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Abstract The flight capability of drones expands the surveillance area and allows drones to be mobile
platforms. Therefore, it is important to estimate the kinematic state of the drone. In this paper, the
kinematic state of a mini drone in flight is estimated based on the video captured by the camera. A
novel frame-to-frame template matching technique is proposed. The instantaneous velocity of the
drone is measured through image-to-position conversion and frame-to-frame template matching
using optimal windows. Multiple templates are defined by their corresponding windows in a frame.
The size and location of the windows are obtained by minimizing the sum of the least square errors
between the piecewise linear regression model and the nonlinear image-to-position conversion
function. The displacement between two consecutive frames is obtained via frame-to-frame template
matching that minimizes the sum of normalized squared differences. The kinematic state of the drone
is estimated by a Kalman filter based on the velocity computed from the displacement. The Kalman
filter is augmented to simultaneously estimate the state and velocity bias of the drone. For faster
processing, a zero-order hold scheme is adopted to reuse the measurement. In the experiments, two
150-meter-long roadways were tested; one road is in an urban environment and the other in a
suburban environment. A mini drone starts from a hovering state, reaches top speed, and then
continues to fly at a nearly constant speed. The drone captures video 10 times on each road from a
height of 40 m at a 60-degree camera tilt angle. It will be shown that the proposed method achieves
average distance errors at low meter levels after the flight.

Keywords: drone state estimation; drone localization; image-position conversion; frame template
matching; optimal windows; Kalman filter; bias estimation

1. Introduction

Drones can hover or fly while capturing videos from a distance. They can cover large and remote
areas. This observation can be made from various viewpoints and altitudes [1-3]. They are also cost-
effective and do not require highly trained personnel [4]. Flying drones also act as mobile sensing
platforms; drones collect data during flight equipped with various sensors [5,6]. Therefore, the
position and velocity information of drones are essential for navigation, surveillance, and other high-
level tasks. For example, drones can follow predefined trajectories, track multiple targets, and
optimize formation in swarm operations.

The drone’s location is typically estimated using a combination of external sensors such as global
positioning system (GPS) and internal sensors such as inertial measurement units (IMU). GPS
provides absolute position information but is vulnerable to external conditions [7,8]. In GPS-denied
environments, reliable localization and state estimation remain critical challenges. Visual-inertial
odometry systems that fuse data from IMUs and cameras are among the prominent solutions [9,10].
Although IMU provides fast updates and requires no external infrastructure, its estimation
performance degrades over time due to drift errors [8]. Drone localization methods using LiDAR or
depth cameras have been developed, providing high-precision spatial perception independent of
visual texture or illuminations [11,12]. However, their use is generally limited to low altitudes or
indoor environments [13-16]. Radio frequency (RF)-based localization methods use ultra-wideband
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(UWB) or other radio signals. They often require pre-installed infrastructure and careful calibration
[17].

Approaches based solely on visual data from cameras are lightweight, cost-effective, and
energy-efficient, while avoiding the complexity of sensor fusion. Vision-based localization techniques
often rely on object template or feature matching across images [18]. Frame-to-frame template
matching is commonly used to estimate displacement between consecutive frames [19]. It can track
motion by matching a template from the previous frame to the current frame. Standard template
matching works well for small displacements in environments without lighting, rotation, or scale
changes [20]. A template is a region of interest (ROI) selected from a fixed area or object in the first
frame or a reference image. Template selection may depend on terrain, objects, or explicit features
[18,21]. Moving foreground regions were used as automatic template candidates with gaussian
mixture modeling of the background [22]. Photometric property-based template selection was
developed to choose templates depending on the intensity, contrast, or gradient of pixels [21,23].
Selecting a proper template is critical for accurate motion estimation. As scenes or objects change over
time, templates need to be updated but, incorrect updates can lead to accumulated errors that
degrade performance [24].

In the paper, the kinematic state of a drone in flight is estimated only from frames captured by
the camera. A frame-to-frame template matching using optimal windows is proposed to compute the
instantaneous velocity of the drone. The optimal window divides the frame into several non-
overlapping regions where the non-uniform spacing of the real coordinates is minimized.

Imaging projects 3D space on a 2D plane, and this projection can be modeled using principles of
ray optics [25]. The image-to-position conversion converts the discrete coordinates of pixels into
continuous real-world coordinates [26]. During the conversion, the image size, the camera’s
horizontal and vertical angular field of view (AFOV), elevation, and tilt angle are assumed to be
known. However, this conversion process generates non-uniform spacing in real-world coordinates.
When the camera points straight down, the pixel spacing is the most uniform. In [27], an entire frame
is set as a template to estimate the drone’s speed from the vertical view. However, the spatial and
visual information is one-sided, and the surveillance area becomes narrower in the vertical view. The
optimal windows are contrived to overcome the non-uniform spacing distortion in the real-world
coordinates. The height and location of the optimal windows are obtained from the piecewise linear
segments that best fit the image-to-position conversion function in the vertical direction. The split
points of the line segments are determined so as to minimize the sum of least square errors of the
separate linear regression lines [28,29]. Therefore, multiple templates are independent of the scene
and object. No additional process is required for the template update. The matching of each template
is performed by minimizing the sum of normalized squared differences [30], and the instantaneous
velocity is measured from the average displacement obtained through multiple template matching.

The drone’s kinematic state is estimated based on the measured velocity using a Kalman filter,
which adopts a nearly constant acceleration (NCA) model [31]. The state of the Kalman filter is
augmented to simultaneously estimate the drone’s state and bias in velocity [32]. Since the
computational complexity of frame matching is high, the augmented-state Kalman filter with a zero-
order hold scheme [33] is adopted for faster processing. The zero-order hold Kalman filter reuses the
measurement until new measurements are available.

Figure 1 shows a block diagram of the proposed method. First, the drone’s velocity is measured
by image-to-position conversion and frame-to-frame template matching using optimal windows. The
instantaneous velocity calculated by the frame-to-frame template matching is input to the Kalman
filter as the measurement value. Next, the drone’s state and bias in the velocity are estimated through
the augmented Kalman filter.
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Figure 1. Block diagram of drone state estimation.

In the experiment, a mini drone weighing less than 250 g [34] flies along two approximately 150
m long roads and captures video at 30 frame per second (FPS). One road is an urban environment,
and the other is a suburban environment. The drone starts from a stationary hovering position,
accelerates to maximum speed, and continues to fly at a nearly constant speed at an altitude of 40 m
and a camera tilt angle of 60 degrees. The frame size is 3840x2160 pixels, and the AFOV of the camera
is assumed to be 64 and 40 degrees in horizontal and vertical directions, respectively. Ten flights were
repeated on each road under various traffic conditions. For faster processing, four additional frame
matching speeds (10, 3, 1, 0.5 FPS) were tested using the zero-order hold Kalman filter. The proposed
method is shown to achieve the average flight distance errors of 3.57-3.52 m and 1.97-2.39 m for Roads
1 and 2, respectively.

The contributions of this study are as follows: (1) Multiple template selection using optimal
windows is proposed. The optimal windows are determined only by the image size, the camera’s
AFOV, elevation, and tilt angle. Therefore, the template selection process is independent of the scene
or object. (2) The augmented-state Kalman filter is designed to improve the accuracy of the drone’s
state. The drone’s flight distance is estimated with high accuracy, resulting in low-meter-level
average errors, (3) Real-time processing is possible with the zero-order hold Kalman filter. This
method maintains similar error levels even when the frame matching speed is reduced to 0.5 FPS.

The rest of the paper is organized as follows: the real-world conversion and frame-to-frame
template matching with optimal windows are described in Section 2. Section 3 explains drone state
estimation with the augmented state Kalman filter. Section 4 presents experimental results.
Discussion and conclusions follow in Sections 5 and 6, respectively.

2. Vision-based Drone Velocity Computation

This section describes how the instantaneous velocity is measured by a combination of image to
position conversion and frame to frame template matching based on optimal windows.

2.1. Image-to-Position Conversion

The image-to-position conversion [26] applies trigonometry to compute real-world coordinates
from image pixel coordinates when the camera’s AFOV, elevation, and tilt angles are known. It is
assumed that the camera rotates only around the pitch axis and the ground is flat. It provides a simple
and direct conversion from pixel coordinates to real-world coordinates. However, the non-uniform
spacing in the real-world coordinates arises as the tilt angle is larger and the altitude lower. The real-
world position vector x;; corresponding to the (i, j) pixel is calculated as [26],

W a, H \a,
xl-]-=(xi,yj)z(d§-tan[(1—?+ 1)W , h -tan[9T+(5—])g]), Q
i=0..,W-1,j=0,..,.H—-1,

where W and H are the image sizes in the horizontal and vertical directions, respectively, & is the
altitude of the drone or the elevation of the camera, a, and a, are the camera AFOV in the
horizontal and vertical directions, respectively, and 0y is the tilt angle of the camera; dy,, is the
distance from the camera to (Xy/,_1, Yu/2,0), whichis h-sec(8r). Figure 2 illustrates the coordinate
conversion from image to real-world [26].
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Figure 2. Illustrations of coordinate conversion from image to real-world, (a) horizontal direction; (b) vertical

direction.

Figure 3 visualizes the coordinate conversion function in horizontal and vertical directions
according to Equation (1): W and H are set to 3840 and 2160 pixels, respectively; a, and a, are set
to 64° and 40°, respectively; & is set to 40 m; 8y is set to 60°. The nonlinearity increases rapidly as
pixels move away from the center, resulting in non-uniform spacing in real-world coordinates,
especially in Figure 3(b). This distortion should be remedied when calculating the actual
displacement in the image. In the next subsection, we will see how to overcome these distortions
using optimal windows.

Pixel to Position in Horizontal Direction Pixel to Position in Vertical Direction
40
30

20
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°

40

/

500 1000 1500 2000 2500 3000 3500 200 400 600 800 1000 1200 1400 1600 1800 2000
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(@) (b)
Figure 3. Coordinate conversion functions: (a) horizontal direction; (b) vertical direction. The red circle indicates
the center of the image.
2.2. Frame-to-Frame Template Matching Based on Optimal Windows
The instantaneous velocity is computed at k frame as

k 11
2() = [ 03] = 2= B0 Len = P01, )

¢, = img2pos {[g:ﬂ}, 3)
Pnx (k) + %

ma | 4
Pny (k) + = }
where T is the sampling time between two consecutive frames, N, is the number of optimal

P (k) = img2pos {[

windows, or equivalently, the number of templates, ‘img2pos’ denotes the conversion process as in
equation (1), (Cpx, Cny) is the center of the n-th window in pixel coordinates, and w, and h, are the
width and height of the n-th window, respectively. In the experiments, c,, is set to W/2, and
Cny s set to the center of the n-th segment line, thus w, and h, are equal to W and the length of the
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n-th segment line, respectively. (pny Pny) is the displacement vector in pixel coordinates that
minimizes the normalized sum of squared differences as

[pnx (k) — argmin St yrew 1 +x1,y+y 1K) ~TMPp (x1,y1 k=112
Pny (k) ol \/{le,ylewn I(x+x1,y+y1;k)? Yxryrewyn TMPy (x’vl”ik_l)z}

| &

TMP,(x,y; k) = 1(x,y; k), if x,y € W,, (6)

where W, indicates the n-th window, and I is the gray-scaled frame.

The image-to-position conversion function in the vertical direction is approximated by piecewise
linear segments. The vertical length of each window is equal to the interval of each segment. The split
points between segments are determined so that the sum of the least square errors of the separate
linear models is minimized as follows:

Ny—1Sp41—1

n

=0 j=sp

~ (aj + bn>]2] ()

where sy, ...,sy,-1 are N, —1 split points for N,, windows, and s, and sy, areequaltoOand H,
respectively, and a, and b,, are the coefficients of the n-th linear regression line. The number of
windows is pre-determined heuristically; if there are too many windows, the sampling points (pixels)
of one window may be too small, which may result in inaccurate displacements. If there are too few
windows, the uneven spacing cannot be compensated for.

In the experiments, the frame was cropped by 180 pixels near the edges to remove distortions
that might occur during capture, resulting in optimal windows tiled in an area of 3480 x 1800 pixels.
The number of windows is set to 3 in the upper half and 2 in the lower half as it is desirable for the
windows to be large and similar in size. Therefore, equation (7) was applied separately to the upper
and the lower halves of the frame. Figure 4(a) shows the three linear regression lines of the vertical
conversion function in the upper half, and Figure 4(b) shows the two linear regression lines of the
lower half. The split points 1 and 2 in Figure 4(a) correspond to the 390th and 678th pixels from the
top line, respectively, while the split point in Figure 4(b) is at the 1469th pixel. Figure 5 shows 5
optimal windows tiled on the sample frame. In consequence, the heights of the five windows are 210,
288, 402, 389, and 511 pixels, respectively. Their vertical center positions are at the 285th, 534th, 879th,
1275th, and 1725th pixels.

Three Linear Regression Lines in Upper Part Two Linear Regression Lines in Lower Part

+ Conversion Func. + Conversion Func.
Line 1 Line 1

Line 2 Line 2

Line 3 — -~~~ Split Point
~~—— Split Point 1
140 - Split Point 2 60

meter

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
pixel pixel

(a) (b)

Figure 4. (a) Three linear regression lines and two split points in the upper half, (b) two linear regression lines

and one split point in the lower half.
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Figure 5. Five optimal windows in the sample frame. The centers of the windows are marked with a ‘+'.

The minimum detectable velocity depends on the center position of the window as shown in

Figure 6. If the center of the window is located at pixel (i, j), the minimum detectable velocity are
el o g lyj+1-Y;

calculated as | in the horizontal and vertical directions, respectively. As shown in

Figure 6(b), the minimum detectable velocities of the five windows in the vertical direction are 5.59,
3.35,1.98, 1.27, and 0.87 m/s, respectively, when T is set to 30 sec.

Minimum Detectable Velocity in Horizontal Direction Minimum Detectable Velocity in Vertical Direction
/

0951 12 \

09} or \

8
085

08
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0.7 = +

. . +
500 1000 1500 2000 2500 3000 3500 200 400 600 800 1000 1200 1400 1600 1800 2000
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Figure 6. Minimum detectable velocity: (a) horizontal direction; (b) vertical direction, the center position of the

window is marked with a ‘+'.

It is noted that the velocities computed in equation (2) are input to Kalman filter as measurement
values in the next session.
3. Drone State Estimation
3.1. System Modeling

The following augmented-state NCA model is adopted for the discrete state equation of a drone:

x(k +1) = F(Tx(k) + q(Tv(k) + g,n(k), ©)
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where x(k) = [x(k) x(k) (k) b, (k) y(k) y(k) (k) b, (k)] is the state vector of the drone at frame k,
x(k) and y(k) are positions in the x and y directions, respectively, x(k) and y (k) are velocities in
the x and y directions, respectively, #(k) and J(k) are accelerations in the x and y directions,
respectively, and b,(k) and b, (k) are velocity biases in the x and y directions, respectively. v(k) =
[V, (k) vy, (k)] is a process noise vector, which is Gaussian white noise with the covariance matrix
Q, = diag([o2 03)]), and n(k) = [n,(k) n,(k)]" isabias noise vector, which is Gaussian white noise

with the covariance matrix Q, = diag([a,fx aﬁy]). The measurement equation is as follows

(K
z(k) = [iy%k%] = Hx(k) + w(k), (10)

01010000
00000101]’ (1)

where w(k) is a measurement noise vector, which is Gaussian white noise with the covariance
matrix R = diag([r? r?]).

-

3.2. Kalman Filtering

The state vector and covariance matrix are initialized, respectively, as follows

0 1 -10000000 1

Z mx(0) 01000000

0 00100000

- b, (0) 000P,0000
2O =1 Yo | P(019) =| 00001000 | (12)

Z my(0) 00000100

0 00000010

b, (0) [0000000P, |

where z,,(0) and z,,(0) are the velocities obtained from equation (2), b,(0) and b,(0) are the
initial biases in x and y directions, respectively, and P, and P, are the initial covariances of the bias
in x and y directions, respectively. The state and covariance predictions are iteratively computed as

X(klk—1)=Fx(k—1lk - 1), (13)
P(klk —1) = FP(k — 1|k — 1)F* + q,(T)Quq,(T)" + q,Qn s (14)

Then, the state and covariance are updated as
x(klk) =x(k|k — 1) + W(k)[z,,(k) — Hx(k|k — 1)], (15)
P(klk) = P(klk — 1) — W(k)S()OW (k)T, (16)
where the residual covariance S(k) and the filter gain W (k) are obtained as
S(k) = HP(k|k — 1)H* + R, (17)

W (k) = P(k|k — 1)H!S(k)™. (18)

When the zero-order hold scheme is applied, the measurement z,(k) in equation (15) is
replaced by z,,,(k) as
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(Zn(),1<k<L-1,
jzm(L),LSk<2L—1,

Zzoh(k) = ’ (19)

(

where L-1 is the number of frames before a new frame matching occurs, thus the frame matching
speed is frame rate (frame capture speed) divided by L.

4. Results

4.1. Scenario Description

A mini drone weighs less than 250 g (DJI Mini 4K) [34] flies along two different 150-meter long
roads and captures videos at 30 FPS with a frame size of 3840x2160 pixels. The drone altitude was
maintained at 40 m during the flight, and the camera tilt angle was set to 60 degrees. The AFOV was
assumed to be 64 degrees and 40 degrees in the horizontal and vertical directions, respectively.

Figure 7(a) is a commercially available satellite image of a vehicle road in an urban environment
(Road 1) while Figure 7(b) is a vehicle road in a suburban environment (Road 2). Compared to the
suburban road, the urban road has complex backgrounds and irregular terrain due to buildings and
various artificial structures. Both figures also show three circles centered at Point O and passing
through Points A, B, and C. The radius (distance) to each point is the ground truth for drone’s flight
distance. For Road 1 and Road 2, the distances from Point O to Point A are 57 m and 48 m,
respectively, the distances between Point O and Point B are 109 m and 100 m, respectively, and the
distances between Point O and Point C are 159 m and 150 m, respectively.

The drone starts from a stationary hovering Point O, reaches its maximum speed in normal flight
mode before Point A, and then continues flying at a nearly constant speed passing near Points A, B,
and C. The flights were repeated 10 times in different traffic conditions on each road.

(b)

Figure 7. Satellite image with ground truths of (a) Road 1, (b) Road 2.
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Figure 8(a) and 8(b) show sample video frames when the drone passes near Points O, A, B, and
Con Road 1 and 2, respectively. The optical center of the camera is marked with a white '+, which is
assumed to be the drone’s position. The frame numbers when the drone reaches the same radius as
points A, B, and C were manually determined from the video.

Figure 8. Sample frames when the drone (the center of the camera) is at Point O or reaches the same radius as
Points A, B, C on (a) Road 1, (b) Road 2.

4.2. Drone State Estimation

Table 1 shows the parameter values of the augmented-state Kalman filter. The sampling time is
set to 1/30 s. The process noise standard deviation is set to 3 m/s? in both x and y directions, the bias
noise standard deviation is set to 0.01 and 0.1 m/s in x and y directions, respectively, and the
measurement noise standard deviation is set to 2 m/s in both x and y directions. The initial covariance
is set to the identical matrix except for the bias factors, which are set to 0.1 m?/s? in both x and y
directions. The initial bias in the x direction is set to 0 m/s for both roads while the initial bias in the
y direction is set to -1.2 to 0.2 m/s depending on the frame matching speed and the road traffic
conditions. The 10 videos of Road 2 are divided into three groups (Group 1: Videos 1-3, Group 2:
Videos 4, 5, Group 3: Videos 6-10) and different initial values are applied as shown in Table 2. The
same initial values are applied when the frame matching speed is 30 FPS to 3 FPS, but the initial
values decrease slightly as the speed decreases.

Table 1. System Parameters.

Parameter (Unit) Road 1 Road 2
Sampling Time (T) (second) 1/30
Process Noise Std. (0, 0yy) (1/5%) 3,3)
Bias Noise Std. (0yy, 0ny) (1/5) (0.01,0.1)
Measurement Noise Std. (ry, 13,) (m/s) (2,2)
Initial Bias in x direction (b, (0)) (1m/s) 0
Initial Covariance for Bias (P, P,) (m? /s?) (0.1,0.1)

Table 2. Initial Bias in y direction (b,,(0)) (11/s).

Frame Matching Speed Road 2
Road 1
(EPS) Group1l Group2 Group 3
30
-0.7
10 -0.3 0 0.2
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3
1 -0.8 -0.7 -0.3 -0.1
0.5 -1 -1.2 -0.4

Tables 3 and 4 show the distance errors from Point O to C of 10 videos for Roads 1 and 2,
respectively. The distance error is calculated as the absolute difference between the estimated flight
distance and the actual distance (actual distance). In this case, the distance error is denoted as "Est’.
Before Kalman filtering, the flight distance is calculated directly from the velocity obtained in session
2, and the distance error is denoted as "Meas'. The average distance error to Point C before
Kalman filtering is 11.99 m to 20.96 m for Road 1 and 4.95 m t0 9.71 m for Road 2. The average distance
error based on the estimated state for Road 1 is 3.07 m to 3.57 m, and the average distance error for
Road 2is 1.97 m to 2.39 m. As the frame matching speed decreases, the average distance errors of the
measured velocities increase, but the average distance errors of the estimated states remain at a
similar level showing the robustness of the proposed system.

Table 3. Distance Errors to Point C on Road 1.

d0i:10.20944/preprints202505.1980.v2

FPS Type Videol Video2 Video3 Video4 Video5 Video6 Video7 Video8 Video9 Videol0 Avg.
30 Meas. 16.33 7.69 7.32 6.77 9.26 11.53 13.69 17.06 14.29 15.99 11.99
Est. 4.25 4.55 4.95 5.54 3.10 0.89 1.46 4.50 2.02 3.95 3.52

10 Meas. 15.66 8.07 7.74 7.15 9.53 12.34 13.70 17.32 14.82 16.70 12.30
Est. 3.59 4.15 4.51 5.15 2.82 0.08 147 4.79 2.57 4.63 3.38

3 Meas. 19.73 9.49 10.43 8.28 11.45 12.92 13.90 18.04 13.75 16.47 13.45
Est. 7.65 2.71 1.81 4.00 0.91 0.51 1.69 5.50 1.53 4.34 3.07

1 Meas. 21.89 14.33 15.92 13.58 15.57 18.19 17.83 19.18 16.08 19.46 17.20
Est. 8.16 0.40 1.96 0.39 1.47 4.03 3.92 4.85 212 5.68 3.30

05 Meas. 22.14 17.19 23.45 20.27 18.83 20.07 23.79 20.13 21.26 22.46 20.96
Est. 5.03 0.16 6.06 2.87 1.25 241 6.45 2.23 3.89 5.31 3.57

Table 4. Distance Errors to Point C on Road 2.
Group 1 Group 2 Group 3

L Type Videol Video2 Video3 Video4 Video5 Video6 Video7 Video8 Video9 Video10 Avg.
%0 Meas. 11.96 4.60 5.47 0.35 0.46 3.94 4.84 5.10 4.21 11.96 5.29
Est. 7.04 1.39 0.69 0.22 0.31 0.71 1.66 1.78 1.22 8.83 2.39

10 Meas. 12.00 5.37 5.55 0.87 0.74 3.56 4.39 4.65 4.22 11.16 5.25
Est. 7.02 1.99 0.63 0.70 0.57 0.33 1.22 1.33 1.20 8.03 2.30

3 Meas. 14.32 6.09 5.89 2.23 1.91 2.30 2.48 3.09 2.63 8.56 4.95
Est. 9.31 1.58 0.92 2.06 1.76 0.93 0.71 0.22 0.46 5.40 2.33

1 Meas. 17.78 8.45 11.18 5.73 431 1.15 1.26 1.46 1.41 5.18 5.79
Est. 6.33 2.59 0.22 0.49 0.89 0.72 0.60 0.46 0.44 7.01 1.97

05 Meas. 23.11 12.74 18.76 8.08 6.88 5.43 8.49 6.21 6.84 0.59 9.71
Est. 3.62 6.05 0.62 1.14 0.00 1.53 1.61 0.93 0.04 6.22 2.18

Figure 9(a) shows the measured and estimated speeds of Video 1 of Road 1 when the frame
matching speed is 30 FPS. Figure 9(b) shows the biases in the x and y directions, and Figure 9(c) shows
the actual, measured, and estimated distances to Points A, B, and C. Figures 10, 11, 12, and 13 show
the cases where the frame matching speeds are 10, 3, 1, and 0.5 FPS, respectively. Figures 14-18 show
the same cases of Video 1 of Road 2.
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Figure 9. Road 1: Video 1 with 30 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 10. Road 1: Video 1 with 10 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 11. Road 1: Video 1 with 3 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 12. Road 1: Video 1 with 1 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 13. Road 1: Video 1 with 0.5 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 14. Road 2: Video 1 with 30 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 15. Road 2: Video 1 with 10 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 16. Road 2: Video 1 with 3 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.
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Figure 18. Road 1: Video 1 with 0.5 FPS frame matching speed, (a) speed, (b) bias, (c) flight distance.

Tables 5 and 6 show the average distance errors to Points A, B, and C for Road 1 and Road 2,
respectively. Table 5 shows a regular pattern, with the error increasing as the distance increases and
the frame matching speed decreases. However, Table 6 shows a somewhat irregular pattern in the
average error in the estimated velocity as a function of distance or matching speed. This is due to
different initial bias values which affect performance.

Table 5. Average Distance Errors to Points A, B, C on Road 1.

PointA PointB PointC

PSS Type o) a09m)  (159m)
o Meas 517 958 1199
Est. 168 235 352
o Mes. 547 993 1230
Est. 168 234 338
= Meas. 652 1124 1345
Est. 151 239  3.07
g Meas. 1016 1512  17.20
Est. 374 481 330
05 Mes. 1364 1923 209
Est. 566 640 357

Table 6. Average Distance Errors to Points A, B, C on Road 2.

PointA PointB PointC
@48m) (100m) (150 m)
Meas. 3.25 4.27 5.29

FPS Type

Y Est. 3.18 3.30 2.39
10 Meas. 2.88 4.07 525
Est. 2.83 3.00 2.30

3 Meas. 1.99 3.29 4.95

Est. 1.84 1.69 2.33

1 Meas. 241 4.23 5.79
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Est. 1.34 2.19 1.97
05 Meas. 6.41 6.87 9.71
’ Est. 1.92 2.00 2.18

Twenty supplementary files are movies in MP4 format, and they are available online.
Supplemental material videos S1-S10 show 10 videos capturing Road 1, and Supplemental material
videos 511-520 show another 10 videos capturing Road 2. The optical center of the camera is marked
as ‘+ in blue color. As the drone reaches the same radius as Points A, B, and C, the color of the mark
is expressed in white.

5. Discussion

The optimal windows aim to achieve uniform spacing in the real-world coordinates. The number
of windows was set to 3 and 2 in the upper half and lower half, respectively, since the image-to-
position conversion function is more non-linear in the upper half than in the lower half. A larger
number of windows can further reduce nonlinearities, but the displacements are computed with
smaller templates and the local dependence increases. Similarly sized windows are also desirable
because the velocity is computed by equally weighting displacements obtained from all templates,
but further research on adaptive weighting is needed because the minimum detectable velocities vary
depending on the window location as explained in session 2.

The augmented-state Kalman filter with the NCA model improved the flight range accuracy
from high to low meter-level error. The zero-order hold scheme provides similar accuracy regardless
of the frame matching speed.

It turns out that the initial bias setting is important. The suburban road can estimate the flight
distance more accurately, but it is easily affected by the initial bias. Therefore, 10 videos of Road 2
were divided into 3 groups, and different initial biases in the y direction were applied to each group.
The initial bias can be determined depending on the complexity and dynamics of the scene and the
flatness of the terrain. If the frame matching speed were slower, the initial bias should be lowered.
They were chosen heuristically when better results were produced.

The computational complexity of the sum of normalized squared differences of N,, templates is

0] (:{’—2), where N is the number of pixels in the frame. This can be derived from the fact that the

templates do not overlap each other and cover the entire image, and each template searches in a local
region similar to the template size. When N is equal to 3840x2160 pixels, and N,, is 5, N?/N,, is
approximately 1.375x10'® operations per frame. If the processing is performed once every 2 seconds
(0.5 FPS), the required computing power is 6.875 TFLOPS. This performance can be achieved through
advanced embedded computing platforms that can be implemented on drones [35].

The proposed method requires only vision-based sensing, which has the advantages of GPS
independence, low-cost and low weight, passive sensing, and multi-functionality. The inherent scene
dependency of vision-based methods is overcome by the augmented state estimation using Kalman
filter. As a result, the proposed method can achieve an average distance error of about 2 m after 150
m flight when the terrain is flat and relatively simple. This technique can be used for multiple ground
target tracking, where knowledge of the relative motion of the platforms is essential.

The proposed method requires further testing and analysis in more challenging missions, such
as high-speed maneuvering flights or long-range flights at the kilometer level. Minimizing scene
dependency prior to state estimation also remains a future challenge.

6. Conclusions

A novel frame-to-frame template matching method is proposed. The optimal windows are
derived from ray optics principles and the piecewise linear regression model. Multiple templates are
obtained by their corresponding optimal windows. Therefore, the templates are scene or object
independent, and no additional processes are required for template selection and update.
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The Kalman filter adopts the NCA model, and its state is augmented to estimate the velocity
bias of the drone. The zero-order hold method was applied for faster processing. The proposed
technique achieves low average flight distance errors even at slow frame matching speeds.

This technique can be useful when external infrastructure is not available such as GPS-denied
environments. It could be applied to a variety of fields, including automatic programmed flights or
multiple ground target tracking using flying drones, which remains a subject of future research.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Videos S1-10: Videos

of Road 1, Video S11-520: Videos of Road 2.
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