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Abstract: Sustainable economic decision‐making increasingly requires robust methodologies capable 

of  withstanding  deep  uncertainty,  especially  in  volatile  financial  and  resource‐constrained 

environments.  This  paper  introduces  a  unified  optimization  framework  based  on  nonlinear 

scalarizing  functionals,  designed  to  support  resilient  planning  under  structural  ambiguity.  By 

integrating performance objectives with risk boundaries, the proposed model generalizes classical 

robustness  paradigms—such  as  strict  and  reliable  robustness—into  a  single  tractable  and 

economically  interpretable  formulation.  The  key  innovation  lies  in  translating  scenario‐based 

uncertainty into a directional performance index that reflects both feasibility and desirability, aligned 

with stakeholder‐defined sustainability criteria. A case study in multi‐scenario portfolio allocation 

demonstrates  the  modelʹs  ability  to  maintain  return  stability  while  respecting  predefined  risk 

tolerances,  even  in  the  absence  of  complete probabilistic  information. The  results  highlight  how 

scalarization  enables  transparent, behaviorally  consistent, and  computationally  efficient decision‐

making,  offering  a  valuable  contribution  to  sustainable  resource  allocation  and  risk‐sensitive 

economic policy. This work contributes to bridging the gap between abstract optimization theory and 

applied  sustainability  challenges,  promoting  robust  and  adaptive  strategies  for  decision‐makers 

operating under uncertainty. 

Keywords:  robust  optimization;  nonlinear  scalarization;  sustainable  economic  decision‐making; 

portfolio resilience; scenario‐based modeling; risk‐constrained planning 

MSC: 91B06; 91G10; 90C29 

 

1. Introduction 

In an era where sustainability is no longer optional but imperative, economic decision‐making 

must be equipped to navigate uncertainty with both resilience and foresight. Optimization problems 

arising in economic, financial, and engineering systems are often plagued by significant uncertainty 

in  their  input  parameters. Classical  optimization  techniques  typically  rely  on  the  assumption  of 

complete and accurate knowledge  regarding all  relevant data; however,  such assumptions  rarely 

hold in practice. Variations in market conditions, model misspecification, and data estimation errors 

frequently lead to suboptimal or even misleading results when deterministic approaches are applied 

[1,2]. 

To address  these  limitations,  robust optimization  (RO) has emerged as a powerful modeling 

paradigm  for decision‐making under uncertainty. Rather  than optimizing  for a single, potentially 

inaccurate  scenario, RO  seeks  strategies  that  perform  acceptably  across  a  spectrum  of  plausible 

configurations—an approach particularly valuable for sustainable resource allocation and resilient 

economic planning. Seminal contributions by Ben‐Tal and Nemirovski [3,4], as well as El Ghaoui and 

Lebret  [5],  have  laid  the  theoretical  foundation  for  robust  optimization,  introducing  duality 

principles, tractable reformulations, and structured uncertainty sets. These  foundations have been 
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widely extended [6], with applications in portfolio optimization [4,7], control systems [8], logistics 

[9], and infrastructure planning [10,11]. 

Traditional RO techniques operate by defining convex uncertainty sets and enforcing worst‐case 

performance  guarantees.  This  idea  is  exemplified  by  the  robust  counterpart  formulation  [12], 

enriched later through polyhedral and ellipsoidal models [3,6,13]. Recent developments have focused 

on  data‐driven  uncertainty  sets  [13,14],  entropy‐based  robustness metrics  [15],  and  scalarization 

methods  from  multi‐objective  optimization  [16–18],  thereby  improving  the  flexibility  and 

interpretability of RO in practice. 

A  key  innovation  in modern RO  theory  is  the  integration  of  value‐driven decision  criteria, 

enabling models to reflect real‐world preferences. Scalarizing functionals are central to this evolution: 

they map multi‐scenario evaluations  into  interpretable scalar  indices, facilitating both comparison 

and  optimization  [16,19].  This  aligns with  classical  economic  notions  such  as  risk  aversion  and 

supports behavioral interpretations of robustness [20]. Despite the field’s maturity, a key challenge 

remains:  to  construct  robust  models  that  are  both  theoretically  rigorous  and  economically 

interpretable. In particular, the encoding of  investor preferences and structural  feasibility through 

directional  scalarization  continues  to  attract  interest  [17,21].  Recent  studies  have  also  explored 

entropy‐inspired  formulations  [15],  behavioral  robustness  [22],  and  automated  solution methods 

[8,23], reflecting the demand for robust yet accessible decision‐support tools. 

As  global  economic  systems  face  increasing  levels  of  uncertainty,  volatility,  and  structural 

disruption,  the  need  for  robust  and  adaptable  decision‐making  frameworks  has  become  more 

pronounced. This is particularly true in contexts where sustainability objectives—such as long‐term 

stability, efficient resource allocation, and risk resilience—intersect with economic planning under 

ambiguity. In this landscape, robust optimization techniques are not merely mathematical constructs, 

but essential tools for ensuring that decisions remain feasible, consistent, and aligned with broader 

sustainability goals across a variety of scenarios. It is within this conceptual space that the present 

work is situated. 

This  paper  contributes  to  this  growing  literature  by  proposing  a  scalarization‐based  robust 

optimization framework that unifies strict and reliable robustness within a single coherent model. By 

interpreting  robustness  as  a  directional  projection  within  a  risk‐constrained  space,  the  model 

preserves feasibility under uncertainty while offering a clear economic  interpretation. Rather than 

seeking to replace existing robust techniques, this approach complements them by offering a versatile 

and interpretable alternative that captures both structural constraints and behavioral preferences. In 

doing  so,  the  model  bridges  geometric  robustness  and  sustainable  economic  decision‐making, 

contributing to the development of resilient, uncertainty‐aware optimization strategies. 

The remainder of the paper is structured as follows. Section 2 presents the scalarization‐based 

formulation, explains  the mathematical construction, and  illustrates  the method using a portfolio 

selection  case  study.  Section  3  discusses  the  numerical  results,  and  Section  4  offers  concluding 

remarks along with directions for future research, including generalizations to infinite‐dimensional 

settings  and  the  integration  of  coherent  risk  measures.  Ultimately,  this  work  aims  to  support 

sustainable  economic  decision‐making  by  providing  a  robust,  interpretable,  and  adaptable 

optimization framework suited for long‐term planning under uncertainty. 

2. Materials and Methods 

2.1. Statement and Interpretation of the Problem from the Economic Point of View 

In the context of financial decision‐making, portfolio optimization remains a central concern due 

to its significance in the efficient allocation of resources under uncertainty.   A portfolio of financial 

assets can be interpreted as a weighted combination of investments across various instruments, with 

weights  representing  the proportion of capital allocated  to each asset. Let us consider a portfolio 

composed of n assets, where the investment          decisions are represented by a weight vector  𝑦 ∈
 𝑅௡ ,  indicating  the  set  of  proportion  of  capital  allocated  to  each  asset.  From  a  sustainability 
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perspective, portfolio decisions are not only about maximizing returns, but also about ensuring long‐

term resilience and responsible capital allocation in uncertain environments. 

We define the following sets and vectors: 

𝐵 ⊂  𝑅௡, the set of weight vectors associated with very low‐risk investments. 

𝐹 ⊂  𝑅௡, the set of admissible portfolios, reflecting feasible investment allocations. 

k ∈ 𝑅௡a reference direction vector that represents the profile of profitable investments. 

A key assumption is that the low‐risk set B satisfies the condition 

𝐵 ⊂  𝐵 െ 𝑘ሾ 0,∞ሻ, which intuitively means that any scaled version of the profitable              direction k 

(tk), when added to a low‐risk investment (b’) , results in a new investment      (b’ + tk ) that still lies 

within the low‐risk set B. 

To evaluate the profitability and risk‐adjusted quality of a given  investment y, we define the 

scalarizing functional: zB,k(y) = sup ሼ𝑡 ∈ 𝑅  / y  ∈  𝐵 െ 𝑡𝑘 }. 
which represents the maximum scalar multiple of k that can be added to y to belong B. Economically, 

this  captures  the degree  to which  an  admissible  investment  can be  ʺalignedʺ with  the profitable 

direction k, while remaining within acceptable risk levels. 

The optimization problem then becomes:  sup
௬∈ி

𝑧஻,௞ሺ𝑦ሻ which seeks the admissible portfolio y ∈ 

F that achieves the highest zB,k(y) 

2.2. Optimization Under Uncertainty Using Nonlinear Scalarizing Functionals and Robustness Concepts 

Formulation Optimization Problem with Nonlinear Scaling Functionals (𝑃𝒌,𝑩,୊) 

In real‐world financial contexts, data such as expected returns, volatilities, and correlations are 

rarely  known with  certainty. These  parameters  are  often  estimated  from  historical data  and  are 

subject to errors, structural breaks, and market volatility. To address these challenges, we extend the 

scalarization‐based  optimization  framework  to  account  explicitly  for  uncertainty  using  robust 

optimization technique. 

Let Y be a topological linear space and k ∈ Y \ሼ0ሽ  be a fixed direction vector representing the 
orientation of profitable decisions 

Let F ⊂ Y and B ⊂ Y a proper subset of Y. Suppose that 𝐵 ⊂  𝐵 െ 𝑘ሾ 0,∞ሻ  (#). 
We define  𝑧஻,௞ሺ𝑦  ) : Y → R ∪ {±∞},  𝑧஻,௞ሺ𝑦) = sup { t ∈ R / y ∈ B ‐ t⋅k }. 
We search  sup

௬∈ி
𝑧஻,௞ሺ𝑦ሻ 

Formulation of the Optimization Problem Under Uncertainty Using Concepts of Robustness (𝜌஖) 

Robust optimization has become very popular in recent years because it is a realistic approach. 

Usually  when  we  solve  an  OP,  all  its  parameters  are  known.  However,  in  most  real‐world 

applications, there are certain parameters that are not accurately known and available only estimated 

or a lot of their possible values.   

In this paper we assume that the set of scenarios is an interval     

Let U= [ min
௜
𝜁௜  , max

௜
𝜁௜  ]    the set of scenarios.   

We formulate an optimization problem under uncertainty. 

Let f : Rⁿ×U→R,  𝐹௜  : Rⁿ×U → R, i=1,..,,m. 

An optimization problem under uncertainty is defined as an optimization   

problem with parameter  (OP uncertain)  (Q(ξ),  ξ ∈ U), where,  for  ξ₀ ∈ U given,  the optimization 

problem is :   

max f ( x, ξ₀ ) 

Q(ξ₀):      ൜𝐹௜ሺ x, ξ₀ሻ ൒ 0, i ൌ 1,𝑚
𝑥 ∈  𝑅௡

 

At the time of OP uncertain to be solved, it is not known which value ξ ∈ U will take. We call  𝜉ሚ 
∈ U the nominal value, i.e. the value of ξ which is assumed to be true at the present time.   Q ( 𝜉 ෪) is 

called the nominal problem.   
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In this paper we assume that there are maximum problems will be proposed in the following 

sections.  Next,  we  will  assign  optimization  problem  conditions  with  an  equivalent  robust 

uncertainty. Note: 

OP = real‐world optimization problem; 

𝜌఍  = counterpart robust optimization problem; 

𝑃𝒌,𝑩,𝑭 = the problem formulated with linear scalarizing functionals         

In conclusion, the optimization problem can be addressed as follows: 

OP  (formulated  with  economic  concepts)  ↔  𝑃௞∗,஻∗,ி∗ ⇔ 𝜌఍ ↔OP  (under  uncertainty),  or     

Financial Market ↔ F of  𝑃𝒌,𝑩,𝑭 ↔ constraints in  𝜌఍ 
Financial Market ↔ k of  𝑃𝒌,𝑩,𝑭   ↔ x of  𝜌఍ 
This  unified  formulation  allows  us  to  interpret  robustness,  not  only  as  protection  against 

uncertainty but also as a nonlinear projection toward profitability under structural risk constraints. 

Viewed through the lens of sustainability, this interpretation aligns with the need for resilient and 

responsible  financial  strategies  that  remain  viable  across  a  range  of  uncertain  futures.Strict 

Robustness 

The convenient than the objective function value is maximized in order to achieve a sufficiently 

good solution, even in the worst case. It is intended that all restrictions to be checked for each scenario 

ξ ∈ U. 
Then the strictly robust counterpart equivalence robust optimization problem (Q(ξ), ξ ∈ U) is 

given by 

sR : max 𝜌௦ோ( x ) = max 𝑚𝑖𝑛ถ
఍∈௎

  f(x,  𝜁) 

൜∀𝜁 ∈ 𝑈: 𝐹௜ሺ x, ξሻ ൒ 0, i ൌ 1,𝑚
𝑥 ∈  𝑅௡

 

In  [14],  it  is demonstrated  that  (sR)  can  be  characterized  through  a  scaling  function  zB,k  by 

appropriately selecting the parameters k and B. 

Reliable Robustness 

When it is difficult or impossible to find a solution that satisfies all constraints for all scenarios, 

we introduce reliable robustness. Instead of working with restrictions  ∀𝜁 ∈ 𝑈: 𝐹௜ሺ x, ξሻ ൒ 0  , in this 

case we allow the constraints to satisfy a tolerance δi ∈ R₋ provided that the solution to be possible to 
obtain restriction weak   𝐹௜ሺ x, ξሻ ൒ 𝛿௜. However, initial nominal constraints    𝜉ሚ must be verified, i.e. 

 𝐹௜൫ x, 𝜉ሚ൯ ൒ 0,    i ൌ 1,𝑚. 

The reliable robust optimization problem is: 

rR : max 𝜌௥ோ( x ) = max 𝑚𝑖𝑛ถ
఍∈௎

  f(x,  𝜁) 

൜∀𝜁 ∈ 𝑈: 𝐹௜ሺ x, ξሻ ൒ 𝛿௜ ,  𝐹௜൫ x, 𝜉ሚ൯ ൒ 0,     i ൌ 1,𝑚
𝑥 ∈  𝑅௡

 

In  [14],  it  is demonstrated  that  (sR)  can  be  characterized  through  a  scaling  function  zB,k  by 

appropriately selecting the parameters k and B. 

2.3. Case Studies 

To  illustrate  the  theoretical  framework  developed  in  the  previous  sections, we  consider  a 

portfolio optimization problem involving three risky assets, denoted by A, B, and C. The investor is 

tasked with allocating capital among  these assets  in  the presence of uncertainty  regarding  future 

market conditions., represented by a finite set of four possible scenarios, denoted by U = {ξ1, ξ2, ξ3, ξ4

}.  This  scenario‐based  setup  also  serves  as  a  proxy  for  sustainable  investment  planning, where 

robustness under multiple futures is essential for economic resilience. For any allocation vector x∈R+
3

, we define: 

‐ f(x,ξ) is the return associated with allocation x under scenario ξ   
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‐ μ(x,ξ) represents a risk measure associated with scenario ξ.   

‐ ε is the investorʹs risk tolerance level   
‐ F(x,ξ) ≥ 0 i.e. the feasibility constraint that must be satisfied in each scenario ξ of U,        reflecting 

regulatory, budgetary, or structural requirements   

We  define  the  set  Bε  ⊂  R4  as  the  collection  of  return  vectors  (  f(x,ξ1),…,f(x,ξ4)  )           

corresponding to portfolios whose risk remains below the investor’s tolerance level in all scenarios, 

i.e., μ(x,ξi) < ε  for all  i = 1,…,4, which corresponds to all portfolios whose associated risk remains 

below the tolerance level ε in each scenario.   

The  admissible  set  F  ⊂  R4  contains  all  return  vectors  that  satisfy  the  feasibility                       

condition F(x,ξ)  ≥  0  in  every  scenario. The  reference direction vector  is  taken  as                        k  = 

(1,1,1,1), representing a uniform preference for increasing returns across all scenarios. We assume the 

scalarization condition B − t⋅k ⊇ B for all t ≥ 0, ensuring that the nonlinear functional  𝑧஻,௞  is well 

defined and satisfies the structural requirements outlined in        Section 2.2. 

The investor’s objective is to identify a portfolio x∈R+3 that maximizes the worst‐case return across all 

scenarios, while remaining feasible. This leads to the robust optimization problem: max 𝑚𝑖𝑛ถ
఍∈௎

  f(x,  𝜁) 

൜∀𝜁 ∈ 𝑈: 𝐹ሺ x, ξሻ ൒ 0, i ൌ 1,𝑚
𝑥 ∈  𝑅ଷ

.  Using  the  equivalence  result  established  earlier,  this  robust 

formulation can be recast into a scalar optimization problem of the form   

𝑚𝑎𝑥ถ
௬∈ி

  𝑧஻,௞ሺ𝑦ሻ, where  𝑧஻,௞ሺ𝑦) is the nonlinear scalarizing functional defined as 

  𝑧஻,௞ሺ𝑦) = sup { t ∈ R / y ∈ B ‐ t⋅k }. 
Under the stated assumptions, the two problems are equivalent, and the scalarization approach 

provides  a mathematically  consistent  and  computationally  tractable method  to determine  robust 

investment strategies in the presence of uncertainty. 

3. Results and Discussions 

The  theoretical  framework  developed  in  this  paper  establishes  a  novel  connection  between 

robust optimization and scalarization‐based decision‐making. By introducing a nonlinear scalarizing 

functional  𝒛𝑩,𝒌ሺ𝒚 ),  we  reinterpret  the  classical  notion  of  robustness  as  a  geometric  alignment 

between potential decisions and a predefined direction of profitability, constrained by structural risk 

boundaries. This scalarization transforms the original problem—defined under uncertainty—into a 

tractable deterministic formulation that avoids the need for explicit probabilistic modeling. Such an 

approach is particularly valuable in financial domains where data is scarce, volatile, or unreliable, 

making classical methods difficult  to apply with confidence. This makes  it especially suitable  for 

sustainable  financial planning, where  long‐term  viability must  be  ensured despite  informational 

gaps, volatile markets, and evolving risk landscapes. By enabling reliable decision‐making without 

relying  on  fragile  distributional  assumptions,  the  proposed  framework  provides  a  practical 

foundation for building resilient investment strategies aligned with sustainability goal 

The  scalarizing  functional  plays  a  dual  role  in  the  optimization  process.  On  one  hand,  it 

penalizes decisions that deviate from acceptable risk thresholds; on the other, it rewards portfolios 

that maintain  favorable  return patterns across multiple scenarios. This dual nature  is essential  in 

striking a balance between performance and robustness, especially in contexts where investors aim 

to optimize returns without sacrificing structural safety.   

The key property B − t⋅k ⊇ B ensures that improvements along the preferred direction k do not 

compromise feasibility, thereby reflecting a natural economic preference: any portfolio that is deemed 

acceptable should remain so if its performance improves uniformly 

In the numerical case study, we applied the proposed model to a portfolio composed of three 

risky assets evaluated under four discrete market scenarios. Each allocation vector was assessed with 

respect to both return and risk, using scenario‐specific constraints and a fixed investor tolerance level. 
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The direction vector k = (1,1,1,1) was selected to reflect a uniform preference for return improvement 

across  all  scenarios.  The  scalarizing  functional  𝒛𝑩,𝒌ሺ𝒚 ),  served  as  a  filter  to  identify  admissible 

portfolios that align with the desired performance direction while remaining within the tolerated risk 

region. 

The equivalence established between the scalar optimization problem and the strict and reliable 

robust counterparts provides not only theoretical depth but also practical relevance. In particular, the 

scalarization  approach  allows  decision‐makers  to  bypass  nested  constraint  formulations  and 

scenario‐by‐scenario  feasibility  checks—features  that  are  often  computationally  demanding  in 

classical robust optimization frameworks. Instead, all uncertainty is embedded within the structure 

of the functional itself, enabling a compact formulation that is amenable to efficient solution using 

standard optimization solvers. 

From  a modeling perspective,  the  scalarization  framework  enhances  interpretability. Unlike 

traditional approaches based solely on variance minimization or expected utility maximization, this 

model can accommodate nonlinear investor preferences, asymmetric risk responses, and feasibility 

structures  defined  across  discrete  or  continuous  scenarios.  This  flexibility  is  critical  in modern 

economic  environments  where  decision‐making  is  shaped  by  both  structural  constraints  (e.g., 

regulatory or liquidity limits) and behavioral dimensions (e.g., loss aversion, return targeting). 

In  the  context  of  sustainable  finance,  portfolio  strategies  must  not  only  deliver                 

consistent performance but also withstand structural uncertainty across diverse future conditions. 

The results obtained in our empirical case study validate the theoretical contributions. Among the 

evaluated portfolio strategies, those that maintained consistent returns across all four scenarios while 

respecting  the  investorʹs  risk  threshold  achieved  higher  scalarization  scores.  This  confirms  the 

model’s ability to promote robust yet economically rational decision‐making. The scalar framework 

thus proves to be a useful tool for analysts and practitioners aiming to construct resilient portfolios 

in uncertain and data‐constrained environments. 

In  summary,  the  scalarization‐based  robust  optimization model  presented  here  succeeds  in 

bridging  theoretical  rigor  with  practical  applicability.  It  offers  a  coherent  decision‐making 

architecture that unifies multiple robustness concepts, supports computational efficiency, and aligns 

naturally with real‐world economic reasoning. The promising results of our study open the door to 

further applications across a range of financial and economic problems, particularly those involving 

scenario‐based planning, risk‐constrained optimization, and behavioral modeling. 

Table 1 presents the simulated returns of three distinct portfolio strategies evaluated across the 

four considered market scenarios. The scalarizing functional values are included to highlight each 

portfolioʹs alignment with robust performance criteria. 

Table 1. Portfolio Returns and Scalarization Values Simulated Portfolio Returns across Market Scenarios. 

Portfolio  Scalarizing Functional z^(B,k)(y) 

P1  0.75 

P2  0.95 

P3  1.00 

Scalarizing Functional Values 
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Scenario  Portfolio P1  Portfolio P2  Portfolio P3 

ξ₁  0.08  0.06  0.05 

ξ₂  0.04  0.06  0.05 

ξ₃  0.03  0.05  0.04 

ξ₄  ‐0.01  0.05  0.04 

Figure 1 graphically illustrates the portfolio behaviors under the different scenarios. Portfolio P3 

exhibits  the  most  stable  performance,  with  minimal  deviation  across  states  and  a  superior 

scalarization score, confirming its robustness relative to the other alternatives. 

 

Figure 1. Portfolio Performance Across Scenarios. 

Overall,  the  results  support  both  the mathematical  validity  and  the  practical  utility  of  the 

proposed  approach.  By  embedding  robustness  into  a  scalar  performance  index,  the  framework 

equips decision‐makers with a transparent and  interpretable methodology for optimization under 

uncertainty.  This  dual  benefit—rigorous  theoretical  grounding  and  intuitive  economic 

applicability—helps  bridge  the  longstanding  gap  between  abstract  modeling  and  real‐world 

decision‐making 

The  findings  of  our  study  confirm  that  scalarization  via nonlinear  functionals  is not  only  a 

mathematically sound technique but also a conceptually accessible one. It offers a unified structure 

for  incorporating  investor  preferences,  risk  constraints,  and  scenario  variability within  a  single 

optimization  framework.  Theoretical  guarantees,  combined  with  the  encouraging  empirical 

performance,  suggest  that  the  approach  holds  significant  potential  for  broader  applications—

including  portfolio  optimization,  resource  allocation,  financial  regulation,  and  multi‐scenario 

economic planning.  In  this sense, our  framework contributes  to sustainability by enabling robust, 

data‐efficient decisions that remain viable across uncertain future scenarios. 

4. Conclusions and Future Work 

This paper introduced a unified robust optimization framework based on nonlinear scalarizing 

functionals,  offering  a  fresh  perspective  on  decision‐making  under  uncertainty.  By  integrating 

multiple  robustness  paradigms—specifically  strict  and  reliable  robustness—within  a  single 

scalarization‐based structure, the proposed approach provides both a rigorous theoretical foundation 

and a practical mechanism for modeling economic decisions affected by ambiguity. One of its core 

strengths  lies  in  recasting  robust  formulations  into  economically meaningful  constructs,  such  as 

expected returns and risk thresholds, thus facilitating the interpretation and application of robustness 
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in real‐world contexts. This interpretability is particularly relevant in sustainability contexts, where 

decision‐makers must align profitability with resilience and long‐term feasibility under uncertainty. 

The adoption of a multi‐scenario planning perspective enables the translation of uncertainty into 

a coherent risk–return profile. This is particularly valuable in financial environments characterized 

by  volatility  and  incomplete  information.  The  empirical  case  study  on  portfolio  optimization 

demonstrated  the model’s dual advantage: mathematical soundness and alignment with  investor 

goals. The ability to  identify optimal strategies that balance return maximization with risk control 

under  multiple  scenarios  confirms  the  framework’s  practical  utility  and  relevance  to  modern 

economic decision‐making. 

Beyond its immediate applicability, the research also reveals deeper conceptual links between 

scalar robust optimization and other established paradigms. In particular, the proposed model shares 

structural affinities with multi‐objective optimization and scenario‐based stochastic programming. 

The scalarizing functional serves as a bridge between these approaches, offering a unified language 

through which  uncertainty,  preference,  and  feasibility  can  be  integrated.  This  opens  promising 

avenues  for  the  development  of  hybrid  models  that  combine  robustness  with  probabilistic  or 

dynamic elements. 

Looking  ahead,  several  directions  for  future  research  are  worth  exploring.  First,  from  a 

theoretical  standpoint,  we  intend  to  derive  necessary  optimality  conditions  for  scalar  robust 

optimization problems, especially under differentiability assumptions. Establishing analogues to the 

Karush–Kuhn–Tucker  conditions  within  this  framework  would  enhance  the  analytical 

understanding of robust solutions and their sensitivity to changes in model parameters. Second, we 

plan  to  extend  the  current  methodology  to  address  problems  involving  infinite‐dimensional 

uncertainty. This includes applications where uncertainty evolves over time, such as in continuous‐

time  finance or dynamic economic  systems,  requiring  tools  from  functional analysis and  infinite‐

dimensional  optimization.  These  future  developments  could  further  enhance  the  framework’s 

applicability to sustainability‐driven domains, where long‐term planning under deep uncertainty is 

a critical requirement. 

Moreover,  a  particularly  promising  extension  involves  the  integration  of  coherent  risk 

measures—such as Conditional Value‐at‐Risk  (CVaR)—into  the scalarization scheme. Embedding 

such  measures  would  further  enhance  the  model’s  relevance  for  financial  regulation  and  risk 

management practice, bringing it closer to established tools in the            regulatory landscape. 

In  conclusion,  this work presents  a  robust  optimization paradigm  that  is  conceptually  rich, 

mathematically consistent, and practically oriented. By unifying multiple robustness approaches and 

grounding  them  in a  scalar  functional  framework, we  contribute a versatile  tool  for uncertainty‐

aware decision‐making. The  theoretical  insights  and  empirical  validation presented  here  lay  the 

foundation for future developments in robust economic modeling, with applications extending from 

portfolio management to sustainable resource allocation and policy planning under uncertainty. 
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