative cyclic group of order 𝑁 | (𝑝 − 1). The mapping:

𝜃 ↦→ 𝑔𝜃 mod 𝑝, 𝜃 ∈ Z/𝑁Z, 𝑔 a primitive root,

approximates continuous rotation 𝑒𝑖 𝜃 by discrete steps. Similarly, discrete matrix groups over F𝑝 , such
as GL(𝑛,F𝑝), replicate local algebraic behavior of Lie algebras over reals.

These finite analogues converge to their continuous counterparts as 𝑝 → ∞ and preserve closure,
invertibility, and group action properties locally within observer horizons 𝐻 ≪ 𝑝.

7. Conclusions
This work reconstructs arithmetic over finite fields as a complete, self-consistent relativistic algebra.

Number systems conventionally built on actual infinity are shown to emerge from finite, observer-
relative structures in F𝑝. This reformulation provides a robust mathematical language for finite
informational systems and supports a shift from absolute to structural foundations in mathematics.
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