
Article Not peer-reviewed version

Reinforcement Learning for Optimal

Replenishment in Stochastic Assembly

Systems

Lativa Sid Ahmed Abdellahi * , Zeinebou Zoubeir , Yahya Mohamed , Ahmedou Haouba , Sidi Hmetty

Posted Date: 27 May 2025

doi: 10.20944/preprints202505.2062.v1

Keywords: Keywords: Assembly system; Inventory management; Replenishment Planning; Stochastic

demand; Uncertain lead times; Deep Reinforcement learning; Deep Q-Network (DQN); Data-driven inventory

management

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4435200
https://sciprofiles.com/profile/4588588

Article

Reinforcement Learning for Optimal Replenishment
in Stochastic Assembly Systems
Lativa Sid Ahmed Abdellahi 1,*, Zeinebou Zoubeir 2, Yahya Mohamed 3, Ahmedou Haouba 1

and Sidi Hmetty 1

1 University of Nouakchott, Faculty of Science and Technology, Department of Mathematics and Computer Science,
Nouakchott, Mauritania

2 University of Nouakchott, Institute of Industrial Engineering, Department of Mathematics and Industrial Engineering,
Nouakchott, Mauritania

2 University of Nouakchott, Faculty of Legal and Economic Sciences, Department of Mathematics and Economic Science,
Nouakchott, Mauritania

* Correspondence: lativasidahmedabdellahi@gmail.com

Abstract: This study presents a reinforcement learning–based approach to optimize replenishment
policies in the presence of uncertainty, with the objective of minimizing total costs, including inventory
holding, shortage, and ordering costs. The focus is on single-level assembly systems, where both
component delivery lead times and finished product demand are subject to randomness. The problem
is formulated as a Markov Decision Process (MDP), in which an agent determines optimal order
quantities for each component by accounting for stochastic lead times and demand variability. A
Deep Q-Network (DQN) algorithm is adapted and employed to learn optimal replenishment policies
over a fixed planning horizon. To enhance learning performance, we develop a tailored simulation
environment that captures multi-component interactions, random lead times, and variable demand,
along with a modular and realistic cost structure. The environment enables dynamic state transitions,
lead time sampling, and flexible order reception modeling, providing a high-fidelity training ground for
the agent. To further improve convergence and policy quality, we incorporate local search mechanisms
and multiple action space discretizations per component. Experimental results show that the proposed
method significantly reduces stockouts and overall costs while improving the system’s adaptability to
uncertainty. These findings highlight the potential of deep reinforcement learning as a data-driven and
dynamic approach to inventory management in complex and uncertain supply chain environments.

Keywords: Assembly system; Inventory management; Replenishment Planning; Stochastic demand;
Uncertain lead times; Deep Reinforcement learning; Deep Q-Network (DQN); Data-driven inventory
management

1. Introduction
In the context of supply chain and inventory management, planning plays a critical role in the

effectiveness of replenishment strategies [1]. Well-designed planning processes help maintain optimal
inventory levels, balancing the risk of overstocking—which leads to increased storage costs—with the
risk of stockouts, which can cause lost sales and diminished customer satisfaction [2]. By ensuring
the timely availability of products, components, or raw materials to meet production schedules or
customer demand, effective planning contributes directly to improved service levels and enhanced
customer loyalty [3]. These challenges are further compounded under conditions of uncertainty, where
variability in demand and supplier lead times can significantly disrupt replenishment decisions.

In replenishment management, planning is essential to maintaining a balance between supply
and demand, minimizing costs, and ensuring customer satisfaction [4]. Effective planning enables
the optimal implementation of replenishment policies [5], aligning inventory decisions with strategic
business objectives such as cost reduction and high product availability. These policies adjust order

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

2 of 20

quantities and stock levels based on real-time market conditions. The effectiveness of such planning
depends largely on its ability to adapt to various sources of uncertainty arising from collaborative
operations between manufacturers and customers, interactions with suppliers of raw materials or
critical components, and even internal manufacturing processes [6]. The nature of this uncertainty is
multifaceted [7], often resulting in increased operational costs, reduced profitability, and diminished
customer satisfaction [8]. Numerous studies emphasize key sources of uncertainty in manufacturing
environments, including demand variability, fluctuations in supplier lead times, quality issues, and
capacity constraints [9].

Demand uncertainty significantly impacts supply chain design. While stochastic programming
models outperform deterministic approaches in optimizing strategic and tactical decisions [10], most
studies overlook lead time variability caused by real-world disruptions. Companies typically address
supply uncertainty through safety stocks and safety lead times [11], which trade off shortage risks
against higher inventory costs. The key challenge lies in finding the optimal balance between these
competing costs. For a long time, lead time uncertainty received relatively little attention in the litera-
ture, with most research in inventory management focusing predominantly on demand uncertainty
[12]. In assembly systems, component lead times are often subject to uncertainty; they are rarely
deterministic and typically exhibit variability [13].

The literature on stochastic lead times in assembly systems has seen significant contributions
that have shaped current approaches to inventory control under uncertainty[14]. A notable study
by [15] investigates a single-level assembly system under the assumptions of stochastic lead times,
fixed and known demand, unlimited production capacity, a lot-for-lot policy, and a multi-period
dynamic setting. In this work, lead times are modeled as independent and identically distributed
(i.i.d.) discrete random variables. The authors focus on optimizing inventory policies by balancing
component holding costs and backlogging costs for finished products, ultimately deriving optimal
safety stock levels when all components share identical holding costs. This problem is further extended
in [16], which considers a different replenishment strategy—the Periodic Order Quantity (POQ) policy.
In [17], the lot-for-lot policy is retained but a service level constraint is introduced. A Branch and
Bound algorithm is employed to manage the combinatorial complexity associated with lead time
variability. Subsequent studies [18,19], and [20] build on this foundation by refining models to better
capture lead time uncertainty in single-level assembly systems, while also proposing extensions to
multi-level systems and providing a more detailed analysis of the trade-offs between holding and
backlogging costs.

Modeling multi-product, multi-component assembly systems under demand uncertainty is
inherently complex. [21] proposes a modular framework for supply planning optimization, though its
effectiveness depends on computational reductions and assumptions about probability distributions.
For Assembly-to-Order systems, [22] develops a cost-minimization model incorporating lead time
uncertainty, solved via simulated annealing. Several studies [23–25] and [26] address single-period
supply planning for two-level assembly systems with stochastic lead times and fixed end-product
demand. Using Laplace transforms, evolutionary algorithms, and multi-objective methods, they
optimize component release dates and safety lead times to minimize total expected costs (including
backlogging and storage costs). [2] later improved upon [18]’s work, while [27] extended the framework
to multi-level systems under similar assumptions.

Existing models often rely on oversimplified assumptions about delivery times and demand,
limiting their practical applicability [21]. This highlights the need for new optimization frameworks
that better capture real-world complexities and component interdependencies in assembly systems.
We enhance [15]’s method by incorporating : (1) stochastic demand models, (2) ordering and stockout
penalty costs, and (3) MDP-based stochastic modeling. Deep reinforcement learning techniques, are
employed to optimize solutions under delivery and demand uncertainties.

Over the years, various modeling approaches have been proposed to address uncertainty [28],
including: Conceptual models: Theoretical approaches to understand the relationships between

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

3 of 20

variables, Analytical models: use of mathematical formulas to optimize decisions, Simulations: re-
production of system behavior to test different policies and Artificial intelligence: use of algorithms
to predict and optimize decisions. The choice of approach depends on key characteristics of the
manufacturing context.

Production Planning and Control (PPC) must combine rigorous planning with technological
flexibility to adapt to the complex dynamics of supply chains [29]. The integration of artificial
intelligence (AI), such as reinforcement learning (RL), and digital tools is now essential to achieve
these objectives[30]. This trend aligns with Industry 4.0, where AI and machine learning play a central
role in improving industrial efficiency. Industry 4.0 represents a major transformation in production
systems, and PPC is evolving toward self-managing systems that combine automation (e.g., robots
and smart sensors) with decision-making autonomy (e.g., AI and machine learning) [29]. This paper
[31] presents a systematic review of 181 scientific articles exploring the application of reinforcement
learning (RL) techniques in PPC. It provides a mapping of RL applications across five key areas of PPC:
Resource planning, capacity planning, purchasing and supply management, production scheduling
and Inventory Management.

This study develops a discrete inventory optimization model for single-level assembly systems
(multi-component, multi-period) under stochastic conditions. Overcoming existing limitations, we:
Integrate multiple logistics costs,Relax restrictive assumptions (uniform delivery distributions, fixed
demand, uniform storage costs), introduce component-based stockout calculation, employ deep re-
inforcement learning for efficient implementation. The model features integer decision variables for
MRP compatibility while addressing dual uncertainties (demand/delivery). Current scope remains
assembly-level systems. The problem involves optimizing replenishment policies under uncertainty.
We chose to use a Deep Q-Network (DQN) algorithm, a Deep Reinforcement Learning (DRL) approach
that learns an optimal replenishment policy through interactions with the environment. We avoid tra-
ditional optimization methods because they are often unsuitable for inventory management problems
with uncertain delivery times and stochastic demand [32].

The first challenge in optimizing replenishment policies under uncertainty lies in the inadequacy
of classical optimization methods. We chose to use a Deep Q-Network (DQN) algorithm, a Deep Rein-
forcement Learning (DRL) approach that learns an optimal replenishment policy through interactions
with the environment. We avoid traditional optimization methods because they are often unsuitable
for inventory management problems with uncertain delivery times and stochastic demand [32]. Overly
Simplistic Assumptions: Classical methods (e.g., deterministic or stochastic optimization) typically
assume that problem parameters—such as delivery times and demand—are either deterministic or
follow simple, easily exploitable distributions [33]. However, in real-world scenarios, delivery times
are often random with complex probability distributions, making classical modeling approaches highly
impractical. Adaptability to Uncertainty: Unlike traditional methods, DQN does not require explicit
modeling of distributions. Instead, it dynamically adapts to uncertainties by learning from experience,
making it more robust in stochastic environments.

The second challenge lies in the complexity and high dimensionality of the problem, which
involves multiple dynamic factors: time-varying inventory levels, uncertain delivery times, stochastic
demand, and multiple cost structures (e.g., holding, shortage, and ordering costs). Traditional opti-
mization methods struggle with such complexity: Linear Programming (LP) becomes inapplicable due
to the explosion of variables and constraints in realistic scenarios [34]. Classical Dynamic Programming
(DP) suffers from the curse of dimensionality [35], as it requires storing and computing excessively
large value tables [36]. These limitations motivate the use of Deep Q-Networks (DQN) [37], which
leverage neural networks to approximate the Q(s, a) function efficiently. Unlike DP, DQN avoids
explicit state enumeration and instead generalizes across states, making it scalable to high-dimensional
problems [38].

The third critical aspect involves the system’s dynamics and adaptability requirements in real
industrial environments, where practical challenges emerge such as fluctuating periodic demand

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

4 of 20

and unpredictable delivery times, necessitating dynamic decision-making. Traditional models prove
inadequate for these scenarios as they typically employ static approaches or require computationally
intensive re-optimization processes [39]. In contrast, the Deep Q-Network (DQN) framework dynami-
cally adapts its policy through continuous learning from system observations, enabling it to develop
optimal sequential decision strategies that effectively minimize long-term operational costs without
explicit re-optimization [40].

This paper is organized as follows: Section 1 provides an introduction to the research context and
outlines relevant work in supply planning under uncertainty, emphasizing key challenges and gaps
in existing approaches. Section 2 describes the problem in detail, including the characteristics of the
inventory environment and the sources of uncertainty. Section 3 presents the proposed methodology,
including the formulation of the problem as a Markov Decision Process (MDP). Section 4 introduces the
Deep Q-Network (DQN) algorithm and explains its implementation for learning optimal replenishment
policies. Section 5 discusses the experimental results and provides an analysis of the findings. Finally,
Section 6 concludes the paper by summarizing the main contributions, acknowledging limitations,
and suggesting directions for future research.

2. Problem Description
Replenishment planning in single-level assembly systems under stochastic demand and lead time

uncertainty presents a complex optimization problem where component orders must be determined
amid two key sources of variability: (1) uncertain demand for the finished product, and (2) random
lead times for each component. The core optimization challenge involves minimizing the total expected
costs comprising inventory holding costs, stockout penalties and ordering costs. Crucially, demand
follows a known probability distribution, while each component’s lead time is characterized by its own
distinct distribution. These stochastic elements create a cascading risk effect - the failure to secure any
single component due to lead time variability can halt the entire assembly process. The fundamental
objective is to develop an optimal ordering strategy that achieves robust system performance while
maintaining cost efficiency under uncertainty, requiring careful consideration of both demand-side
and supply-side stochasticity in an integrated framework.

Version May 24, 2025 submitted to Journal Not Specified 5 of 22

Finished Product

i1 i2 ...in

.

.

.c1× c2× cn×

1 FP = c1i1 + c2i2 + · · ·+ cn in

Figure 1. Single-level Bill of Materials (BOM) structure.

Figure 1 illustrates a single-level Bill of Materials (BOM) for an assembly system, 179

depicting the relationship between a finished product (FP) and its components (i1, i2, ..., 180

in). The diagram shows that one unit of FP is assembled from multiple components, each 181

with a specific consumption coefficient (ci), representing the quantity required per unit of 182

FP. 183

3. Methodology 184

To model the replenishment planning problem under lead-time uncertainty as a 185

reinforcement learning (RL) task, we formulate it as a Markov Decision Process (MDP). The 186

MDP framework captures the dynamics of inventory management, where the agent makes 187

decisions on ordering and stock management at each time step. The reward function is 188

designed to incorporate key cost components, including storage costs for each component, 189

the shortage cost of finished products, penalties for stockouts of components, and the 190

ordering costs associated with replenishment decisions. 191

3.1. MDP Environment 192

The environment in a Markov Decision Process (MDP) is everything external to the 193

agent. It defines how the world responds to the agent’s actions and evolves over time. 194

Structure of the Environment 195

At each time step t: 196

• The agent observes the current state S(t) ∈ S . 197

• It chooses an action a(t) ∈ A. 198

• The environment responds: 199

– It transitions to a new state S(t+1) ∼ P(·|S(t), a(t)). 200

– It emits a reward R(t) = R(S(t), a(t)). 201

Figure 1. Single-level Bill of Materials (BOM) structure.

Figure 1 illustrates a single-level Bill of Materials (BOM) for an assembly system, depicting
the relationship between a finished product (FP) and its components (i1, i2, ..., in). The diagram
shows that one unit of FP is assembled from multiple components, each with a specific consumption
coefficient (ci), representing the quantity required per unit of FP.

3. Methodology
To model the replenishment planning problem under lead-time uncertainty as a reinforcement

learning (RL) task, we formulate it as a Markov Decision Process (MDP). The MDP framework captures
the dynamics of inventory management, where the agent makes decisions on ordering and stock
management at each time step. The reward function is designed to incorporate key cost components,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

5 of 20

including storage costs for each component, the shortage cost of finished products, penalties for
stockouts of components, and the ordering costs associated with replenishment decisions.

3.1. MDP Environment

The environment in a Markov Decision Process (MDP) is everything external to the agent. It
defines how the world responds to the agent’s actions and evolves over time.

Structure of the Environment

At each time step t:

• The agent observes the current state S(t) ∈ S .
• It chooses an action a(t) ∈ A.
• The environment responds:

– It transitions to a new state S(t+1) ∼ P(·|S(t), a(t)).
– It emits a reward R(t) = R(S(t), a(t)).

Table 1. List of Variables and Notations.

Symbol Description

PF Finished product.
i component.
t Period.
D(t) Random demand for finished products at period t, modeled as a stochastic

variable with a known probability distribution.
L(t)

i Delivery time of component i ordered at period t, a random variable with a
known probability distribution.

Q(t)
i Quantity ordered of component i at period t.

S(t)
i Stock level of component i at the end of period t.

Qr(t)i Quantity of component i received at period t.
ci Quantity of component i needed to produce one unit of finished product

(consumption coefficient).
hi Unit holding cost per period for component i.
pi Unit shortage cost for component i.
αi Empty stock cost for component i.
βi Order placement cost for component i.
M Maximum order quantity permitted for each component per period.
T Planning horizon (number of periods).
N Number of components needed to assemble the finished product.
A Space of actions.
S Space of states.

Figure 2 represents a reinforcement learning process or a dynamic decision-making system in the
context of inventory management. It is divided into four main components, arranged in a circular flow
to illustrate the sequence of steps in the process. Each component is represented by a colored circle,
and the transitions between them are shown with curved arrows.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

6 of 20

State S(t)

(Current
stock levels)

Action a(t)
(Orders
placed)

State S(t+1)

(Updated
stocks)

Reward
(Costs,

penalties)

Policy
π(S)

Tr
an

sit
ion P

Reward
R (t+1)

Sta
te

update

Figure 2. Reinforcement learning process

States

The state of the system can be represented by a vector of the current stock levels for all components
i.

S(t) = [S(t)
1 , S(t)

2 , . . . , S(t)
N] (1)

Actions

An action a(t) = (a(t)1 , a(t)2 , . . . a(t)
(i) . . . , a(t)

(N)
) ∈ A represents the decisions regarding the quantities

to be ordered at each period t. Each a(t)i corresponds to the quantity ordered for each component at the
beginning of the period.

a(t) = Q(t) = [Q(t)
1 , Q(t)

2 , . . . , Q(t)
N] (2)

This is the vector of quantities ordered for each component i at period (t). A = {0, 1, 2, . . . , M} denotes
the initial action space (discrete values). Each component i can take any value in the interval [[0, M]].
To ensure that the algorithm adjusts ordered quantities based on the specific characteristics of each
component and avoids restricted or similar order quantities, it is important to define a flexible action
space. A poorly defined action space (i.e., limited or uniform order quantities) could reduce the
algorithm’s adaptability.

To address this, we dynamically adjust the action range for each component, ensuring sufficient
diversity in possible order quantities. This allows the algorithm to adapt orders based on each
component’s specific needs.

If the action space were too limited or similar across components, the algorithm might lack the
flexibility needed to optimize orders effectively. To prevent this, we assign different quantity ranges to
each component based on its importance. Instead of using a fixed set of possible actions, we adapt
order ranges according to consumption coefficients and maximum delivery times. Components with
higher consumption and longer delivery times have wider action ranges, allowing the algorithm
to order more or less as needed. This flexibility enhances the algorithm’s ability to optimize stock
management.

So to adjust the action space for each component based on its consumption coefficient and maxi-
mum delivery time, it is useful to dynamically adapt the action space according to the consumption of
each component (ciD) and its delivery period (Li).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

7 of 20

Scaling the Action Space

The more a component is consumed and the longer it takes to be delivered, the larger its action
range should be for better stock management. This can be achieved by adjusting the upper limit of the
action space for each component.

Action Space Modeling Logic

Instead of defining a fixed-size discrete space for each component (e.g., from 0 to N), we can
implement an adaptive action space tailored to each component’s characteristics.

Action Space for a Component

ai ∈ [0, maxorderi] with maxorderi = Estimated requirement = ci ×maxD×maxLi

This strategy is cautious, as it ensures that the model accounts for scenarios where demand is
at its peak and delivery times are at their longest. By considering only the maximum demand and
maximum delivery time, we prevent underestimating needs, even in extreme conditions, by creating
an action space that includes all possible situations. In cases of overestimation, the agent will learn an
optimal policy that naturally avoids unnecessary actions.

Global Action Space

A = [0, maxorder1]× [0, maxorder2]× . . .× [0, maxorderM]

where × represents the Cartesian product.

Transition Function

The expression of the transition function in a replenishment planning problem under uncertainty
of random delivery times is used to describe how the state of the system evolves from one period
to another, depending on the realizations of the random variables (delivery times), inventory levels,
decisions already made (order quantities), and demand D.

P = P(S(t)|S(t−1), a(t−1)) (3)

Formally, the transition function can be written as

P =
N

∏
i=1

P(S(t)
i |S

(t−1)
i , a(t−1)) (4)

Inventory Level Formula

The inventory level for each component i at the end of period t is given by

S(t)
i = S(t−1)

i + R(t)
i − ciD(t) (5)

• Let D be a random variable representing the demand for the finished product. It follows a discrete
distribution on {1, 2, . . . , v}, with known associated probabilities:

P(D = k), f or k ∈ {1, 2, . . . , v}.

• The random variable Li represents the delivery time of component ii, which follows a discrete
probability distribution on the set {1, 2, . . . , m} with the associated probabilities:

P(L(t)
i = k), f or k ∈ {1, 2, . . . , m}.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

8 of 20

Computation of Receipts

The quantity received Qr(t)i is the sum of orders placed in previous periods that are delivered in
period t.

Qr(t)i =
t

∑
t′=1

Q(t′)
i .1{L(t′)

i =t−t′} (6)

• 1Li(k)=t−t′ : An indicator function that is equal to 1 if the order for component i placed in period t′

is delivered in period t and 0 otherwise, i.e. an indicator that is equal to 1 if the delivery time L(t′)
i

for the order for component i placed in period k is exactly equal t− t′, and 0 otherwise.

Reward Function

The reward for a period t is defined as the inverse of the total cost:

R(t) = −C(t)
total (7)

3.2. Storage Cost

Storage cost is the cost associated with maintaining component inventory in the warehouse. It is
calculated based on the number of units of the components and the unit storage cost. The following
formula calculates the storage cost associated with components i = 1, 2, 3, . . . N.

C(t)
Storage =

N

∑
i=1

hi.max(S(t)
i , 0) (8)

• hi.max(S(t)
i , 0) : Represents the storage cost for each component when the stock level is positive.

We add the storage costs of the components only if their stock levels are positive (S(t)
i > 0), that is, if

the components are in stock.

3.3. Shortage Cost

The cost of shortage is calculated based on the inventory levels of the components (based on the
number of missing component units) and the shortage cost per component unit pi. The shortage cost
is the cost associated with the lack of components needed to produce the finished product, which can
lead to stockouts and lost sales. So the unavailability of components "component shortage" can lead to
a disruption in the production of the finished product.

Cshortage(t) =
N

∑
i=1

pi.max(−S(t)
i , 0) (9)

• pi.max(−S(t)
i , 0) : Represents the shortage cost for each component. This shortage is linked to the

lack of component i, when its stock level is negative.

We therefore add the costs of component shortages, only if the stock is insufficient (S(t)
i < 0), a

negative stock level for a component i indicates an inability to satisfy the production of the finished
product.

3.4. Empty Inventory Cost (Zero Inventory)

Empty inventory represents a situation where replenishment is needed quickly. It is not a complete
shortage (because there is still time to react), but it is a situation that could quickly lead to a shortage.
The inventory cost is defined by

Costempty inventory =
N

∑
i=1

αi1{S(t)
i =0} (10)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

9 of 20

3.5. Order Launch Cost

The order launch cost (or order placement cost) refers to all the expenses associated with issuing
and processing an order. The order launch cost is paid each time an order of i is launched at t so if
Qt

i > 0

Costplacement =
N

∑
i=1

βiQ
(t)
i 1{Q(t)

i >0} (11)

3.6. Total Cost

C(t)
total =

N

∑
i=1

hi.max(S(t)
i , 0) +

N

∑
i=1

p.max(−S(t)
i , 0)) +

N

∑
i=1

αi1{S(t)
i =0} +

N

∑
i=1

βiQ
(t)
i 1{Q(t)

i >0} (12)

The total cost function is the sum of inventory cost plus shortage cost and order release cost over the
planning horizon. Inventory cost increases when inventories are high, while shortage cost increases
when inventories are low.

3.7. Optimal Policy

A function that determines the optimal quantity Q(t) to order in each period to minimize the
expected total cost over horizon T :

π∗(S) = arg min
π

E
[

T

∑
t=1

(
C(t)

total

)]
(13)

The policy π(S) is a function that defines the quantity to order for each state S(t) Your objective is to
find the policy π∗ that minimizes the expected total cost across all periods t ∈ {1, 2, . . . , T}. So the
policy defines how to choose the quantities to order based on the current state of the environment (e.g.
current inventory levels, lead time probabilities, etc.).

Objective:

Minimize the cumulative reward function R over the planning horizon , which represents the
total cost by adapting the ordering policy π to minimize inventory and stockout costs. This model
takes into account the stochastic demand for the finished product, random lead times of components
with specified probability distributions, and seeks to determine the optimal order quantities Qi to
minimize inventory, stockout and order release costs.

4. DQN (Deep Q-Network)
Deep Reinforcement Learning (Deep RL) is a combination of Reinforcement Learning (RL) and

Deep Neural Networks (Deep Learning) [41]. It allows an agent to learn optimal strategies in complex
environments using powerful nonlinear approximations. Deep RL can solve complex problems (games,
robotics, NLP) thanks to the power of deep networks. Major challenges (instability, divergence) have
been partially addressed by techniques such as DQN [42].

4.1. Structure of the DQN Algorithm

The implemented Deep Q-Network (DQN) algorithm is structured around four core components.
The first is the Replay Buffer, which stores past transitions in the form (state, action, reward, next_state, done)
and enables the agent to learn from a randomized mini-batch of experiences, thereby reducing temporal
correlation and stabilizing learning. The second component is the Q-Network, a feedforward neural
network consisting of an input layer, a hidden layer with ReLU activations, and an output layer
that approximates Q-values for each possible action. The third module is the DQN Agent, which
initializes the Q-Network and Target Network, sets essential hyperparameters (e.g., learning rate,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

10 of 20

discount factor γ, and exploration rate ϵ), and manages the optimization and interaction with the
replay buffer. Finally, the Action Selection mechanism adopts an epsilon-greedy strategy to balance
exploration and exploitation, selecting either a random action with probability ϵ or the action with the
maximum estimated Q-value. This architecture provides a modular and efficient foundation for deep
reinforcement learning in environments with discrete and multi-dimensional action spaces.

Algorithm 1 Replay Buffer

1: Initialize ReplayBuffer with capacity
2: Create a buffer with max length = capacity
3: function PUSH(state, action, reward, next_state, done)
4: Store (state, action, reward, next_state, done) in the buffer
5: end function
6: function SAMPLE(batch_size)
7: Randomly select batch_size samples from the buffer
8: Convert to tensors and return
9: end function

10: function LENGTH
11: Return the number of elements in the buffer
12: end function

Algorithm 2 Q-Network Forward Pass
1: Initialize QNetwork with state_dim, action_dim, hidden_dim
2: Define three fully connected layers:
3: fc1: Input layer
4: fc2: Hidden layer
5: fc3: Output layer
6: function FORWARD(state)
7: x ← ReLU(fc1(state))
8: x ← ReLU(fc2(x))
9: Return fc3(x)

10: end function

Algorithm 3 DQN Agent

1: Initialize state_dim, action_dims, hidden_dim, lr, gamma, epsilon, epsilon_min, epsilon_decay
2: Compute num_actions as product of action_dims
3: Initialize Q-Network and Target-Network
4: Copy weights from Q-Network to Target-Network
5: Initialize optimizer with learning rate lr
6: Initialize Replay Buffer with capacity = 5000

Algorithm 4 Select Action
1: function SELECTACTION(state)
2: if random() < epsilon then
3: Choose a random action
4: else
5: Convert state to tensor
6: Compute Q-values using Q-Network
7: Select action with max Q-value
8: Convert it to MultiDiscrete action
9: end if

10: Return action
11: end function

4.2. Comprehensive Comparison of Inventory Planning Methods

Table 2 compares classical models, optimization methods, machine learning approaches, and
metaheuristics for inventory and replenishment planning.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

11 of 20

Table 2. Comparison of Inventory Planning Methods [43–48].

Criteria Deterministic Models
(EOQ, EPQ, ROP)

Stochastic Models (Q,R),
(s,S), Newsvendor

Dynamic Models
(Bellman, Base Stock)

Mathematical
Optimization (LP, MIP) Machine Learning (DRL) Metaheuristic Methods

Approach Assumes known demand
and lead time

Uses probability
distributions for
demand/lead times

Multi-period optimization
under uncertainty

Uses deterministic or
stochastic constraints

Uses Deep RL to learn
policies from data

Uses heuristic-based
algorithms to explore
near-optimal solutions

Mathematical
Formulation

EOQ: Q∗ =
√

2DS
H

EPQ:
Q∗ =

√
2DS

H × P
P−d

ROP: ROP = dL

(Q, R) Policy:
R = dL + zσL
Newsvendor:
Q∗ = F−1

(
cu

cu+co

)
Bellman Eq.:
Vt(I) = minQ

[
C(Q, I) +

E[Vt+1(I′)]
] LP/MIP: min C(x) with

constraints

MDP Model:
π∗(s) = arg maxπ

E[∑t Rt]

Genetic Algorithms,
Simulated Annealing,
Particle Swarm
Optimization (PSO)

Handling of Demand
Uncertainty

Assumes constant
demand

Models demand as a
random variable

Uses probabilistic demand
scenarios

Models demand via
stochastic constraints

Learns demand patterns
dynamically

Uses probabilistic
exploration

Handling of Lead Time
Uncertainty

Assumes constant lead
time

Uses safety stock:
SS = zσL

Uses lead time as a
stochastic variable

Adds lead time
constraints

Learns lead time
variability from data

Explores lead time
variations dynamically

Computational
Complexity

Low (closed-form
solutions)

Moderate (requires
statistical distributions) High (recursive equations) Very high (solving large

models)
Very high (training
models)

Moderate to High
(depends on heuristics
used)

Adaptability to Changes Poor (recalculation
needed)

Moderate (requires
updated demand
distributions)

High (adaptive policies) Low (requires
re-optimization)

High (continuously
updates policies)

Adapts well but requires
tuning

Optimality Near-optimal for simple
cases

Near-optimal under
known distributions

Optimal in dynamic
settings Global optimality possible Approximate optimality

Near-optimal but no
guarantee of global
optimum

Scalability High (simple calculations) Moderate Low (Bellman curse of
dimensionality)

Poor (high computational
cost)

High (parallel learning
possible)

Scales well with parallel
computing

Implementation
Complexity

Low (simple formulas) Moderate (requires
demand estimation)

High (requires recursion,
DP)

Very high (formulating
LP/MIP)

Very high (ML model
training)

Moderate (requires careful
parameter tuning)

Best Use Cases Predictable demand,
stable environments

Retail, periodic orders,
safety stock planning

Dynamic, uncertain
environments

Large-scale multi-echelon
inventory Adaptive real-time control Large-scale, complex

inventory networks

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

12 of 20

Table 3. Key parameters used in the simulation and learning processes.

Category Parameter Value(s) Role

Environment Parameters

num_components 3 Number of components in
the inventory system.

pénalité_stock (stock penalty) 50 Penalty cost when the
stock is zero.

holding_cost 0.5 Storage cost per unit of
stock.

shortage_cost 62 Shortage cost per missing
unit.

order_cost 1 Ordering cost per unit or-
dered.

initial_stock [0, 0, 0] Initial stock for each com-
ponent.

max_steps 50 Maximum number of
steps (periods) per
episode.

demand_probabilities {1: 0.2, 2: 0.5, 3: 0.3} Probabilities of different
possible demands.

lead_time_probabilities
[{1: 0.3, 2: 0.5, 3: 0.2},
{1: 0.3, 2: 0.4, 3: 0.3},
{1: 0.1, 2: 0.6, 3: 0.3}]

Probabilities of lead times
for each component.

consumption_coefficients [3, 2, 1] Consumption coefficients
for each component.

max_orders
Dynamically calculated based on
consumption coefficients, lead times,
and demand.

Maximum quantity that
can be ordered for each
component.

DQN Agent Parameters

state_dim 3 (number of components) Dimension of the state
space (stock of each com-
ponent).

action_dims Depends on max_orders Dimensions of the action
space (quantities that can
be ordered for each com-
ponent).

hidden_dim (neural network) 128 Number of neurons in the
hidden layers of the neu-
ral network.

lr (learning rate) 0.30 Learning rate for the
Adam optimizer.

gamma (discount factor) 0.96 Discount factor for future
rewards.

epsilon (exploration) 1.0 (initial) Exploration probability
(choosing a random
action).

epsilon_min 0.01 Minimum value of
epsilon.

epsilon_decay 0.999 Decay rate of epsilon af-
ter each episode.

batch_size 64 Batch size for training the
neural network.

num_episodes 500 Total number of training
episodes.

ReplayBuffer Parameters capacity 5000 Maximum capacity of the
replay buffer to store tran-
sitions.

Table 3 provides a comprehensive summary of the key parameters used in both the inventory
environment and the Deep Q-Network (DQN) agent, outlining their values and respective roles in the
learning and decision-making processes.

5. Results and Discussion
The environment parameters define the operational characteristics of the inventory system,

such as the number of components, penalty and holding costs, demand and lead time uncertainties,
and the structure of consumption. These parameters ensure the simulation accurately reflects the
complexities of real-world supply chains. The agent parameters govern the learning process, including
the neural network architecture, learning rate, exploration behavior, and training configuration. The
inclusion of a replay buffer further enhances learning stability by breaking temporal correlations in
the training data. The DQN algorithm is employed to learn optimal ordering policies over time. By
interacting with the environment through episodes, the agent receives feedback in the form of rewards,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

13 of 20

which reflect the balance between minimizing shortage penalties and storage costs. To facilitate the
simulation and make the analysis more interpretable, simple parameter values were used in the first
table, including, limited lead time possibilities, and a small range of demand values. Additionally,
the reward function was normalized (reward divided by 1000) to simplify numerical computations
and stabilize the learning process. Despite this simplification, the implemented environment and
reinforcement learning algorithms are fully generalizable: they can handle any number of components
(n), multiple lead time scenarios, and a range of demand values (m), making the model adaptable
to more complex and realistic settings. However, scaling up to larger instances requires significant
computational resources, as the state and action spaces grow exponentially. Therefore, a powerful
machine is recommended to run simulations efficiently when moving beyond the simplified test case.

The algorithm is developed using the Python programming language, which is particularly
well-suited for research in reinforcement learning and operations management due to its expressive
syntax and the availability of advanced scientific libraries. The implementation employs NumPy for
efficient numerical computation, particularly for manipulating multidimensional arrays and perform-
ing vectorized operations that are essential for simulating the environment and computing rewards.
Visualization of training performance and inventory dynamics is facilitated through Matplotlib, which
provides robust tools for plotting time series and comparative analyses. The core reinforcement learn-
ing model is implemented using PyTorch, a state-of-the-art deep learning framework that supports
dynamic computation graphs and automatic differentiation. PyTorch is used to construct and train the
deep Q-network (DQN), manage the neural network architecture, optimize parameters through back-
propagation, and handle experience replay to stabilize the learning process. Collectively, these libraries
provide a powerful and flexible platform for modeling and solving complex inventory optimization
problems under stochastic conditions.

Performance and Policy Evaluation

Figure 3 shows the evolution of rewards over training episodes. Initially, the agent exhibits high
variability in performance due to random actions and limited experience. As training progresses,
particularly after episode 100, the rewards stabilize and approach zero, indicating that the agent has
learned a policy that effectively minimizes inventory-related costs.

Figure 3. Rewards per episode

Figure 4 illustrates the agent’s learned ordering policies over time. Early in training, the ordered
quantities fluctuate significantly, reflecting exploration. Eventually, the policy converges toward more
stable ordering behaviors. Component 2 is ordered most frequently and in larger quantities, suggesting
its higher importance or greater risk of shortage. Component 3 is ordered less often, possibly due to
lower consumption or more favorable lead times.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

14 of 20

Figure 4. Average ordering policies per episode

The evolution of average stock levels is presented in Figure 5. Initially, the stock levels are volatile
and include frequent shortages (negative values). Over time, the agent learns to anticipate demand and
lead times better, leading to smoother inventory levels. The final stock levels—higher for component
2—reflect its strategic importance and confirm the ordering strategy learned.

Figure 5. Average stock levels per episode

The results clearly demonstrate the capability of the DQN algorithm to adaptively optimize
inventory policies under uncertainty. The convergence of rewards, the consistency in ordering patterns,
and the stabilized stock levels collectively validate the effectiveness of the learning process.

Lead Time and Risk Analysis

The three components in the inventory system exhibit distinct patterns in both consumption
and lead time variability, which significantly influence their associated risks. Component i1, with the
highest consumption coefficient, demonstrates a relatively stable delivery profile: 80 % of its orders are
fulfilled within 1 or 2 periods, making it the least risky in terms of delays. In contrast, Component i2,
which has a moderate consumption rate of 2, faces greater uncertainty— 30% of its orders experience a
delay of 3 periods, and 40% are delayed by 2 periods. This combination indicates a substantial risk of
stockout if not managed carefully. Component i3, despite its lower consumption rate of 1, shares the
same 30% probability of a 3-period delay as i2 but has only a 10% chance of being delivered within 1
period, the lowest among all components. This makes i3 the most vulnerable to supply disruptions.
Overall, the risk of delivery delays is highest for i3, followed closely by i2, while i1 remains the most
reliable in terms of lead time performance.

5.1. Impact of Lead Times on Ordered Quantities

When a component has a longer and more uncertain lead time, the agent tends to adapt its
ordering strategy to mitigate the risk of stockouts. This often results in placing orders more frequently
in anticipation of potential delays. Additionally, the agent may choose to maintain a higher inventory
level as a buffer, ensuring that production is not interrupted due to late deliveries.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

15 of 20

Table 4. Analysis of Order Quantities and Lead Times for Each Component.

i Analysis
i1

• It has the highest consumption (c1 = 3).
• However, its lead time is relatively reliable (80% of deliveries occur within

1 or 2 periods).
• This means the agent can afford to order less frequently, as deliveries

arrive quickly.
• Result: Ordered quantities remain relatively stable and not too high.

i2
• It has intermediate consumption (c2 = 2).
• However, there is a 30% chance of a 3-period delay, making it more

uncertain than i1.
• The agent must compensate for this uncertainty by ordering more fre-

quently and keeping a higher stock.
• Result: Higher stock levels than i1, despite lower consumption.

i3
• It has the lowest consumption (c3 = 1).
• However, its lead time is the most uncertain:

– Only 10% of deliveries arrive within 1 period.
– 60% arrive within 2 periods.
– 30% take 3 periods.

• To avoid stockouts, the agent may:
– Over-order to compensate for the risk of delays.
– Maintain a higher stock than expected.

• Result: Ordered quantities are higher than what would be expected based
on consumption alone.

Table 4 presents a detailed analysis of the relationship between each component’s consumption
level, its lead time uncertainty, and the resulting ordering behavior by the agent. Components with
higher consumption but more reliable lead times, such as i1, allow for stable and moderate ordering. In
contrast, components like i2 and especially i3, which are subject to longer and more uncertain delivery
delays, require the agent to compensate by increasing order frequency . This strategic adjustment
helps to avoid shortages despite the variability in supplier lead times. The table summarizes these
insights for each component.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

16 of 20

Table 5. Explanation of Observed Results.

Question Explanation
Why does i2 have more stock
than i1? • Because the risk of delays is higher for i2 than for i1.

• The agent prefers to store more i2 to prevent stockouts.

Why does i3 maintain a signifi-
cant stock level despite its low
consumption?

• Because its lead time is the most uncertain.
• The agent needs to maintain a buffer stock to avoid short-

ages.

Why doesn’t i1 have as much
stock as expected (despite high
consumption)?

• Because its lead times are shorter and more predictable.
• The agent knows they can order regularly and receive

deliveries quickly.
• The agent does not determine order quantities solely

based on consumption coefficients. They also consider
lead time uncertainty.

To better understand the agent’s ordering behavior, Table 5 addresses key questions regarding
the observed stock levels for each component. Although one might expect ordering decisions to align
directly withconsumption coefficient, this is not always the case. In reality, the agent adjusts order
quantities and stock levels by taking into account both the demand and the uncertainty in lead times.
As shown below, components with higher risk of delivery delays tend to be stocked more heavily, even
if their consumption coefficient is relatively low, while components with reliable lead times require
less buffer stock.

Summary of Effects

Table 6. Summary of lead time effects on stock levels.

ii ci Lead Time Agent’s Strategy
i1 High Stable (80% ≤ 2 periods) Moderate stock, regular orders
i2 Medium 30% risk of 3-period delay Higher stock to avoid shortages
i3 Low Highly uncertain (30% in 3 periods) Higher stock than expected

Final Observation: The agent adjusts decisions based on lead time risks, not just consumption
rates.

5.2. Impact of Uncertain Demand on Order Quantities

The expected demand for the finished product is:

E[D] = (1× 0.2) + (2× 0.5) + (3× 0.3) = 2.1

Table 7. Expected Demand per Component.

i ci Formula Expected Required Quantity
i1 3 3× 2.1 6.3
i2 2 2× 2.1 4.2
i3 1 1× 2.1 2.1

This suggests that, in an ideal case without lead time risks, the order quantities should follow the
ratio :

Q1 > Q2 > Q3

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

17 of 20

Variability in Demand and Its Effect

In addition to lead time uncertainties, the agent must also consider variability in demand and
cost-related trade-offs when determining order quantities. The decision-making process is not only
influenced by the likelihood of delayed deliveries but also by how demand fluctuates over time and
how different types of costs interact. Table 8 outlines the key factors that affect the agent’s ordering
behavior and explains their respective impacts on the optimal policy formulation.

Table 8. Factors Influencing the Optimal Ordering Policy.

Factor Impact on Ordering Decisions
Demand Uncer-
tainty • If the agent orders too little, stockouts will occur when de-

mand is high (D = 3).
• If the agent orders too much, excessive inventory holding

costs will be incurred when demand is low (D = 1).

Lead Time Risks Components with longer delays need to be stocked in advance to
avoid shortages.

Cost Trade-offs
• If shortage costs are high, overstocking might be preferred.
• If holding costs are high, the agent will try to avoid excessive

inventory to minimize storage expenses.
• If order costs are high, the agent will try to reduce the fre-

quency of orders to minimize total ordering costs.

Optimal Policy
Considerations

The optimal policy must balance these risks while considering:
• Demand fluctuations and their probabilities.
• Lead time variability and its impact on availability.
• The trade-off between shortage, holding, and ordering costs.

Interplay Between Demand Uncertainty and Lead Time Risks

If the observed order quantities do not strictly follow the expected pattern Q1 > Q2 > Q3, this
may be due to the agent anticipating delivery delays and adjusting order sizes accordingly. Such
adjustments also reflect an effort to minimize shortage costs, potentially resulting in overstocking
components with uncertain lead times. Additionally, the agent may adopt a dynamic policy that
evolves over time in response to past shortages, modifying future decisions based on observed system
performance. Demand uncertainty forces the agent to carefully balance risk and cost, and while
component C1 should theoretically be ordered the most due to its high consumption, the impact of
lead time variability and the need to hedge against delays can significantly alter this behavior.

Good Points in Our Model:

• Model convergence: The total reward stabilizes after approximately 100 episodes, indicating that
the agent has found an efficient replenishment policy.

• Improved ordering decisions: The ordered quantities for each component become more consistent,
avoiding excessive fluctuations observed at the beginning.

• Reduction of stockouts: Despite some variations, the average stock levels tend to remain positive,
meaning the agent learns to anticipate demand and delivery lead times.

• Adaptation to uncertainties: The agent appears to adapt to random lead times and adjusts its
orders accordingly.

6. Conclusion
This study presents significant advancements in the application of reinforcement learning tech-

niques to replenishment planning under uncertainty. A novel discrete-time Markov Decision Process

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

18 of 20

(MDP) model is introduced for single-level assembly systems, accounting for random delivery lead
times and stochastic demand. The optimization criterion integrates stockout costs, inventory holding
costs, and ordering costs. To address this problem, a custom simulation environment is developed
to model the dynamics of a replenishment system under uncertainty. An adapted Deep Q-Network
(DQN) algorithm is then applied to derive optimal replenishment policies for each component. In
addition, the integration of local search—through multiple action spaces specific to each compo-
nent—accelerates convergence and significantly improves solution quality. Experimental results
demonstrate the effectiveness and robustness of the proposed DQN-based approach.

Research Outlook : Future research should focus on extending the model to multi-level assembly
systems, which poses additional challenges due to increased structural complexity and interdependen-
cies among components. A key direction involves reformulating the total expected cost function to
accommodate nonlinearities more explicitly. Further investigation may also include the integration of
interpolation techniques and queueing mechanisms to improve production planning and scheduling
under various sources of uncertainty. A critical need persists for the ongoing refinement of supply
planning models to more effectively manage uncertainty, especially within complex, multi-tiered
production systems. While this work contributes to addressing demand and lead time variability,
future efforts should aim to incorporate broader uncertainty dimensions and enhance the scalability of
the proposed methods. Advancing the balance between theoretical rigor and industrial applicability
will be crucial for driving practical improvements in supply chain performance.

Author Contributions: All authors contributed to the conceptualization, modeling, implementation, analysis, and
writing of the manuscript. All authors read and approved the final version of the paper.

Funding: This research received no external funding.

Ethics Statement: Ethical approval was not required for this study as it does not involve human participants or
sensitive data.

Data Availability Statement: The datasets generated and analyzed during the current study are available from
the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References
1. Hill, C.A.; Zhang, G.P.; Miller, K.E. Collaborative planning, forecasting, and replenishment & firm perfor-

mance: An empirical evaluation. International journal of production economics 2018, 196, 12–23.
2. Sakiani, R.; Ghomi, S.F.; Zandieh, M. Multi-objective supply planning for two-level assembly systems with

stochastic lead times. Computers & Operations Research 2012, 39, 1325–1332.
3. Zhang, G.; Shang, J.; Li, W. Collaborative production planning of supply chain under price and demand

uncertainty. European Journal of Operational Research 2011, 215, 590–603.
4. Lee, H.; Wu, J. A study on inventory replenishment policies in a two-echelon supply chain system. Computers

& Industrial Engineering 2006, 51, 257–263.
5. Ross, D.F. Replenishment Inventory Planning. In Distribution Planning and Control: Managing In The Era Of

Supply Chain Management; Springer, 2004; pp. 297–358.
6. Pan, W.; So, K.C. Component procurement strategies in decentralized assembly systems under supply

uncertainty. IIE Transactions 2016, 48, 267–282.
7. Ji, Q.; Wang, Y.; Hu, X. Optimal production planning for assembly systems with uncertain capacities and

random demand. European Journal of Operational Research 2016, 253, 383–391.
8. Dolgui, A.; Prodhon, C. Supply planning under uncertainties in MRP environments: A state of the art.

Annual reviews in control 2007, 31, 269–279.
9. Wazed, M.A.; Ahmed, S.; Nukman, Y. Uncertainty factors in real manufacturing environment. Australian

Journal of Basic and Applied Sciences 2009, 3, 342–351.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

19 of 20

10. Hamta, N.; Akbarpour Shirazi, M.; Fatemi Ghomi, S.; Behdad, S. Supply chain network optimization
considering assembly line balancing and demand uncertainty. International Journal of Production Research
2015, 53, 2970–2994.

11. Van Kampen, T.J.; Van Donk, D.P.; Van Der Zee, D.J. Safety stock or safety lead time: coping with unreliability
in demand and supply. International Journal of Production Research 2010, 48, 7463–7481.

12. Ammar, O.B.; Marian, H.; Dolgui, A. Supply planning for multi-levels assembly system under random lead
times. IFAC-PapersOnLine 2015, 48, 254–259.

13. Ammar, O.B.; Hnaien, F.; Marian, H.; Dolgui, A. Optimization approaches for multi-level assembly systems
under stochastic lead times. Metaheuristics for Production Systems 2016, pp. 93–107.

14. Dolgui, A.; Ammar, O.B.; Hnaien, F.; Louly, M.A.; et al. A state of the art on supply planning and inventory
control under lead time uncertainty. Studies in Informatics and Control 2013, 22, 255–268.

15. Dolgui, A.; Ould-Louly, M.A. A model for supply planning under lead time uncertainty. International Journal
of Production Economics 2002, 78, 145–152.

16. Ould-Louly, M.A.; Dolgui, A. The MPS parameterization under lead time uncertainty. International Journal of
Production Economics 2004, 90, 369–376.

17. Louly, M.A.; Dolgui, A.; Hnaien, F. Supply planning for single-level assembly system with stochastic
component delivery times and service-level constraint. International Journal of Production Economics 2008,
115, 236–247.

18. Hnaien, F.; Dolgui, A.; Ould Louly, M.A. Planned lead time optimization in material requirement planning
environment for multilevel production systems. Journal of Systems Science and Systems Engineering 2008,
17, 132–155.

19. Louly, M.A.; Dolgui, A. Optimal time phasing and periodicity for MRP with POQ policy. International
Journal of Production Economics 2011, 131, 76–86.

20. Louly, M.A.; Dolgui, A. Optimal MRP parameters for a single item inventory with random replenishment
lead time, POQ policy and service level constraint. International Journal of Production Economics 2013,
143, 35–40.

21. Danilovic, M.; Vasiljevic, D. A novel relational approach for assembly system supply planning under
environmental uncertainty. International Journal of Production Research 2014, 52, 4007–4025.

22. Chauhan, S.S.; Dolgui, A.; Proth, J.M. A continuous model for supply planning of assembly systems with
stochastic component procurement times. International Journal of Production Economics 2009, 120, 411–417.

23. Tang, O.; Grubbström, R.W. The detailed coordination problem in a two-level assembly system with
stochastic lead times. International journal of production economics 2003, 81, 415–429.

24. Fallah-Jamshidi, S.; Karimi, N.; Zandieh, M. A hybrid multi-objective genetic algorithm for planning order
release date in two-level assembly system with random lead times. Expert Systems with Applications 2011,
38, 13549–13554.

25. Hnaien, F.; Delorme, X.; Dolgui, A. Genetic algorithm for supply planning in two-level assembly systems
with random lead times. Engineering Applications of Artificial Intelligence 2009, 22, 906–915.

26. Hnaien, F.; Delorme, X.; Dolgui, A. Multi-objective optimization for inventory control in two-level assembly
systems under uncertainty of lead times. Computers & operations research 2010, 37, 1835–1843.

27. Ammar, O.B.; Marian, H.; Wu, D.; Dolgui, A. Mathematical model for supply planning of multi-level
assembly systems with stochastic lead times. IFAC Proceedings Volumes 2013, 46, 389–394.

28. Mula, J.; Poler, R.; García-Sabater, J.P.; Lario, F.C. Models for production planning under uncertainty: A
review. International journal of production economics 2006, 103, 271–285.

29. Usuga Cadavid, J.P.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production
planning and control: a state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing 2020,
31, 1531–1558.

30. Alves, J.C.; Mateus, G.R. Multi-echelon supply chains with uncertain seasonal demands and lead times
using deep reinforcement learning. arXiv preprint arXiv:2201.04651 2022.

31. Esteso, A.; Peidro, D.; Mula, J.; Díaz-Madroñero, M. Reinforcement learning applied to production planning
and control. International Journal of Production Research 2023, 61, 5772–5789.

32. Boute, R.N.; Gijsbrechts, J.; Van Jaarsveld, W.; Vanvuchelen, N. Deep reinforcement learning for inventory
control: A roadmap. European Journal of Operational Research 2022, 298, 401–412.

33. Levi, R.; Roundy, R.O.; Shmoys, D.B.; Truong, V.A. Approximation algorithms for capacitated stochastic
inventory control models. Operations Research 2008, 56, 1184–1199.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

20 of 20

34. Shapiro, A. Analysis of stochastic dual dynamic programming method. European Journal of Operational
Research 2011, 209, 63–72.

35. Powell, W.B. Clearing the jungle of stochastic optimization. In Bridging data and decisions; Informs, 2014; pp.
109–137.

36. Oroojlooyjadid, A.; Nazari, M.; Snyder, L.V.; Takáč, M. A deep q-network for the beer game: Deep
reinforcement learning for inventory optimization. Manufacturing & Service Operations Management 2022,
24, 285–304.

37. Rolf, B.; Jackson, I.; Müller, M.; Lang, S.; Reggelin, T.; Ivanov, D. A review on reinforcement learning
algorithms and applications in supply chain management. International Journal of Production Research 2023,
61, 7151–7179.

38. Özalp, R.; Varol, N.K.; Taşci, B.; Uçar, A. A review of deep reinforcement learning algorithms and compar-
ative results on inverted pendulum system. Machine Learning Paradigms: Advances in Deep Learning-based
Technological Applications 2020, pp. 237–256.

39. Powell, W.B. A unified framework for stochastic optimization. European journal of operational research 2019,
275, 795–821.

40. Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review
of challenges, solutions, and applications. IEEE transactions on cybernetics 2020, 50, 3826–3839.

41. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. A brief survey of deep reinforcement
learning. arXiv preprint arXiv:1708.05866 2017.

42. Li, Y. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274 2017.
43. Badhan, I.A.; Hasnain, M.N.; Rahman, M.H. Enhancing Operational Efficiency: A Comprehensive Analysis

of Machine Learning Integration in Industrial Automation. Journal of Business Insight and Innovation 2022,
1, 61–77.

44. Keswani, M. A comparative analysis of metaheuristic algorithms in interval-valued sustainable economic
production quantity inventory models using center-radius optimization. Decision Analytics Journal 2024,
12, 100508.

45. Di Nardo, M.; Clericuzio, M.; Murino, T.; Sepe, C. An economic order quantity stochastic dynamic
optimization model in a logistic 4.0 environment. Sustainability 2020, 12, 4075.

46. Ðord̄ević, L.; Antić, S.; Čangalović, M.; Lisec, A. A metaheuristic approach to solving a multiproduct
EOQ-based inventory problem with storage space constraints. Optimization letters 2017, 11, 1137–1154.

47. Baghizadeh, K.; Ebadi, N.; Zimon, D.; Jum’a, L. Using four metaheuristic algorithms to reduce supplier
disruption risk in a mathematical inventory model for supplying spare parts. Mathematics 2022, 11, 42.

48. Bushuev, M.A.; Guiffrida, A.; Jaber, M.; Khan, M. A review of inventory lot sizing review papers. Management
Research Review 2015, 38, 283–298.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 doi:10.20944/preprints202505.2062.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2062.v1
http://creativecommons.org/licenses/by/4.0/

