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Abstract

High-reliability electronics demand full-coverage verification of component integrity, yet
conventional inspection methods remain limited in scope and unable to detect subtle or
undocumented modifications. This work presents a secure hardware assurance framework that
leverages visual Al, specifically deep learning applied to high-resolution images from Automated
Optical Inspection (AOI) systems, to detect component-level anomalies in printed circuit board
assemblies (PCBAs). The modular system integrates object detection, semantic segmentation, and a
second-stage anomaly classifier, enabling detection of unauthorized modifications, substitutions, and
structural deviations with high precision. Trained using a bootstrapped procedure on multi-domain
datasets, including clean production boards and degraded scrap units, the model generalizes across
real-world conditions with over 99% detection accuracy and sub-second board-level analysis times.
In light of recent hardware-level cyber threats, such as the discovery of rogue communication devices
embedded in commercial infrastructure, the need for scalable, image-based verification has never
been more critical. This method transforms existing AOI data into an intelligent layer of visual
forensics, enabling manufacturers to detect covert hardware changes and enforce trust in deployed
electronic systems.

Keywords: visual inspection; anomaly detection; secure hardware assurance; deep learning;
automated optical inspection (AOI); component authentication; PCB assembly; counterfeit detection;
manufacturing integrity; hardware cybersecurity

1. Introduction

The reliability and security of modern electronic systems are increasingly challenged by
component-level anomalies, including counterfeit parts, unauthorized modifications, and assembly
inconsistencies[1-3]. These issues are particularly critical in domains such as aerospace, medical,
energy infrastructure, and defense electronics, where undetected deviations can have severe
functional or national security implications[4]. Although automated optical inspection (AOI) systems
are standard in electronics manufacturing, their capabilities are largely limited to rule-based checks
for component presence or orientation, leaving more subtle, security-relevant issues undetected [5—
9].

Recent advances in deep learning and pattern recognition offer new opportunities to enhance
visual inspection using AQI-generated images[10-15]. These high-resolution images, which are
already captured during manufacturing, can serve as a valuable source of structured data for
detecting anomalies based on shape, marking consistency, placement geometry, and surface features.
However, traditional AOI systems do not leverage this potential due to their reliance on static rules
and limited image interpretation.

The need for secure hardware assurance has become increasingly urgent in light of recent
revelations concerning supply chain vulnerabilities. A May 2025 investigative report by Reuters
revealed that rogue communication devices, undocumented wireless modules, were discovered
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embedded in Chinese-manufactured solar inverters deployed across U.S. infrastructure [16]. These
components, not listed in the product documentation, enabled covert remote access and bypassed
existing cybersecurity protections. This incident underscores the critical gap between software-level
defenses and the physical verification of hardware, especially when undocumented modifications
remain invisible to conventional traceability and inspection tools. A related and widely publicized
example is the “Big Hack,” in which printed circuit board assemblies (PCBAs) were allegedly
implanted with rogue components to facilitate cyber-espionage against infrastructure and
government-controlled systems [3]. Together, these incidents illustrate the need for systematic,
scalable, and intelligent methods to verify the physical integrity of hardware—beyond what rule-
based inspection or supply chain documentation alone can provide.

This paper presents a deep learning-based visual inspection framework that applies object
detection and segmentation models to AOl image data. The system learns expected visual and spatial
patterns from reference board assemblies and identifies deviations indicative of tampering,
component substitution, rework, or contamination. We evaluate the performance of this framework
across production-grade and degraded board conditions and demonstrate its ability to detect
security-relevant anomalies with high precision and low false-positive rates. By enabling scalable,
image-based verification of electronic assemblies, this approach contributes a critical layer to secure
hardware assurance frameworks. To enable fast and accurate detection of components under varying
imaging conditions, the framework employs the YOLOv12 architecture, a real-time object detector
known for its high precision and robustness in dense visual scenes [17-20]. Its capability to balance
inference speed and detection accuracy makes it suitable for high-resolution AQOI imagery in
electronics manufacturing.

1.1. Limitations of Existing Inspection Practices

Despite the growing importance of hardware assurance, current industry practices rely heavily
on indirect or partial verification methods. Traceability protocols such as IPC-1782 or NIST's
cybersecurity frameworks focus on documenting supply chain events but do not validate the actual
components assembled on the board[21-24]. In many cases, visual or electrical inspection is
performed on a sample basis only, [11,25]leaving the majority of components unchecked and
vulnerable to undetected substitution, mislabelling, or tampering.

Physical inspection methods such as X-ray imaging and electrical testing are both expensive and
impractical for real-time inspection in high-volume environments [26]. Moreover, they often fail to
detect surface-level visual anomalies that may indicate subtle forms of rework or component fraud.
Trusted supplier agreements reduce but do not eliminate risk, particularly when rework or
substitution occurs after initial sourcing, during manufacturing, or in logistics.

Given these constraints, there is a pressing need for a full-coverage, image-based verification
strategy that can operate automatically, scalably, and with minimal production disruption. The
approach proposed in this work transforms underutilized AOI imaging data into a foundation for
deep learning-based inspection, enabling the identification of visual anomalies at the component
level with precision previously unattainable in standard production environments.

1.2. Contributions

This work makes the following contributions:

e  Proposes a scalable and non-invasive framework for secure hardware assurance using deep
learning on AQOI imagery.

¢ Integrates YOLOv12-based object detection with semantic segmentation to enable fine-grained
component-level analysis.

e Introduces a bootstrapped training strategy that generalizes across pristine, degraded, and field-
recovered board images.

¢  Demonstrates real-world applicability by detecting unauthorized modifications, substitutions,
and tampering events in production PCBAs.
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e  Achieves over 99% anomaly detection accuracy with sub-second inference times, enabling
deployment in high-throughput environments.

2. Method

The proposed inspection framework is designed to analyze high-resolution images generated
by Automated Optical Inspection (AOI) systems, enabling component-level verification and anomaly
detection through deep learning. It integrates two core capabilities: object detection for identifying
and localizing all components on a board, and semantic segmentation[27] for detailed analysis of
component geometry and solder interfaces. Together, these models enable visual fingerprinting and
structural validation, allowing the system to detect deviations from reference board designs caused
by tampering, substitution, or untracked rework[10,11,25,28]. The overall workflow, including
dataset preparation, model training, and anomaly detection, is illustrated in Figure 1.
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Figure 1. Overview of the Inspection Framework Pipeline. The workflow includes acquisition of clean and scrap
board datasets, initial training of YOLOv12 and segmentation models, bootstrapped retraining on degraded

boards, and final anomaly detection based on detection and segmentation outputs.

2.1. Limitations of Existing Inspection Practices

The system operates on image datasets acquired from inline AOI systems or high-resolution
post-production scanners. The primary dataset consists of clean, high-contrast images from boards
captured in production environments under controlled lighting and camera conditions. These images
serve as the training baseline for learning spatial layouts and component shapes. To ensure
robustness, additional datasets were created from scrap boards collected at recycling centers. These
boards were imaged both in cleaned (lightly dusted and washed) and uncleaned (oxidized, damaged)
states, capturing realistic visual variability such as corrosion, surface wear, and foreign material
presence.

This multi-domain dataset supports model generalization across pristine, degraded, and field-
recovered board conditions, critical for real-world deployment where production variability and
contamination are common.

2.2. Object Detection

We use the YOLOv12 architecture for component-level object detection [29]. This architecture
was selected due to its balance between inference speed and accuracy, which is essential for analyzing
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densely populated AOI images of electronic assemblies. YOLOv12’s performance on small objects,
combined with its robustness to noise and partial occlusion, makes it effective in real-world PCB
conditions. Paired with semantic segmentation, which enables pixel-level analysis of solder pad
integrity and component outlines, the framework captures both layout-level and fine-grained
geometric anomalies. This modular combination offers significantly greater flexibility and detection
depth than a monolithic end-to-end approach.

The model is trained to localize all visible components on a board and classify them by package
type. Initial training is conducted on images from pristine AOI datasets, using CAD-aligned
bounding boxes for supervision. To improve generalization, a bootstrapping procedure is used: the
model is applied to images from the degraded datasets, predictions are manually corrected, and the
network is retrained iteratively [30-32].

The YOLOv12 model was trained with a batch size of 16, using the Adam optimizer and an
initial learning rate of 0.001. Input images were resized to 640 x 640 pixels, and training spanned 360
epochs. Data augmentation techniques included horizontal and vertical flipping, random brightness
shifts, rotation (+15°), and Gaussian blur to simulate real-world variability.

During the bootstrapping process, the model trained on pristine boards is applied to degraded
and noisy datasets. Predictions with low confidence or incorrect localization are manually reviewed
and corrected to generate new labeled samples. These corrected samples are then added to the
training set, and the model is retrained. This iterative loop is repeated until performance stabilizes
across board conditions. The bootstrapping cycle functions as a self-improving mechanism that
incrementally enhances the model’s ability to handle low-contrast, contaminated, or structurally
damaged boards, conditions under which rule-based inspection often fails.

This approach allows the detection model to maintain high accuracy even in low-contrast, noisy,
or partially damaged conditions. Detection outputs include bounding box coordinates, confidence
scores, and component class labels, which are used downstream for structural consistency checks and
anomaly filtering. An example of the model's output on a production-grade board is shown in Figure
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Figure 2. Component detection on a pristine board. The top image shows a high-resolution AOI image processed
by the object detection model, with red bounding boxes accurately localizing all visible components. The bottom
image displays extracted metadata from the same image, illustrating how detection results serve as the basis for

downstream anomaly analysis.

2.3. Component Segmentation

In parallel to detection, we apply a semantic segmentation model trained to isolate each
component’s body and solder pad regions. This segmentation enables pixel-level analysis of shape,
orientation, and solder coverage, features critical for identifying unauthorized modifications or
quality issues such as rework or improper mounting.

Segmentation training uses high-resolution AOI images annotated with masks for each
component and pad. As with detection, a bootstrapping workflow is employed to extend training
across degraded boards. The model achieves high precision and recall on both clean and noisy
datasets, supporting robust feature extraction for downstream comparison. Figure 3 illustrates the
output of the segmentation model, showing distinct masks for the component body and pad regions.
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Figure 3. Component-Level Segmentation Results. Output from the semantic segmentation model showing
detailed masking of each component’s body (shown in blue) and the associated solder pad regions (highlighted
in red). These masks enable fine-grained geometric comparisons with the golden reference.

Segmented component shapes are compared to a reference models, enabling bottom-up visual
fingerprinting and detection of anomalies such as footprint mismatch, lead deformation, missing
pads, or suspicious markings.

2.4. Anomaly Detection Pipeline

The final stage of the framework integrates detection and segmentation results to identify
structural or visual anomalies. Detected components are first validated against expected layouts
using geometric and spatial analysis. A learned model of layout tolerance, captured from 20 to 100
reference boards, accounts for typical manufacturing variation while highlighting deviations such as
missing, added, or swapped components.

Each detected anomaly is then classified by a second-stage Al module that evaluates severity
and type (e.g., missing, extra, piggybacked, rotated, or contaminated). This second-stage module is
implemented as a shallow convolutional neural network (CNN) with three convolutional layers
followed by a fully connected classifier. It receives a feature vector derived from the output of the
detection and segmentation stages, including component geometry (bounding box dimensions, pad
shape), relative position, surface texture descriptors, and mask alignment scores. The classifier
assigns the anomaly to one of several predefined categories: missing, added, rotated, piggybacked,
contaminated, unknown, or reworked. This modular design allows anomaly severity and type to be
evaluated independently from detection confidence, and supports downstream filtering or alerting
based on context. Thresholds can be configured by the user to tune sensitivity for specific use cases
or board classes.

The method incorporates several safeguards for handling uncertain or degraded inputs.
Predictions with confidence below a configurable threshold are excluded from anomaly evaluation
or flagged for manual review, reducing false positives. Spatial outliers are detected using learned
tolerances derived from reference layouts, which account for typical placement variation but flag
large deviations. In cases where a component is missing or heavily occluded, anomaly scores are
suppressed unless corroborated by layout analysis or segmentation failure.

This layered architecture enables the system to distinguish between benign visual noise and
security-relevant anomalies, delivering precise and scalable verification suitable for both production
QA and post-deployment forensics.

2.5. Framework Overview

The proposed inspection system operates as a multi-stage pipeline that integrates object
detection, semantic segmentation, and anomaly classification into a cohesive framework. The process
begins with the acquisition of high-resolution AOI images from both clean and degraded printed
circuit boards. These images are first processed by a YOLOv12-based object detection model, which
localizes all visible components and classifies them by package type.

The output bounding boxes and class labels are then used to guide a semantic segmentation
model, which extracts pixel-level masks of the component body and solder pads. These masks are
compared to golden references for geometric consistency and alignment. Combined features from
detection and segmentation are passed to a second-stage classifier that evaluates deviations and
determines anomaly type and severity. This architecture allows for both structural validation and
security anomaly detection, enabling inspection under a wide range of conditions. The end-to-end
pipeline is illustrated in Figure 1.
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3. Experimental Results and Case Studies

To validate the proposed AOI image-based inspection framework, we conducted a series of
experiments on diverse datasets representing both production-grade and degraded board conditions.
The evaluation focuses on detection accuracy, segmentation quality, anomaly classification, and
overall robustness across different visual environments. Additionally, we include case studies that
demonstrate the framework’s ability to detect genuine tampering, component substitution, and
undocumented rework events in real-world PCB assemblies.

3.1. Evaluation of Detection and Segmentation Models

The object detection model, based on YOLOvV12, was trained using three datasets:

e  Clean AOI images from production environments aligned with CAD data,

¢  C(Cleaned scrap boards scanned under controlled conditions, and

e Uncleaned scrap boards representing worst-case scenarios including oxidation, broken
components, and noise.

Training followed a staged bootstrapping strategy, progressing from pristine to degraded
datasets. The model’s convergence behavior over 360 epochs is illustrated in Figure 4, which presents
combined and individual loss curves, as well as validation dynamics and inter-loss correlations.
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Figure 4. Training Dynamics Across 360 Epochs. Loss convergence for object detection, including classification,
regression, and localization components. Plots show steady improvement and alignment of validation and

training losses, supporting the stability and generalization of the model. [X].

Performance on unseen test boards is summarized in Table I. The model achieved an F1 score of
0.96 on pristine boards, 0.92 on cleaned scrap boards, and 0.82 on degraded scrap boards, with an
overall average of 0.90. Precision and recall remained consistently high across all conditions,
confirming the model’s robustness.
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Table L. score, precision, and recall for three test board types: pristine, cleaned scrap, and dirty scrap

boards.[x].
Board Condition F1 Score Precision Recall
Pristine AOI Image 0.96 0.96 0.96
Clean Scrap Board 0.92 0.89 0.96
Dirty Scrap Board  0.82 0.78 0.89
Average 0.90 0.88 93.7

These results demonstrate the model's resilience under diverse conditions. While performance
on pristine boards reached an F1 score of 0.96, the drop to 0.82 on dirty scrap boards reflects the
expected impact of visual degradation, yet still maintains acceptable detection performance for
operational use. Importantly, the low variance in recall (+0.07 across board types) confirms the
model's ability to consistently identify components, even when appearance is compromised.
Compared to typical rule-based AOI systems, which often fail to detect over 40% of anomalies on
degraded boards, the deep learning-based approach reduces false negatives substantially while
maintaining low false positive rates. The segmentation model was evaluated on 2,371 component
instances from 241 images. Using separate masks for body and pad regions, the model achieved a
mean average precision (mAP50) of 96.9%, with class-specific precision exceeding 0.91 for bodies and
0.97 for pads, as reported in Table II.

Table II. scores for segmentation of component bodies and solder pads. Results demonstrate strong pixel-level

localization capabilities, even under visual degradation.

Class Precision Recall mAP50
Body 0.911 0919 0.961
Pad 0.975 0.934 0.978
All 0.943 0.927 0.969

The segmentation model achieves strong pixel-level precision, particularly on pad regions,
which are critical for detecting footprint mismatch. High mAP50 scores for both classes indicate
consistent boundary accuracy, essential for downstream anomaly classification. The segmentation
model’s performance across varying confidence thresholds is shown in Figure 5. It maintains high
reliability and consistent behavior, making it suitable for fine-grained structural verification.
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Figure 5. Precision-Confidence Curve for Segmentation. Illustrates how segmentation performance varies with
detection confidence. The model maintains an aggregate precision of 0.92, with consistent behavior across body

and pad classes.

These detection and segmentation results form the core of the anomaly detection pipeline. Their
ability to generalize across board quality and environmental conditions ensures effective
performance in real-world manufacturing and field-inspection scenarios.

3.2. Real-World Detection Case Studies

The framework was deployed on real-world production datasets to evaluate its effectiveness in
detecting unauthorized modifications and undocumented deviations from design specifications.
These case studies highlight scenarios where conventional traceability and rule-based inspection
would fail to detect critical anomalies.

In one case, the system flagged a microcontroller due to inconsistent markings compared to the
approved bill of materials. Visual comparison revealed that the component originated from a
different manufacturer, despite matching electrical specifications. The discrepancy, confirmed
through image-based fingerprinting, illustrated the system’s capability to detect unapproved
substitutions invisible to traceability logs.

In another case, a passive component logged as Panasonic was identified visually as a Vishay
part. Differences in package geometry and surface finish were detected through both object
classification and segmentation. This mismatch, caused by a supplier labeling error, would not have
been caught by traditional inspection methods.

A third case involved a component logged as a Bourns device but which could not be matched
to any known reference in the golden dataset. The visual fingerprint failed classification, and the
system flagged the part as an unknown. Manual investigation confirmed it to be an unauthorized or
counterfeit component.

The system also demonstrated its ability to detect layout-level anomalies. As shown in Figure 5,
top-side inspection identified boards with missing, added, and swapped components relative to the
learned reference layout.

Figure 6. Detection of layout-level anomalies in top-side inspection. The visual Al system identifies deviations
on the PCB surface itself, such as unexpected features, irregularities, or marks, by comparing each board to a
learned reference layout. Anomalies are highlighted in yellow, providing clear visual evidence for review, even

when they occur outside expected component locations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1996.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2025 d0i:10.20944/preprints202505.1996.

10 of 15

Visual inspection also revealed cases of hardware tampering techniques such as piggybacking,
where an unauthorized component is soldered atop an approved one. This covert alteration, shown
in Figure 7, bypassed standard AOI systems but was identified by the anomaly classifier.
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Figure 7. Detection of unauthorized and misplaced components using top-side visual inspection. The top row
shows examples of components that were unintentionally scattered across the PCB during placement, as well as
a missing component footprint, highlighted in yellow. These anomalies fall outside standard AOI inspection
zones and are detected by adaptive visual Al. The bottom row presents the system’s automated detection of a
piggybacked component, an unauthorized part soldered on top of an existing IC (U_8). The algorithm identifies
inconsistencies in geometry and position, flagging the tampering attempt based on deviations from learned

visual patterns.

Another notable case involved the post-production addition of a wire between two points on a
board —an undocumented modification likely intended to override circuit behavior or enable a
backdoor function. Figure 8 illustrates this anomaly, captured and flagged by the system.
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Figure 8. Detection of unauthorized physical modifications on assembled PCBs. Left: A blue wire was manually
added across component pins, representing a post-production rework or tampering attempt. The deviation was
identified by the visual Al system due to its inconsistency with the expected layout. Right: A detached label was
found adhered to the PCB surface, potentially obscuring markings or interfering with optical inspection. Both
anomalies—circled in yellow and blue—fall outside predefined inspection regions and were flagged as

unexpected by the Al-based detection framework.

A representative example is shown in Figure 9, where a crystal oscillator was substituted with a
visually similar part from a different manufacturer. Though electrically equivalent, the system
detected discrepancies in marking, pad layout, and surface finish, triggering an anomaly alert.

e -CRZE19 O
WiINR2E18T

Figure 9. Detection of unauthorized component substitution. Left: Golden reference visualization based on 50
production boards showing consistent package shape and markings for the approved crystal oscillator. Right:
Test board with a substituted oscillator from a different manufacturer. Differences in surface finish, pad layout,

and silkscreen alignment were flagged by the anomaly detection system.

3.3. Scalability and Throughput

The framework was benchmarked for processing performance on standard AOI image
resolutions. The detection pipeline processed images at <1000 ms per board, with component-level
inferences running in under 10 ms per instance. This allows efficient post-production analysis of full
board datasets without introducing bottlenecks to production workflows.

The method achieves:

e >99.3% anomaly detection accuracy
e <0.5% false positive rate
e <1% false negative rate

These metrics demonstrate the suitability of the framework for high-volume board analysis,
enabling full coverage verification without reliance on manual inspection or destructive testing.

4., Discussion

The results demonstrate that deep learning models trained on AOI image data can achieve high
accuracy in component detection, segmentation, and anomaly classification across diverse board
conditions. Unlike traditional inspection techniques, which are often constrained by rule-based logic
or sample-based strategies, the proposed framework provides data-driven, full-coverage inspection
at the component level, using visual cues alone.

A key strength of the system lies in its ability to generalize across pristine, mildly degraded, and
severely contaminated boards. This resilience is essential for real-world deployment, where imaging
conditions, component aging, or handling artifacts may affect visual quality. The bootstrapping-
based training pipeline, incorporating clean and field-grade boards, ensures that the model is robust
to such variations, maintaining low false positive rates even under challenging conditions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Importantly, the framework does not rely on electrical signals, traceability logs, or physical
probing to detect anomalies. Instead, it leverages high-resolution imaging data already produced by
AOQI systems, making it non-invasive and readily integrable into existing manufacturing workflows.
This enables scalable deployment without the need for additional hardware or inspection stations.

The anomaly detection pipeline also highlights a key benefit of combining object detection and
segmentation. While detection provides spatial and classification data, segmentation enables pixel-
level geometry analysis. Together, these allow for nuanced differentiation between normal variation
and security-relevant modifications such as component substitution, piggybacking, or footprint
mismatch.

While the performance metrics are strong, several limitations remain. First, the model depends
on access to high-quality AOI images, which may vary by manufacturer and inspection system.
Second, while the system can flag unknown components or mismatches, root cause analysis, such as
determining whether a discrepancy is due to fraud, error, or rework, still requires human
investigation. Finally, expanding the reference database of verified components and improving
automated labeling of anomalies remain ongoing challenges for scaling the system across new
product lines.

Despite these considerations, the approach marks a shift toward intelligent, vision-based quality
and security assurance. By transforming AOI data into a rich source of structured information,
manufacturers can move beyond static rules and manual inspection toward adaptive, Al-driven
verification pipelines.

This methodology can also complement existing traceability and cybersecurity frameworks,
providing visual evidence of component integrity and enhancing supply chain transparency. As
electronic systems become increasingly interconnected and mission-critical, the ability to verify every
board’s composition through image-based Al may become an essential tool in ensuring both quality
and trust.

Several mitigation strategies can be pursued to address these limitations. Image quality
variability could be reduced through domain adaptation techniques or contrast normalization
methods, improving robustness across imaging environments. The reliance on human review for root
cause analysis may be mitigated by incorporating explainable Al tools that provide interpretable
anomaly features to assist operators. Additionally, expanding the reference database can be
accelerated through semi-supervised labeling strategies or federated learning from multiple
production sites, enabling rapid adaptation to new products without extensive manual annotation.

Unlike conventional rule-based AOI systems, which rely on pre-defined geometric tolerances
and optical contrast thresholds, the proposed deep learning framework learns visual patterns and
contextual relationships directly from data. This allows it to detect anomalies that fall outside the
scope of rule definitions, such as unauthorized but electrically equivalent component substitutions,
surface-level tampering, or non-conforming rework. Rule-based systems typically suffer from high
false negative rates in degraded or non-standard imaging conditions, whereas the presented
approach maintains high detection accuracy even on visually compromised boards. Additionally, the
ability to incorporate layout and marking consistency into the anomaly evaluation makes the
proposed method more adaptable and resilient than static rule-based inspection engines.

This sufficiency stems from the system's ability to learn implicit patterns of legitimate
component appearance, placement, and orientation across many examples, rather than relying on
hand-crafted rules. The segmentation module enables pixel-level analysis of pad geometry and
component shape, capturing nuances like surface finish, lead deformation, or non-standard
mounting that rules cannot encode. By fusing these learned visual features with layout expectations,
the system can robustly identify both gross and subtle anomalies, including those intentionally
designed to evade rule-based detection. The result is a more comprehensive and context-aware
inspection capability that adapts to variability without requiring reconfiguration.
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5. Conclusion

This work presents a secure hardware assurance solution based on deep learning applied to AOI
images of electronic assemblies. By integrating object detection, segmentation, and spatial anomaly
classification, the system performs high-precision component-level verification without requiring
electrical tests or destructive analysis. Trained across a diverse set of production and degraded
boards, the framework generalizes well to real-world conditions and operates efficiently within high-
throughput environments.

Unlike traditional inspection systems limited to rule-based validation or sample testing, this
approach provides full-coverage verification using only existing imaging infrastructure. With over
99% anomaly detection accuracy and millisecond-scale inference times, it enables practical
deployment at scale, enhancing quality control and elevating hardware trust.

Recent events, including the discovery of rogue communication modules embedded in solar
inverters, have exposed the limitations of conventional traceability and underscored the urgency of
verifying what is physically present on a board. The proposed visual Al framework addresses this
gap by transforming AOI data into a tool for structural and provenance-level analysis.

By bridging manufacturing analytics with cybersecurity principles, this method lays the
foundation for scalable, non-invasive, and intelligent assurance of hardware integrity, essential for
safeguarding the global electronics supply chain against tampering, counterfeiting, and cyber-
physical compromise.

The method’s architecture, combining YOLOv12-based detection, semantic segmentation, and a
dedicated anomaly classifier, enables flexible, scalable inspection across diverse PCB layouts and
conditions. The bootstrapped training procedure, leveraging both pristine and degraded boards,
strengthens generalization and reliability in uncontrolled environments. These features make the
approach not only accurate, but also resilient, capable of detecting both subtle production deviations
and deliberate, unauthorized hardware changes that rule-based methods often miss.
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