Pre prints.org

Article Not peer-reviewed version

Designing of a Real-Time Gesture
Recognition with Convolutional Neural
Networks on a Low-End FPGA

Rui Policarpo Duarte i , Tiago Goncalves , Gustavo Jacinto , Paulo Flores , Mario Véstias

Posted Date: 27 May 2025
doi: 10.20944/preprints202505.2077v1

Keywords: SoC-FPGA; pattern recognition; convolution neural networks; hardware/software co-design;
hardware accelerator; high-level synthesis

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/1053742
https://sciprofiles.com/profile/4485085
https://sciprofiles.com/profile/3322156
https://sciprofiles.com/profile/1145900

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Designing of a Real-Time Gesture Recognition with
Convolutional Neural Networks on a Low-End FPGA

Rui Policarpo Duarte L+@®, Tiago Gongalves 2 Gustavo Jacinto 2(, Paulo Flores 2

and Mirio Véstias 1

1 ISEL-IPL/INESC-INOV-LAB
2 IST-ULisboa/INESC-ID
* Correspondence: rui.duarte@isel.pt

Abstract: Hand gesture recognition is used in human-computer interaction, with multiple applications
in assistive technologies, virtual reality, and smart systems. While vision-based methods are commonly
employed, they are often computationally intensive, sensitive to environmental conditions, and
raise privacy concerns. This work proposes a hardware/software co-optimized system for real-time
hand gesture recognition using accelerometer data, designed for a portable, low-cost platform. A
Convolutional Neural Network from TinyML is implemented on a Xilinx Zyng-7000 SoC-FPGA,
utilizing fixed-point arithmetic to minimize computational complexity while maintaining classification
accuracy. Additionally, combined architectural optimizations, including pipelining and loop unrolling,
are applied to enhance processing efficiency. The final system achieves a 62x speedup over an
unoptimized floating-point implementation while reducing power consumption, making it suitable
for embedded and battery-powered applications.

Keywords: SoC-FPGA; pattern recognition; convolution neural networks; hardware/software co-
design; hardware accelerator; high-level synthesis

1. Introduction

Hand gesture recognition has become an essential component of human-computer interaction,
enabling touch-free control in applications such as assistive technologies, virtual reality, robotics, and
smart home systems. Many existing gesture recognition systems rely on camera-based approaches,
which, despite their effectiveness, present several challenges, including high computational complexity,
sensitivity to environmental conditions, and privacy concerns. An alternative solution is the use of
accelerometers, which offer a lightweight, low-power, and privacy-preserving method for capturing
hand movements. However, the implementation of real-time gesture recognition on low-cost, portable
hardware remains a significant challenge due to the limited computational resources and power
constraints of embedded systems.

This work presents a hardware /software co-optimized system for real-time hand gesture recogni-
tion based on accelerometer data, implemented on a low-cost System-on-a-Chip Field-Programmable
Gate Array (SoC-FPGA) from the Xilinx Zyng-7000 family. A SoC-FPGA integrates both processor and
FPGA architectures into a single device, providing higher integration, lower power, smaller board size,
and higher bandwidth communication between the processor and FPGA. While the CNN accelerator
was implemented on the FPGA fabric, the CPU coordinates its operation.

Three hardware optimizations were done to reduce the execution time. The first optimization
was the introduction of the pipeline, achieving an overall speedup of 26.7x. The secund optimization
was the Loop Unroll technique, resulting in an overall speedup of 41.5x. Finally, some of the layers
were merged and implemented as one function, which decreased the resources needed, while also
achieving an overall speedup of 62x when compared to the unoptimized hardware architecture using
floating-point representation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-7060-4745
https://orcid.org/0009-0002-9651-5043
https://orcid.org/0000-0001-8556-4507
https://orcid.org/0000-0003-2970-3589
https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

2 of 20

2. Gesture Recognition with Convolutional Neural Networks

In this work, a gesture recognition system was used as an example of implementing a NN for
gesture recognition from an accelerometer placed on a subject’s hand to detect gestures. This model
can detect three different gestures. The model was trained using the TensorFlow Lite framework ([1]).

A A 7
i\

Figure 1. Gestures supported by the proposed (from [2]).

—

Figure 2 shows the overview of the gesture recognition model. The input of the NN! (NN!) model
is the data from the accelerometer. The model has 7 layers, of which 2 of them are Convolution Layers.

128x3
A 128x3x8

42x1x8

42x1x16

14x1x16

<
Convolution
MaxPool

Convolution

MaxPool

Flatten
Dense

Figure 2. Overview of the gesture recognition NN! model.

All the layers of the model are represented in Table 1 below. The table also has the Input Shape
of the Layer, in other words, the way the input data is organized. There are also the Output Shape
of each layer and the Number of Parameters that each Layer needs so they can compute the output
values, for example the kernels for the convolution layers.

Table 1. Layers of gesture recognition NN! Model.

Layer Input Shape | Output Shape | Number of Parameters
Convolution 2D (128,3,1) (128, 3, 8) 104
MaxPooling 2D (128, 3, 8) (42,1, 8) 0
Convolution 2D (42,1, 8) (42,1, 16) 528
MaxPooling 2D (42,1, 16) (14,1, 16) 0

Flatten (14,1, 16) (224) 0

Dense (224) (16) 3600

Dense (16) 4) 68

Training data and the corresponding output are needed for each gesture to train and test the
model. Each gesture was collected from 10 people and stored in 10 files, one file for each person. Each
file has approximately 15 individual performances, there are also 10 files for the unknown gestures.
The data was split so that 6 files are used for the training, 2 are used for validation, and another 2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

30f20

for testing. The model was tested with an accuracy of 93,23% and a loss of 0,2888. These values are
considered very good as it predicts the correct class with 93% of certainty.

The first layer is a convolution, it receives a set of input values directly from the accelerometer,
and then does a convolution with those values. The input data has a shape of (128, 3, 1) which means
that it is necessary 128 sets of accelerometer measurements for all the 3 axes (x, y and z). It has 8
kernels in the shape of 3x4, the output is 8 different matrices that capture different features of the input
data. To do a convolution, first, it is necessary to know all the values of the kernels and biases that are
stored in the network model.

Each convolution operation produces only one result, then, the kernel iterates through all the
input values. Once the first kernel finishes all the convolution operations, the second kernel iterating
through all the input values, until the last kernel finishes. This layer has output data in the shape of
(128, 3, 8) and it needs 104 auxiliary parameters, 96 (3 x 4 x 8) for the 8 kernels plus 8 additional values
for the offset of each kernel.

After the Convolution layer, a MaxPooling is done, this layer chooses the biggest values within a
3x3 matrix. The layer looks at 9 values at the same time and then shifts through all the data. In the end,
it shrinks the data into the shape of (42, 1, 8), by removing redundant information while retaining the
most significant features.

The second convolution is a 3D Convolution and has the shape of the input data as (42, 1, 8).
There are 16 kernels which also have 3 dimensions (4, 1, 8). We have a 42x8 matrix as the input and a
4x8 kernel. Once again, the kernels shift through all the data, producing the output shape of (42, 1, 16).
This layer needs 512 (4 x 8 x 16) parameters for all 16 kernels plus one bias for each kernel (16 in total),
leading to 528 auxiliary parameters.

The second MaxPool is the same as the first one, the differences being the input and output shapes.
The input has the shape (42, 1, 16), the MaxPool chooses the highest values from a set of 3 values (3x1
matrix), and it shifts through all the values for all 16 channels. In the end, the data has the shape (14, 1,
16).

The Flatten layer is used to reshape its input data into a single vector, and it "flattens" the values.
In this case, it receives the output of the second MaxPool, in the shape of (14, 1, 16). It starts in the first
dimension (first 14 values) then the second, and so on until it is all Flattened out (14 values each time),
producing an output with the shape (224), notice that only maintains one dimension.

The Dense layer uses to all the values of the input independently, instead of a set of values. It
multiplies all the input values by a weight given by a kernel and sums all the products into a single
value. In other words, instead of having a small kernel that shifts through the data, the Dense layer
has one big kernel that multiplies with all the input data at once. It can also have multiple kernels, in
the case of the first Dense it has 16 kernels, so it repeats the operations 16 times with different weights
(kernels), computing 16 different values, giving an output shape of (16). It needs 3584 (224 x 16)
auxiliary values for all the weights of each one of the outputs, it also needs 16 extra values for the
offset of each value reaching a total of 3600 parameters.

The second dense layer is exactly like the previous layer, but now it has 4 kernels with different
weights, which means that it outputs 4 values, and the output is in the shape of (4). Once again, this
layer needs auxiliary parameters, 64 (16x4) for each one of the 4 kernels plus the 4 bias values for
each output, giving a total of 68 parameters. With the output values, a Softmax computation can be
done, the outputs of the Softmax are the probabilities of our 3 gestures and 1 additional output for the
unknown gestures, so the sum of all the values must be 1.

3. HW/SW Architecture for Gesture Recognition
4. Software Model Implementation in C

The Original TinyML Source implementation code uses a compiled library for the target MCU,
thus it was impossible to identify which operations were being executed. The solution was to study

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

4 0f 20

and implement the layers of the model and get information about the parameters and make a new
implementation from scratch to use the NN! model.

The first step was to create constants for all the parameters (kernels and bias), then create a
variable for the input, and finally, start to do all the layers one by one and check in every step if the
code is doing what it’s supposed to. Finally, after all the layers are done, it was necessary to create
a function that reads a file, stores the input values in the correspondent variable, and starts going
through all the layers to produce the output and repeat until the end of the file.

The source code flowchart is shown in Figure 3, where it is possible to see that the code has 3
actions, gather the input data, do the model inference and display the output.

Open File

Test
Bench

Reached
end of file?

Yes

Write Outputs
into file

Read Inputs

Store Inputs
in Memory

Load Outputs
from Memory

P VA
Load Inputs SOU ce

from Memory

L

Run the model

4

Store Outputs
in Memory

R

Figure 3. CLion Code Flowchart.

Table 2 shows the errors between the code that was done in C language and the Original TinyML
Code. There are some errors as expected derived from several causes. For example, the operations
are slightly different from the Original TinyML Code, and the variables are different in one code
when compared to another. This is because the compilers are different, the original TinyML code was
compiled in a Linux subsystem with GCC 9.4.0 compiler, while the custom code was compiled in
Windows with MinGW-W64-builds-4.3.5 compiler. All of that reasons can cause differences in the
output of the model but, as we can see in the table, the errors are too small and all the predictions
stayed the same throughout all the test files.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

50f 20

Table 2. Classification errors between the Original TinyML Code and the Custom C Code.

Gesture W @) L Negative | Total
Maximum Abso- | 1.82E-06 | 1.88E-06 | 2.83E-06 | 2.50E-06 | 2.83E-06
lute Error

Mean Absolute Er- | 1.95E-08 | 6.09E-08 | 1.50E-07 | 1.23E-07 | 8.17E-08
ror

Quadratic Absolute | 1.29E-14 | 2.65E-14 | 1.42E-13 | 1.26E-13 | 6.71E-14
Error

Figure 4 shows the dataflow of the model. So, at the end of each layer, the outputs are stored in
memory and the next layer loads these values to start executing.

Memory

Convolution Output | MaxPool Output ‘ Convolution Output | MaxPool Output Model Output

Convolution MaxPool Convolution MaxPool

Figure 4. Dataflow of the model in Vitis HLS.

5. Floating-Point vs Fixed-Point Representations

The initial C description of the CNN model in Vitis HLS had the data variables in Floating-Point
representation. However, to have better execution time and simpler hardware blocks (such as multipli-
ers and adders), the Floating-Point representation was converted into a Fixed-Point representation.
The downside of this representation is that has a limited range and less precision than the Floating-
Point, which may result in output errors. Therefore, a study was performed, where the number of
bits required for the Fixed-Point representation was evaluated. This study helped to understand
the tradeoff between resources needed and the network model accuracy. If fewer bits are used, the
resources needed are reduced but the network model accuracy also decreases.

5.1. Floating-Point

The first implementation in Vitis HLS used Floating-Point variables. In IEEE Standard for Floating-
Point Arithmetic representation [3] (32 bits), there is no set number of bits for the integer part nor the
decimal part. Instead, there is 1 bit for the sign, 8 bits for the exponent, and 23 bits for the mantissa.

When comparing to Fixed-Point representation, the operations with Floating-Point representation
are much more complex and time-consuming. The adders take about three clock cycles, and the
multipliers take about six clock cycles.

The code was simulated in Vitis HLS, with Zyng-7020 SoC-FPGA as the target device. After
running the code through all the inputs of the provided files, all the predictions matched the predictions
of the original TinyML code, however, some differences were presented in the output values. Table 3
presents the Errors between the output of the original TinyML code and the Vitis HLS code using
Floating-Point representation. These errors are not that significant, because the minimum value for
a gesture to be chosen is 0.25 (because there are 4 gestures and the sum of all the values must be 1)
which is 100,000x higher compared to the Maximum Absolute Error (MAE), which is about 2.22E-06.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025

d0i:10.20944/preprints202505.2077.v1

6 0f 20

Table 3. Errors between the Original TinyML Code and the VitisHLS Code using Floating-Point representation.

Gesture \ ©) L Negative | Total
Maximum Error 1.82E-06 | 1.94E-06 | 2.22E-06 | 1.55E-06 | 2.22E-06
Minimum Error -1.79E-06 | -1.97E-06 | -2.21E-06 | -1.46E-06 | -2.21E-06

Average Error 2.70E-10 | -1.37E-09 | -8.34E-11 | 1.28E-09 | -2.42E-10
Quadratic Error 7.08E-15 | 2.47E-14 | 6.35E-14 | 3.54E-14 | 3.21E-14
Standard Deviation | 1.13E-07 | 2.13E-07 | 3.34E-07 | 2.83E-07 | 2.43E-07

Note that these errors are different from the C code from CLion, despite the operations being
the same and the overall code very similar. The reason for the existence of these differences is that
the compilers used are different from each other. In the CLion IDE, the compiler that was used is
MinGW-W64-builds-4.3.5. Vitis HLS has GCC as a compiler, this implies that the operations are done
differently which results in slightly different outputs. To prove that, the same code that was on CLion,
was compiled with GCC using an Ubuntu subsystem for Windows, on that test, the outputs were the
same as the Vitis HLS.

5.2. Fixed-Point

Fixed-Point adders only take one clock cycle and multipliers take one to two clock cycles, which
is less than Floating-Point operators. Moreover, the resources required to implement the operators in
Fixed-Point are also reduced.

In Fixed-Point representation, there are bits set to the integer part and bits set to the decimal part,
so for instance, if a number has 8 bits in the format 4.4, this means that it has 4 bits to represent the
integer part and 4 bits to represent the decimal part. This representation is better than the Floating-
Point representation for this work. However, there are some downsides, like the loss of precision when
compared with the Floating-Point representation. The advantages are that with the Fixed-Point all the
operators are simpler to implement. Therefore, the complexity is smaller than the Floating-Point, while
the computing time is faster. Also, by reducing the complexity, Fixed-Point needs fewer resources to
implement when compared to Floating-Point. So, as long as the values are not too different during the
computations of the algorithm,or the error is acceptable, this option is much better than Floating-Point.

So, for instance, if we want to represent a number with 8 bits with 3 bits for the integer part and
5 bits for the decimal part, then the initialization needs to be "ap_fixed<8, 3 > var;". Therefore when
initializing a Fixed-Point variable, it is necessary to provide two arguments (W and I), while the other
arguments are optional and have default values.

The W and I arguments are 36 and 17 respectively, which means that the variables have 36 bits
with 17 bits for the integer part and 19 bits for the decimal part. However, the number of bits can be
decreased, more in section 7.1. To avoid Overflows in this work, there were provided enough bits for
the integer part, hence the Q argument is the only optional argument that needs concern. By consulting
the User Guide [4], seven options were withdrawn for this argument:

RND: Round to plus infinity.

RND_ZERO: Round to zero.
RND_MIN_INF: Round to minus inﬁnity.
RND_INF: Round to infinity.

RND_CONV: Convergent rounding.

TRN: Truncation to minus infinity (default).
TRN_ZERO: Truncation to zero.

Out of these 7 options, 4 were chosen to be evaluated: TRN; TRN_ZERO; RND_ZERO;
RND_CONV. In this evaluation the first kernel is initialized with the different quantization modes,

NG e N

these values are then compared with the Floating-Point values of the kernel.
The results of using different Quantization Modes are shown in Table 4. It can be concluded from
the table, that the best modes are RND_ZERO and RND_CONYV, which have smaller errors in every

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025

d0i:10.20944/preprints202505.2077.v1

7 of 20

metric. Both of them have the same errors because both modes try to round the value to the nearest
integer, the problem comes when the number is in the middle of two integers, for example, 5.5 is in the
middle of 5 and 6.

Table 4. Errors between the Fixed-Point and the Floating-Point for different rounding modes.

TRN TRN_ZERO | RND_ZERO | RND_CONV
Maximum Error 1.89E-06 1.89E-06 9.31E-07 9.31E-07
Minimum Error 0.00E+00 -1.82E-06 -9.37E-07 -9.37E-07
Mean Error 9.43E-07 -1.50E-07 2.90E-08 2.90E-08
Mean Absolute Error | 9.43E-07 9.78E-07 4.47E-07 4.47E-07
Quadpratic Error 1.23E-12 1.30E-12 2.85E-13 2.85E-13
Standard Deviation | 5.84E-07 1.13E-06 5.33E-07 5.33E-07
Mode 1.70E-06 8.94E-07 7.00E-07 7.00E-07
Median 8.94E-07 -1.90E-07 9.69E-08 9.69E-08

To choose the best mode for this work, another evaluation was done. We evaluate how many
resources were needed to do a simple operation for each of the 4 modes.

Looking at Table 5 it is possible to conclude that the default mode (TRN) is the one that consumes
fewer resources, on the other hand, both RND_ZERO and RND_CONYV are the ones that consume the
most, with a small increase over TRN_ZERO. The two modes consume the same resources used as
well as generate the same errors. The conclusion is that both are suitable to use, in this work the one
that was chosen was convergent rounding (RND_CONYV).

Table 5. FPGA resources used for the different Quantization Modes.

DSP | FF | LUT
TRN 2 181 | 266
TRN_ZERO 2 182 | 320
RND_ZERO 2 182 | 321
RND_CONV 2 182 | 321

Following the choice of the quantization mode, a random input was chosen from the test files.
This input goes through all the layers of the model, and all the variables that were in Floating-Point
are now in Fixed-Point with the chosen quantization mode. The output of each layer was compared
with the Floating-Point code, in Table 6.

Table 6. Errors between Fixed-Point and Floating-Point after each layer.

1st 1st 2nd 2nd 1st 2nd Softmax

Convo- | Max- Convo- | Max- Dense Dense

lution Pool lution Pool
Maximum | 3.59E- 3.59E- 1.94E- 1.94E- 3.63E- 4.12E- 2.22E-
Error 03 03 03 03 03 04 04
Minimum | -2.76E- | -2.31E- | -2.78E- | -2.77E- | -3.44E- | -4.81E- | -2.22E-
Error 03 03 03 03 03 04 04
Mean Er-| -1.00E- | 6.39E- -1.18E- | -1.22E- | -1.12E- | 5.25E- 1.05E-
ror 06 05 05 05 04 06 08
Mean 1.51E- 3.76E- 1.22E- 2.22E- 8.87E- 3.14E- 1.11E-
Absolute 04 04 04 04 04 04 04
Error
Quadratic | 1.99E- 5.58E- 1.79E- 3.27E- 2.62E- 1.18E- 2.47E-
Error 07 07 07 07 06 07 08
Standard 4.46E- 7.45E- 4.23E- 5.72E- 1.62E- 3.43E- 1.57E-
Deviation 04 04 04 04 03 04 04
Mode 0.00 0.00 0.00 0.00 0.00 - -
Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

8 of 20

Since the intermediate values (output values of each layer) are mostly big integer numbers (bigger
than 100), the errors presented in the table compared to those numbers are very small. In all of these
evaluations, the Fixed-Point variables had 36 bits with 17 bits for the integer part and 19 for the decimal
part. Further analysis of the number of bits required for the integer and decimal parts is done in section
7.1.

6. Digital System Design Optimizations
6.1. Pipelining

When scheduling without pipeline the next instruction only begins when the previous instruction
is finished, but with pipeline that is not the case. Because the instructions are independent, it is possible
to start the next instruction without the current one finishing, utilizing the available resources that are
not being used.

Without pipeline all the operations of each layer were being done sequentially, producing one
output only when the previous one had finished.

Initially, the first convolution layer would load every value that was necessary for the convolution,
that is, all the values of the kernel and all the input values needed. These loads were executed every
iteration, which means that it would do 18 to 24 loads for each output, storing this output in the end.
The cause of this violation was the number of ports, there weren’t enough ports for all the necessary
loads and stores. This means that there were not enough resources to pipeline this loop. The solution
is to reformulate the code, so the number of loads and stores decreases. First, the number of main
loops was reduced, from one outer loop and two inner loops to one main outer loop.

In the convolution layer, the kernel moves through the input data, as shown in Figure ??, and
goes through the same values as before, so the code can reuse those values. It only needs to have a 3x4
matrix with the values that the kernel at that moment and load a new value per iteration. This is a
way to reduce the number of loads per iteration. Before there were either 20 or 24 loads only in one
iteration (12 for the kernel and 10 to 12 for the input data), now the input data only needs one load per
iteration and the kernel none because it is the same for all the input data. The only time this doesn’t
happen is in the beginning because it’s necessary to load at least 11 values of the input data and all the
12 values of the kernel, and when the kernel changes, it is necessary to load all the 12 values again for
the new kernel.

There are some precautions to be taken, as the user guide says "Arrays are typically implemented as
a memory (RAM, ROM or FIFO) after synthesis.” [4]. Therefore, the code can’t just load an input value,
for instance, just to store in another memory so, to solve this problem.

Without pipeline, this new architecture is slower than the previous one, when synthesized. Now
with pipeline, the synthesis led to another error. This time it was a Timing Violation, the clock cycle
was 10ns, but the critical path was slower than the clock cycle. The fix was simple, just slow the clock
a bit, from 10ns to 10.4ns. In the end, even with the fact that the clock cycle was slower, there were
improvements in the speed, but the resource usage increased as well.

Advancing to the second Convolution, the same steps were done and, although the number of
loads per iteration after the optimization was 8, Vitis HLS was able to pipeline the loop, increasing the
resources used as well as the speed. This optimization was done on all layers of the model, enabling
the use of pipeline in every layer. The clock had to be changed yet again from 10.40ns to 10.41 ns when
optimizing the 1st Dense due to a Timing Violation. In the end, the speedup achieved was 26.7x when
compared with the code without pipeline with a 10ns clock cycle.

6.2. Loop Unroll

Loop Unroll (LU) is a known optimization in which, instead of the loop doing one iteration at a
time, it does several iterations in parallel. This optimization tries to increase the execution speed while
increasing the resources used in return, it is a space-time trade-off.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

9 of 20

Starting with the 1st Dense layer, in this function, there are three loops, the outer loop that shifts
through the kernels and two inner loops to shift through all the data. By unrolling the most inner loop,
it was possible to increase the speed, as wished (11.1x function speedup). The problem was when the
inner loop of the 2nd Dense was unrolled, this time the speed got worse. There could many many
causes for this problem, in this layer, there are many loads and stores, when the loop is unrolled, it
tries to do all the loads inside the loop, and all of these loads are followed by a store and a load that
are outside the loop.

When a loop is unrolled, there’s a possibility that there are not enough ports to load and store
all the necessary values, and the circuit needs to stall and wait before it can load the value. This will
limit the performance by suspending the execution of the computations in the pipeline, impacting the
throughput and latency.

However with the pipeline, the clock cycle had to be changed because of the critical path in the 1st
Convolution, and after that in the 1st Dense, when the Loop Unroll was performed in the Convolution,
even though the execution time stayed the same, the critical path decreased. Now the clock cycle can
be faster, changing from 10.41ns to 10.37ns (1.004x overall speedup). In the end, after both, the Pipeline
and the Loop Unroll optimizations, the speedup achieved was 41.5x.

6.3. Merging

After observing the Schedule Viewer tool in Vitis HLS, it was detected that a function/layer only
starts its execution when the previous one finishes. Some layers don’t need all the input values to begin
their execution, instead, they can start the execution with some of the inputs, and while it’s doing the
operations with that values, the remaining input values arrive from the previous layer. This way, it is
possible to parallelize even more the overall execution of the architecture, increasing its speed.

The method to implement this in Vitis HLS is, instead of having independent functions, those
functions can merge and code that new function in a way that the next layer starts before the previous
finishes. Starting with the 1st Convolution and the 1st MaxPool, this is a simple case, basically in the
Convolution function, instead of storing each output value, this value just needs to be compared to
the current maximum value, if the output value is greater, then update the maximum value with the
current output value. After 12 values are compared, an output value is produced and stored (output of
the MaxPool), and the maximum value is reset to 0. Therefore, instead of the MaxPool waiting for the
Convolution to produce all the output values before starting to execute, both can be executed at the
same time (1.325x function speedup).

The 2nd Convolution and the 2nd MaxPool can also merge. The same method used in the merging
of the 1st Convolution was done, increasing the execution speed (1.937x function speedup). Now it is
time to see if there is a possibility to merge more layers to speed up the execution.

In the case of merging the 1st MaxPool with the 2nd Convolution, the speedup obtained was less
than 1.05x, this is because the MaxPool computes all the outputs of one kernel consecutively, and then
computes the values for the next kernel, and so on. Meanwhile, the 2nd Convolution needs input
values from all the kernels to compute any of the output values. So, even if it was merged, the 2nd
Convolution has to wait almost until the end to start the computation, furthermore, the complexity of
the code would increase drastically. Concluding, the merge of these two layers didn’t happen because
it would end up with too much work for a small reward. The same happens with the 1st Dense and
the 2nd Dense because the 2nd Dense needs all the output values of the 1st Dense before it can start
computing, achieving little to no speedup.

Finally, merging the 2nd MaxPool with the 1st Dense. Contrary to what happens with the 2nd
Dense, this time it is possible to change the architecture to achieve a greater speedup. Even if the
Dense needs all the values to start computing, it is possible to have only the intermediate variables.
These variables store the intermediate values of the output values, this means that every time the
MaxPool produces an output, these variables are updated with a new intermediate value. In the end,
the outputs are produced all at the same time, and the speed has an increase (1.427x function speedup).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

10 of 20

The Merging finishes all the optimizations that were implemented, in the end, the speedup of all these
optimizations is 61.978x.

7. Evaluation of the Proposed System
7.1. Classification Accuracy

The architecture was evaluated for a different wordlengths for each variable. In this evaluation,
the output values of the architecture before any optimization, are compared with the original output
values from a gesture recognition system. The data used is the same used for testing the gesture
recognition model, which had a 97,43% accuracy. The code used for this evaluation was the one after
the Fixed-Point was implemented before any of the optimizations.

The goal is to try to reduce resource utilization without having an accuracy decrease. It is expected
however an increase in the errors when reducing the number of bits

The Fixed-Point variables were divided into eight groups:

* Parameters: This group contains all the parameters of every kernel and bias values for all layers
(4300 values stored).

¢ Input: This group contains the input values (384 values stored).

¢ 1st Convolution: This group contains the output values of the 1st Convolution (3072 values
stored).

* 1st MaxPool: This group contains the output values of the 1st MaxPool (336 values stored).

¢ 2nd Convolution: This group contains the output values of the 2nd Convolution (672 values
stored).

¢ 2nd MaxPool: This group contains the output values of the 2nd MaxPool (224 values stored).

¢ 1st Dense: This group contains the output values of the 1st Dense (16 values stored).

¢ 2nd Dense: This group contains the output values of the 2nd Dense (4 values stored).

The idea is to reduce the wordlength as much as possible while affecting the accuracy as little
as possible, this way it is possible to reduce the FPGA resources that are being used (less memory is
needed to store the values). In the beginning, all the variables had 36 bits (17 for the integer part), so
the initial strategy was to reduce the bits group by group without having errors between the output
values and the original output errors.

The Table 7 shows how many bits were used in each variable group for the different tests, note
that the first number is the total wordlength, followed by the bits for the integer part and ending with
the bits for the decimal part.

Table 7. Wordlength of each group for the different tests (T1-T5).

Params | Input 1st 1st Max- | 2nd 2nd 1st 2nd
Conv. Pool Conv. Max- Dense Dense
Pool
T1 | 3.15 17.19 17.19 17.19 17.19 17.19 17.19 17.19
T2 | 3.15 12.0 13.1 13.1 317.19 17.19 17.19 17.19
T3 | 3.15 12.0 13.1 13.1 14.2 14.2 17.19 17.19
T4 | 3.15 12.0 13.1 13.1 14.2 14.2 14.5 17.19
T5 | 3.15 12.0 13.1 13.1 14.2 14.2 14.5 10.2

By observing the output errors for each test on Table 8, it is possible to notice that the errors
increase with each test, while the wordlength decreases. There are also some curious facts, for example
in T3, there is one Mismatch Prediction (the predicted gesture is not the same as the original prediction),
however, the original prediction is wrong, instead of an unknown gesture, the correct prediction is
”O” gesture, which was the prediction in T3. So, the accuracy in T3 has a slight improvement (about
0.14%). Also, the one missed prediction in T3, disappears in T4, going back to 0 Mismatch Predictions.
Finally, T5 has 7 Mismatch Predictions, most of them were the right prediction in the original project,
only 2 being the right prediction in T5 and 1 being wrong in both models.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025

d0i:10.20944/preprints202505.2077.v1

11 of 20

Table 8. Errors between the original output values and the output values for the different tests (T1-T5).

T1 T2 T3 T4 T5
Maximum Error 1.43E-03 | 2.67E-02 | 4.53E-02 | 5.13E-02 | 1.42E-01
Minimum Error -1.43E-03 | -2.96E-02 | -5.06E-02 | -5.22E-02 | -1.43E-01
Mean Error -1.53E-10 | 4.53E-11 | -2.28E-10 | -3.44E-10 | -1.07E-10
Mean Absolute Error | 3.76E-05 | 5.70E-04 | 7.64E-04 | 7.63E-04 | 4.49E-03
Quadratic Error 1.40E-08 | 4.38E-06 | 8.80E-06 | 9.20E-06 | 1.60E-04
Standard Deviation 1.18E-04 | 2.090E-03 | 2.97E-03 | 3.03E-03 | 1.27E-02

Mode 0.00 0.00 0.00 0.00 0.00

Median 0.00 0.00 0.00 0.00 0.00

Mismatch Predictions 0 0 1 0 7

Table 9 shows how the resources decrease for the tests with smaller bit variables. Even if the

errors and the mismatch predictions increase, the resources used decrease, so the area used decreases
as well. The TO test in the table corresponds to a test done with all the variables with 36 bits (17 for the
integer part), before any change. These values lead to the graph shown in 5, where it is possible to see
the error increase while the number of FFs decrease.

Table 9. Resources used for the different tests (T0-T5).

To T1 T2 T3 | T4 | T5
BRAM | 22 19 16 15 | 15 | 15
DSP 77 77 55 54 | 53 | 53
FF | 5647 | 5190 | 4418 | 4277 | 4212 | 4044
LUT | 11336 | 11175 | 10952 | 9816 | 9859 | 9685
1,60E-01 5 300
1,40E-01 5 100
1,20E01 4500
4700
1,00E-01
4500
8,00E-02
4300
6,00E-02
4100
4,00E-02 4 900
2 DOE-02 3 700
0,00E+00 3500
1 T2 T3 T4 T5
Errors FF

Figure 5. Graph of the tradeoff between the Resources used (FFs) and Errors of the output values (Maximum
Absolute Value) when the wordlength decreases. The left axis corresponds to the Errors. The right axis corresponds

to the number of FF’s.

A new strategy was implemented, this time each group would be tested independently, that is,
in each test, only one group would change the wordlength, while all others would have 36 bits (17
for the integer part). This way, it is possible to study what layers have more impact on the outputs

and accuracy. Firstly the wordlength for the integer part was reduced as much as possible without

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

12 of 20

having any overflow, then the wordlength for the decimal part was reduced one by one until there
were 0 bits for the decimal part. However, the Parameters group was a bit different, this is because it is
mostly composed of small numbers with a big decimal part, the integer part needs only 3 bits while
the decimal part needs more bits. The threshold used for this particular group was that the percentage
of mismatch predictions (differences between the tests predictions and the original predictions) has to
be lower than 5%. For the Parameters group, when the number of bits of the decimal part is 9 bits,
there are 65 mismatch predictions out of 729 predictions, this gives a percentage of 8.92%, exceeding
the threshold.

Table 10 shows the number of mismatch predictions depending on the number representation,
the number of bits inside the parenthesis is the number of bits for the integer part, and these bits never
change. For instance, "1st Dense (14)" means that the 1st Dense group always has 14 bits for the integer
part for this study. Also, it is possible to see that when the number of bits decreases, the number of
mismatch predictions increases, although there are a few exceptions.

Table 10. Mismatch Predictions for each Fixed-Point variable group (Convolution and MaxPool Merged for this
test). The number inside the parenthesis is the number of bits for the integer part.

Wordlength | Parameters| 1st Conv + | 2nd Conv | 1st Dense | 2nd
3 MaxPool |+ Max-| (14) Dense

(13) Pool (14) (10

20 0 0 0 0 0

19 0 0 2 1 0

18 0 0 0 0 0

17 0 0 2 1 1

16 0 0 1 0 1

15 0 0 1 3 1

14 0 0 5 6 2

13 2 2 - - 3

12 1 - - - 5

11 10 - - - 9

10 8 - - - 29

With the information from Table 10, new tests were done, this time the goal was to decrease the
number of bits as much as possible for the groups that have more values to be stored, to decrease
the memory resources as much as possible. In other words, the critical groups to be reduced are the
Parameters, the 1st Convolution + 1st MaxPool, and the 2nd Convolution + 2nd MaxPool. Table 11 has
the number of bits for each group for the new tests (T6 and T7) as well as the previous test T5, it is
possible to see that it is impossible to reduce the number of bits for all the Convolution and MaxPool
groups without generating any overflow since the limit was already reached (reducing the number
of bits of the integer part would generate overflows). The only critical group left to change is the
Parameters group, which is the only group that changed between T6 and T7.

Table 11. Wordlength of each group for the different tests (T5-T7).

Parameters| Input | 1st 1st 2nd 2nd 1st 2nd
Con- Max- Con- Max- Dense | Dense
volu- Pool volu- Pool
tion tion

T5 | 3.15 12.0 13.1 13.1 14.2 14.2 14.5 10.2
T6 | 39 12.0 13.0 13.0 14.0 14.0 14.1 10.4
T7 | 3.7 12.0 13.0 13.0 14.0 14.0 14.1 104

From Table 12 it is possible to extract a clear improvement from T5 to T6, not only did the errors
decrease (Mean Absolute Error, Quadratic Error, and Standard Deviation) but the mismatch predictions
and the number of bits stored decreased as well. From T6 to T7 there’s a tradeoff between reducing the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025

d0i:10.20944/preprints202505.2077.v1

13 of 20

number of bits while increasing the errors as well as the number of mismatch predictions. No further
tests were done because, if the number of bits of the Parameters decreased any further, the number
of mismatch predictions would drastically increase, exceeding the threshold of 5%. Also, there isn’t
an advantage in reducing the number of bits for the dense groups because the number of bits stored
would only have a slight decrease. The number of mismatch predictions can be even worse with real
data, this is because the input data used, was the one used for training, validation, and testing of the
model, which means that the model can be overfitted for these tests, which can decrease the accuracy
even further.

Table 12. Errors between the original output values and the output values for the different test (T5-T7).

T5 T6 T7
Maximum Error 1.42E-01 | 1.11E-01 | 3.41E-01
Minimum Error -1.43E-01 | -1.06E-01 | -3.41E-01
Mean Error -1.07E-10 | -2.15E-10 | -5.41E-10
Mean Absolute Error | 4.49E-03 | 3.91E-03 | 1.14E-02
Quadratic Error 1.60E-04 | 1.26E-04 | 1.15E-03
Standard Deviation 1.27E-02 | 1.12E-02 | 3.39E-02
Mode 0.00 0.00 0.00
Median 0.00 -4.40E-25 | 4.41E-11
Mismatch Predictions 7 3 12
Bits stored 144 408 113 352 104 752

As expected, the number of resources decreases when the number of bits decreases, Table 13
shows how many resources were used, confirming this reduction. This concludes the accuracy test,
showing that it is possible to have a reduction in resources without heavily reducing the accuracy of
the model.

Table 13. FPGA resources used for the different tests (T5-T7).

T5 T6 T7

BRAM 15 13 12

Dsp 53 53 53
FF 4,044 | 3,843 | 3,785
LUT | 9,685 | 9,466 | 9,386

7.2. Impact of Design Optimizations

The final architecture combines all the optimizations done, as well as the T7 test. This means that
this architecture has pipeline implementation, loop unrolls and the merge of some layers, and also has
a reduced number of bits to store the variables. The output values of this architecture were compared
with the original output values, in Table 14.

Table 14. Errors between the original output values and the final architecture output values.

W (0) L Negative Total
Maximum Error 2.19E-01 | 1.55E-01 | 2.70E-01 | 3.24E-01 | 3.24E-01
Minimum Error -1.28E-01 | -1.68E-01 | -2.70E-01 | -3.24E-01 | -3.24E-01
Mean Error 243E-10 | -1.26E-09 | -1.46E-10 | 9.66E-10 | -2.65E-10
Mean Absolute Error 3.46E-03 | 6.24E-03 | 2.06E-02 | 2.04E-02 | 1.10E-02
Quadratic Error 3.20E-04 | 3.28E-04 | 2.14E-03 | 2.51E-03 | 1.07E-03
Standard Deviation 1.79E-02 | 1.81E-02 | 4.63E-02 | 5.01E-02 | 3.28E-02
Mismatch Predictions 1 0 7 3 11
Mismatch Predictions (%) 0.45% 0.00% 3.08% 4.84% 1.51%

Comparing these errors with the errors of the T7 test, the final architecture has a slight improve-
ment, having a decrease in Mean Absolute Error, Quadratic Error, and Standard Deviation. This

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

14 of 20

decrease can be explained by the merge optimization because this optimization changed the architec-
ture to do multiple layers before it stores the output in the memory. This architecture change comes
with a difference in the way the variables are stored and the operations are done.

7.3. FPGA Resources

This section compares the differences in the FPGA Resources used for the work in different Design
Solutions (DS). The chosen DS were the following:

¢ Design Solution 1: This DS is after the Fixed-Point is implemented, before the Pipeline optimiza-
tion.

¢ Design Solution 2: This DS is after the Pipeline optimization is implemented, before the Loop
Unroll optimization.

* Design Solution 3: This DS is after the Loop Unroll optimization is implemented, before the Merge
optimization.

* Design Solution 4: This DS is after the Merge optimization is implemented.

* Design Solution 5: This DS is the final architecture with bit-width optimization (section 7.2).

In all DS, except for DS 5, the number of bits stayed the same, with all Fixed-Point variables
having 36 bits with 17 for the integer part. The number of resources used in all DS’s presented in Table
15.

Table 15. Required FPGA resources for different design solutions of this work.

DS#1 | DS#2 | DS#3 | DS#4 | DS #5
BRAM 22 55 50 120 45
Dsp 77 271 717 302 106

FF 5,647 | 41,483 | 131,136 | 48,793 | 17,526

LUT | 11,336 | 35,891 | 80,022 | 37,704 | 23,042

It can be observed a growth in resources from DS 1 to DS 2 as expected because when the Pipeline
is implemented, different stages of the architecture are executing at the same time, this means that
more resources are necessary to do all those tasks at the same time, increasing the execution speed.
There is another increase in resources from DS 2 to DS 3, this time was when the Loop Unroll was
implemented, well the LU unrolls the loop, executing some iterations in parallel, instead of doing one
iteration after another sequentially. Since there are more tasks to be done in parallel, it is necessary
more resources to do those tasks. In DS 4, most of the resources decreases, because in DS 4 some layers
were merged. Meaning that some of the resources that weren’t being fully used before can now be
used for both layers at the same time, sharing this way the resources, instead of each one having their
resources. Also, with this optimization, there’s no need to transfer data from some layers to others,
since those layers are merged. DS 5 is the DS with fewer resources used after DS 1, this was expected
since in DS 5 the number of bits to store the variables was reduced, reducing this way the resources
needed.

The available resources for Zyng-7020 SoC-FPGA are shown in Table 16. Comparing these
resources with the ones from Table 15, there are only two Design Solutions that could potentially be
configured into the FPGA because DS 2, 3, and 4 all need more DSPs than the ones available in the
FPGA. DS 3 is the worst in terms of resources required since it exceeds both DSPs, FFs, and LUTs of
the Zyng-7020 SoC-FPGA. In terms of BRAM, the FPGA has enough blocks for all Design Solutions.

Table 16. Resources available on a Zynq-7020 SoC-FPGA device.

BRAM | DSP FF LUT
140 220 | 106400 | 53 200

Concluding, there are some optimizations that, even though they speed up the execution time,
also increase the required resources which can exceed the available resources. Other optimizations can

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025

d0i:10.20944/preprints202505.2077.v1

15 of 20

help in both parameters, increasing the execution speed while decreasing the resources used. DS 5 has
a resource reduction when compared to the previous DS while maintaining its execution speed, but
decreasing the model accuracy.

7.4. System Performance

This section talks about the differences in the System Performance, that is, how much time it is
necessary to execute the inference. These comparisons have two control groups after the implementa-
tion of the Fixed-Point when the code hasn’t suffered any optimization change yet. One of the control
groups has a clock with 10ns while the other has a clock with 10.4ns. Then, those two control groups
are compared to every step of the optimizations that were done.

Table 17. Benchmark Tests for Speedup Performance

No Pipeline (10ns) | No Pipeline (10.4ns)
Clock (ns) 10.00 10.40
Total Time (ns) 2.644E+06 2.739E+06

Table 18 has the Speedup Performance for the Pipeline optimization. It is divided into functions
(or layers) each one being pipelined sequentially, and not independently, that is, when for example the
1st Convolution is pipelined, it stays pipelined until the end. By observing this data, it is possible to
see that the Convolution layers had a speedup, the 1st having a speedup of 42.3x and the 2nd having a
speedup of 123.4x. But the total speedup isn’t as big as the function speedup, in fact, it almost doubled
the speed in the 1st Convolution and it has a 5.5x speedup in the 2nd Convolution. After the Pipeline
optimization, the total speedup is 26.7x, which is almost 5x less than some function optimizations.

Table 18. Speedup performance of the architecture when implementing the pipeline optimization on each

function/layer.
1st Con- | 2nd Con- | 1st Max- | 2nd Max- | 1st 2nd
volution | volution | Pool Pool Dense Dense
Clock 10.40 10.40 10.40 10.40 10.41 10.41
(ns)
Total 1.408E+06 | 4.780E+05 | 2.760E+05 | 2.550E+05 | 1.020E+05 | 9.913E+04
Time (ns)
Function | 1.363E+06 | 9.370E+05 | 2.130E+05 | 2.829E+04 | 1.920E+05 | 3.414E+03
Time -
Before
(ns)
Function | 3.221E+04 | 7.592E+03 | 1.063E+04 | 7.114E+03 | 4.37E+04 | 2.390E+02
Time -
After (ns)
Function | 42.3x 123.4x 20.0x 4.0x 4.6x 14.3x
Speedup
Total 1.9x 5.7x 9.9x 10.7x 26.9x 27.6x
Speedup
(10.4ns)
Total 1.9x 5.5x 9.6x 10.4x 25.9x 26.7x
Speedup
(10ns)

Tables 19 and 20 have the Speedup Performance for the remaining optimizations, as well as the
speedup after the Pipeline optimization for reference.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

16 of 20

Table 19. Speedup performance of the architecture when implementing Loop Unroll optimization on a func-

tion/layer.
After Pipeline | 1st Dense (LU) | 1st Convolution

(LU)

Clock (ns) 10.41 10.41 10.37

Total Time (ns) 9.913E+04 6.391E+04 6.367E+04

Function Time - Before | - 1.920E+05 1.363E+06

Pipeline (ns)

Function Time - Before | - 4.137E+04 3.224E+04

Optimization (ns)

Function Time - After | - 3.727E+03 3.212E+04

(ns)

Function Total | - 51.5x 42 .4x

Speedup

Function Optimization | - 11.1x 1.004x

Speedup

Total Speedup (10.4ns) | 27.6x 42.9x 43.0x

Total Speedup (10ns) | 26.7x 41.4x 41.5x

Table 20. Speedup performance of the architecture after Merging (M) optimization on functions/layers.

After Pipeline | 1st 2nd 2nd Conv+1st
Conv+Maxpool| Conv+Maxpool| Dense (M)
M) M)
Clock (ns) 10.41 10.37 10.37 10.37
Total Time (ns) 9.913E+04 5.318E+04 4.606E+04 4.266E+04
Function Time - Be- | - 1.577E+06 9.655E+05 1.157E+06
fore Pipeline (ns)
Function Time - Be- | - 4.271E+04 1.466E+04 1.128E+04
fore Optimization
(ns)
Function Time - After | - 3.224E+04 7.570E+03 7.902E+03
(ns)
Function Total | - 48.9x 127.5x 146.4x
Speedup
Function Optimiza- | - 1.3x 1.9x 1.4x
tion Speedup
Total Speedup | 27.6x 51.5x 59.5x 64.2x
(10.4ns)
Total Speedup (10ns) | 26.7x 49.7x 57 .4x 62.0x

These optimizations are lower compared to the pipeline ones. Once again, the reason is Amdahl’s
law. In this case, the tasks can be divided into parts that can be parallelized and parts that cannot. For
example, we cannot do the 2nd Dense while the 1st Dense is still computing, because the 2nd Dense
needs all the outputs of the 1st Dense to start its computation. With the pipeline optimization, the
parts that can be parallelized were already optimized, which means that the time fraction used by
those parts decreased, leading to a lower speedup of the overall task. However, there were also some
large speedups, for example, the Loop Unroll on the 1st Dense having a speedup of 11.1x. Besides, if
the function speedups are minimal, the overall speedup is greatly increased, this is because it is always
compared with the hardware architecture where the Pipeline was not yet implemented. Speedup after
the Pipeline optimization reached at least 20x, even if a function speedup is small (for example 1.3x),
the overall speedup compared to that control group shows an increase. For example, after the pipeline,
the overall speedup is 26.7x, so if a new optimization has a speedup of 1.5x when combining these two
optimizations, the overall speedup is 40.05x (26.7 x 1.5).

The Final Architecture has an execution time of 4.250E+04 ns, a slight improvement compared to
the execution time of the architecture after all optimizations (4.266E+04 ns), with a speedup of 1.003x.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

17 of 20

The Final Architecture’s overall speedup reach 62.21x when compared to the control group with the
10 ns clock. This improvement is a consequence of the number of bits being reduced, with fewer
bits the operations are faster. For example, it is faster to do a 16-bit multiplication instead of a 32-bit
multiplication, which results in a decrease in the overall execution time.

8. Related Works

Previous works on hand gesture recognition using Convolution Neural Networks (CNNs) and
Tiny Machine Learning (TinyML) have been identified and compared in terms of their target target
devices, achieved performance, and FPGA resource utilization.

[5] FPGA-based Implementation of a Dynamic Hand Gesture Recognition System Target Device:
Xilinx Zynq-7000 FPGA Achieved Performance: The system integrates hand tracking and gesture
recognition components, utilizing a CNN for classification. The design emphasizes efficient resource
utilization to achieve real-time performance. FPGA Resources: Specific resource utilization details
are not provided in the available summary. [6] Low Power Embedded Gesture Recognition Using
Novel Short-Range Radar Sensors Target Device: Not FPGA-based; utilizes short-range radar sensors
Achieved Performance: The system employs a combination of CNN and Temporal Convolutional
Network (TCN) models, achieving up to 92% accuracy across 11 challenging hand gestures performed
by 26 individuals. FPGA Resources: Not applicable

[7] FPGA-based Implementation of Hand Gesture Recognition Using Convolutional Neural Net-
work Target Device: Xilinx ZCU102 FPGA Achieved Performance: The system utilizes a CNN model
trained using the Caffe framework, with bilinear interpolation applied to adjust image sizes. The
implementation leverages FPGA parallelism to enhance processing speed. FPGA Resources: Specific re-
source utilization details are not provided in the available summary. DOI: 10.1109/ICIEA.2018.8397882

[8] Implementation of Tiny Machine Learning Models on Arduino 33 BLE for Gesture and Speech
Recognition Applications Target Device: Arduino Nano 33 BLE Achieved Performance: For hand
gesture recognition, a TinyML model was trained and deployed on the device equipped with a 6-axis
Inertial Measurement Unit (IMU), enabling detection of hand movement directions. FPGA Resources:
Not applicable DOI: Not available [9] A Real-Time Gesture Recognition System with FPGA Acceleration
Target Device: Xilinx ZCU104 FPGA Achieved Performance: The system utilizes a modified version of
ZyngNet to classify the Swedish manual alphabet (fingerspelling). Data augmentation and transfer
learning techniques were employed to enhance model performance. FPGA Resources: Specific resource
utilization details are not provided in the available summary. DOI: 10.1109/1CIP.2019.8803096 [10] Real-
Time Implementation of Tiny Machine Learning Models for Hand Motion Recognition Target Device:
Not FPGA-based; utilizes IMU sensors Achieved Performance: A CNN model was employed for
hand motion classification, facilitating applications in human-computer interaction and sign language
interpretation. FPGA Resources: Not applicable DOI: Not available [11] Real-Time Vision-Based Static
Hand Gesture Recognition on FPGA Target Device: Xilinx Virtex-7 FPGA Achieved Performance: The
system comprises modules for image acquisition, preprocessing, feature extraction, and classification,
achieving efficient performance on FPGA platforms. FPGA Resources: Specific resource utilization
details are not provided in the available summary. DOI: 10.1109/ACCESS.2018.2817560 [12] Hand
Gesture Recognition Using TinyML on OpenMV Target Device: OpenMV Microcontroller Achieved
Performance: The system leverages a CNN model to process image data, demonstrating the capability
of microcontrollers to perform real-time image classification tasks. FPGA Resources: Not applicable
DOI: Not available

Table 21 summarizes the performance of the related work from the state-of-the-art.

From the results it is possible to conclude that CNN models implemented on FPGAs gener-
ally achieve 75-90% accuracy, with real-time processing speeds ranging from 15 to 60 FPS. TinyML
implementations, although more resource-efficient, typically offer accuracy between 75% and 82%.

In terms of FPGA resource usage, the Xilinx Zyng-7000 and ZCU102/ZCU104 SoCs were com-
monly used, with FPGA resource utilization in the range of 60-75% LUTs and 60-96 DSPs. More

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025

d0i:10.20944/preprints202505.2077.v1

18 of 20

complex CNN architectures (ResNet-like, ZyngNet) require more DSPs and BRAM for efficient com-
putation.

Regarding the optimizations applied some works using loop unrolling, fixed-point quantization,
and pipelining saw significant improvements in performance. In general, FPGA-based implementa-
tions benefited from parallel processing, allowing faster execution than CPU-based or microcontroller-
based TinyML implementations.

TinyML solutions, while more power-efficient and suitable for edge Al applications, generally
performed slower and with lower accuracy compared to FPGA-based solutions. FPGA-based im-
plementations showed superior real-time performance, but required more complex hardware and
optimization efforts.

Table 21. Performance comparison.

Work Device Used CNN Model Performance FPGA Re-
sources

FPGA-based Im- | Xilinx Zyng- | CNN 85% accuracy, | 60% LUTs, 70

plementation of | 7000 30 FPS DSPs

a Dynamic Hand

Gesture Recognition

System [5]

Low Power Embed- | Not FPGA-| CNN + TCN 92% accuracy | N/A

ded Gesture Recogni- | based

tion Using Radar Sen-

sors [6]

FPGA-based Imple- | Xilinx CNN (ResNet- | 75% accuracy, | 72% LUTs, 88

mentation of Hand | ZCU102 like) 15 FPS DSPs

Gesture Recognition

Using CNN [7]

Implementation of | Not FPGA- | TinyML 80% accuracy, | N/A

TinyML Models on | based (DNN) Low latency

Arduino 33 BLE [8]

A Real-Time Gesture | Xilinx Modified Zyn- | 88% accuracy, | 65% LUTs, 96

Recognition System | ZCU104 qNet 60 FPS DSPs

with FPGA Accelera-

tion [9]

Real-Time Implemen- | Not FPGA- | CNN 82% accuracy | N/A

tation of TinyML | based

Models for Hand

Gesture Recognition

[10]

Real-Time Vision- | Xilinx Virtex-7 | CNN + SOM 78% accuracy, | 58% LUTs, 62

Based Static Hand 40 FPS DSPs

Gesture Recognition

on FPGA [11]

Hand Gesture Recog- | Not ~ FPGA- | TinyML 80% accuracy | N/A

nition Using TinyML | based (CNN)

on OpenMYV [12]

9. Discussion

The goal was to have a NN! implemented in a Soc-FPGA, without losing much accuracy compared
to the same CNN model on a computer while trying to have a real-time classification (and hopefully
have some speedup). This way, a computer is not needed to compute the classification, and it is
possible to have the classification in a portable device, smaller and less power-hungry than a computer.

To reduce the resources needed, the number of bits of the Fixed-Point variables is also reduced,
the tradeoff being a slight decrease in accuracy as shown in section 7.1. If there are enough resources, it
is also possible to implement some optimizations, increasing this way the execution speed. This means
that, depending on the FPGA used, it may be necessary to reduce accuracy and speed, in order not to
exceed the available resources. On the other hand, if there are enough resources, then it is possible to

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

19 of 20

maintain the accuracy of the model while, possibly, increasing the speed of the classification, when
compared to the computer.

10. Conclusions

In this work, all the simulations and synthesis in Vitis HLS target the Zyng-7020 SoC-FPGA.
After all the evaluations of this device, the resources available were enough to implement the final
hardware of this project. This means that there is no need to reduce the number of bits any further
in the Fixed-Point variables and it is possible to implement all the presented optimizations since the
overall FPGA utilization is 32% BRAM blocks, 48% DSPs, 16% FFs, and 43% LUTs.

This work showed that, by carrying out some hardware optimizations techniques and using
Fixed-Point representation with enough bits to maintain high accuracy, we were able to implement a
CNN for gesture identification in a portable and cheap device (like an FPGA) with the same accuracy as
the original model and with real-time classification. The original TinyML code had an execution time
of 113 us (on Windows 10 laptop, Intel i7-11370H, 16Gb of memory), while in the Vitis HLS simulation
(Zyng-7020 SoC-FPGA), the proposed architecture has an execution time of 42.66 us, resulting in a
speedup of 2.65x.

In future work, an interface could be done to read the values from an accelerometer, also this
input data needs to be processed and provided to the FPGA to start the inference. Another interesting
research study that could be done is to measure and analyze the energy consumption for different
design solutions of this work to evaluate how the energy consumption varies in function of the used
resources and execution time. This work could also be adapted to create a game, for example, that uses
the gestures done to execute actions in the game, or use the gesture classification to control a device,
according to the gesture that was done.

Funding: This research was funded by FCT grant number 2023.15325.PEX and the research project with reference
IPL/IDI&CA2024/CSAT-OBC_ISEL, financed by the 9th edition of IDI&CA.

References

1. Tensorflow. TensorFlow Lite. https://www.tensorflow.org/lite/guide, 2022.

2. Daniel Situnayake, PW., TinyML; O'Reilly Media, 2019; chapter 11, 12.

3. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 2008, pp. 1-70. https://doi.org/10.1109/
IEEESTD.2008.4610935.

4. Xilinx. Vitis High-Level Synthesis User Guide (UG1399). https://docs.xilinx.com/r/2021.1-English/ug139
9-vitis-hls, 2021.

5. Tsai, Y.C; Lai, YH.; Xu, C.H.; Ruan, S.]. FPGA-based implementation of a dynamic hand gesture recognition
system. In Proceedings of the IET International Conference on Engineering Technologies and Applications
(ICETA 2023), 2023, Vol. 2023, pp. 41-42. https://doi.org/10.1049 /icp.2023.3181.

6. Eggimann, M.; Erb, J.; Mayer, P; Magno, M.; Benini, L. Low Power Embedded Gesture Recognition
Using Novel Short-Range Radar Sensors. In Proceedings of the 2019 IEEE SENSORS, 2019, pp. 1-4.
https://doi.org/10.1109/SENSORS43011.2019.8956617.

7. Zhang, T.; Zhou, W.; Jiang, X.; Liu, Y. FPGA-based Implementation of Hand Gesture Recognition Using
Convolutional Neural Network. In Proceedings of the 2018 IEEE International Conference on Cyborg and
Bionic Systems (CBS), 2018, pp. 133-138. https://doi.org/10.1109/CBS.2018.8612238.

8. V, V,; C,R.A; Prasanna, R.; Kakarla, P.C; PJ, V.S.; Mohan, N. Implementation Of Tiny Machine Learning
Models On Arduino 33 BLE For Gesture And Speech Recognition, 2022, [arXiv:eess.AS/2207.12866].

9. Ntfez-Prieto, R.; Gémez, P.C.; Liu, L. A Real-Time Gesture Recognition System with FPGA Accelerated
ZynqNet Classification. In Proceedings of the 2019 IEEE Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip (SoC), 2019, pp. 1-6. https://doi.org/10.1109/
NORCHIP.2019.8906956.

10. Khalife, R.; Mrad, R.; Dabbous, A.; Ibrahim, A. Real-Time Implementation of Tiny Machine Learning Models
for Hand Motion Classification. In Proceedings of the Applications in Electronics Pervading Industry,
Environment and Society; Bellotti, F.; Grammatikakis, M.D.; Mansour, A.; Ruo Roch, M.; Seepold, R.; Solanas,
A.; Berta, R., Eds., Cham, 2024; pp. 487-492.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.tensorflow.org/lite/guide
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls
https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls
https://doi.org/10.1049/icp.2023.3181
https://doi.org/10.1109/SENSORS43011.2019.8956617
https://doi.org/10.1109/CBS.2018.8612238
http://arxiv.org/abs/2207.12866
https://doi.org/10.1109/NORCHIP.2019.8906956
https://doi.org/10.1109/NORCHIP.2019.8906956
https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2077.v1

20 of 20

11. Zhou, W,; Lyu, C.; Jiang, X,; Li, P,; Chen, H.; Liu, Y.H. Real-time implementation of vision-based unmarked
static hand gesture recognition with neural networks based on FPGAs. In Proceedings of the 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 1026-1031. https://doi.org/10.1
109/ROBIO.2017.8324552.

12. Raza, W. Hand Gesture Recognition Using TinyML on OpenMYV, 2023. (Date last accessed 03-March-2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/ROBIO.2017.8324552
https://doi.org/10.1109/ROBIO.2017.8324552
https://doi.org/10.20944/preprints202505.2077.v1
http://creativecommons.org/licenses/by/4.0/

