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Abstract: Sustainable economic decision-making increasingly requires robust methodologies capable
of withstanding deep uncertainty, especially in volatile financial and resource-constrained
environments. This paper introduces a unified optimization framework based on nonlinear
scalarizing functionals, designed to support resilient planning under structural ambiguity. By
integrating performance objectives with risk boundaries, the proposed model generalizes classical
robustness paradigms—such as strict and reliable robustness—into a single tractable and
economically interpretable formulation. The key innovation lies in translating scenario-based
uncertainty into a directional performance index that reflects both feasibility and desirability, aligned
with stakeholder-defined sustainability criteria. A case study in multi-scenario portfolio allocation
demonstrates the model's ability to maintain return stability while respecting predefined risk
tolerances, even in the absence of complete probabilistic information. The results highlight how
scalarization enables transparent, behaviorally consistent, and computationally efficient decision-
making, offering a valuable contribution to sustainable resource allocation and risk-sensitive
economic policy. This work contributes to bridging the gap between abstract optimization theory and
applied sustainability challenges, promoting robust and adaptive strategies for decision-makers
operating under uncertainty.
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1. Introduction

In an era where sustainability is no longer optional but imperative, economic decision-making
must be equipped to navigate uncertainty with both resilience and foresight. Optimization problems
arising in economic, financial, and engineering systems are often plagued by significant uncertainty
in their input parameters. Classical optimization techniques typically rely on the assumption of
complete and accurate knowledge regarding all relevant data; however, such assumptions rarely
hold in practice. Variations in market conditions, model misspecification, and data estimation errors
frequently lead to suboptimal or even misleading results when deterministic approaches are applied
[1,2].

To address these limitations, robust optimization (RO) has emerged as a powerful modeling
paradigm for decision-making under uncertainty. Rather than optimizing for a single, potentially
inaccurate scenario, RO seeks strategies that perform acceptably across a spectrum of plausible
configurations—an approach particularly valuable for sustainable resource allocation and resilient
economic planning. Seminal contributions by Ben-Tal and Nemirovski [3,4], as well as El Ghaoui and
Lebret [5], have laid the theoretical foundation for robust optimization, introducing duality
principles, tractable reformulations, and structured uncertainty sets. These foundations have been
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widely extended [6], with applications in portfolio optimization [4,7], control systems [8], logistics
[9], and infrastructure planning [10,11].

Traditional RO techniques operate by defining convex uncertainty sets and enforcing worst-case
performance guarantees. This idea is exemplified by the robust counterpart formulation [12],
enriched later through polyhedral and ellipsoidal models [3,6,13]. Recent developments have focused
on data-driven uncertainty sets [13,14], entropy-based robustness metrics [15], and scalarization
methods from multi-objective optimization [16-18], thereby improving the flexibility and
interpretability of RO in practice.

A key innovation in modern RO theory is the integration of value-driven decision criteria,
enabling models to reflect real-world preferences. Scalarizing functionals are central to this evolution:
they map multi-scenario evaluations into interpretable scalar indices, facilitating both comparison
and optimization [16,19]. This aligns with classical economic notions such as risk aversion and
supports behavioral interpretations of robustness [20]. Despite the field’s maturity, a key challenge
remains: to construct robust models that are both theoretically rigorous and economically
interpretable. In particular, the encoding of investor preferences and structural feasibility through
directional scalarization continues to attract interest [17,21]. Recent studies have also explored
entropy-inspired formulations [15], behavioral robustness [22], and automated solution methods
[8,23], reflecting the demand for robust yet accessible decision-support tools.

As global economic systems face increasing levels of uncertainty, volatility, and structural
disruption, the need for robust and adaptable decision-making frameworks has become more
pronounced. This is particularly true in contexts where sustainability objectives—such as long-term
stability, efficient resource allocation, and risk resilience—intersect with economic planning under
ambiguity. In this landscape, robust optimization techniques are not merely mathematical constructs,
but essential tools for ensuring that decisions remain feasible, consistent, and aligned with broader
sustainability goals across a variety of scenarios. It is within this conceptual space that the present
work is situated.

This paper contributes to this growing literature by proposing a scalarization-based robust
optimization framework that unifies strict and reliable robustness within a single coherent model. By
interpreting robustness as a directional projection within a risk-constrained space, the model
preserves feasibility under uncertainty while offering a clear economic interpretation. Rather than
seeking to replace existing robust techniques, this approach complements them by offering a versatile
and interpretable alternative that captures both structural constraints and behavioral preferences. In
doing so, the model bridges geometric robustness and sustainable economic decision-making,
contributing to the development of resilient, uncertainty-aware optimization strategies.

The remainder of the paper is structured as follows. Section 2 presents the scalarization-based
formulation, explains the mathematical construction, and illustrates the method using a portfolio
selection case study. Section 3 discusses the numerical results, and Section 4 offers concluding
remarks along with directions for future research, including generalizations to infinite-dimensional
settings and the integration of coherent risk measures. Ultimately, this work aims to support
sustainable economic decision-making by providing a robust, interpretable, and adaptable
optimization framework suited for long-term planning under uncertainty.

2. Materials and Methods

2.1. Statement and Interpretation of the Problem from the Economic Point of View

In the context of financial decision-making, portfolio optimization remains a central concern due
to its significance in the efficient allocation of resources under uncertainty. A portfolio of financial
assets can be interpreted as a weighted combination of investments across various instruments, with
weights representing the proportion of capital allocated to each asset. Let us consider a portfolio
composed of 1 assets, where the investment decisions are represented by a weight vector y €
R™, indicating the set of proportion of capital allocated to each asset. From a sustainability
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perspective, portfolio decisions are not only about maximizing returns, but also about ensuring long-
term resilience and responsible capital allocation in uncertain environments.

We define the following sets and vectors:

B © R™, the set of weight vectors associated with very low-risk investments.

F c R™, the set of admissible portfolios, reflecting feasible investment allocations.

k € R™a reference direction vector that represents the profile of profitable investments.

A key assumption is that the low-risk set B satisfies the condition
B © B — k[ 0, ), which intuitively means that any scaled version of the profitable direction k
(tk), when added to a low-risk investment (b’) , results in a new investment (b’ + tk ) that still lies
within the low-risk set B.

To evaluate the profitability and risk-adjusted quality of a given investment y, we define the
scalarizing functional: zPX(y) =sup{t ER /y € B —tk }.
which represents the maximum scalar multiple of k that can be added to y to belong B. Economically,
this captures the degree to which an admissible investment can be "aligned" with the profitable
direction k, while remaining within acceptable risk levels.

The optimization problem then becomes: sup zB¥(y) which seeks the admissible portfolioy €
yEF

F that achieves the highest zBX(y)
2.2. Optimization Under Uncertainty Using Nonlinear Scalarizing Functionals and Robustness Concepts

Formulation Optimization Problem with Nonlinear Scaling Functionals (P g r)

In real-world financial contexts, data such as expected returns, volatilities, and correlations are
rarely known with certainty. These parameters are often estimated from historical data and are
subject to errors, structural breaks, and market volatility. To address these challenges, we extend the
scalarization-based optimization framework to account explicitly for uncertainty using robust
optimization technique.

Let Y be a topological linear space and k € Y \{0} be a fixed direction vector representing the
orientation of profitable decisions

Let F c Yand B ¢ Y a proper subset of Y. Suppose that B € B — k[ 0,0) (#).

We define zB%(y ): Y — RU{xeo}, zBK(y)=sup{teR/y€B-tk}.

We search sup z5*(y)
YEF

Formulation of the Optimization Problem Under Uncertainty Using Concepts of Robustness (p¢)

Robust optimization has become very popular in recent years because it is a realistic approach.
Usually when we solve an OP, all its parameters are known. However, in most real-world
applications, there are certain parameters that are not accurately known and available only estimated
or a lot of their possible values.

In this paper we assume that the set of scenarios is an interval

Let U= miin G, max ¢; ] the set of scenarios.

We formulate an optimization problem under uncertainty.

Letf: R™xU—-R, F; :R™U - R, i=1,..,m.

An optimization problem under uncertainty is defined as an optimization
problem with parameter (OP uncertain) (Q(£), & € U), where, for & € U given, the optimization
problem is :

max f (X, & )

. Fi(x%)=0,i=1m
Q%) { L X € R" .
At the time of OP uncertain to be solved, it is not known which value & € U will take. We call ¢

€ U the nominal value, i.e. the value of €& which is assumed to be true at the present time. Q (?) is
called the nominal problem.
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In this paper we assume that there are maximum problems will be proposed in the following
sections. Next, we will assign optimization problem conditions with an equivalent robust
uncertainty. Note:

OP = real-world optimization problem;

p¢ = counterpart robust optimization problem;

Py p ¢ = the problem formulated with linear scalarizing functionals

In conclusion, the optimization problem can be addressed as follows:

OP (formulated with economic concepts) <> Py»pg-p+ & p; <>OP (under uncertainty), or
Financial Market <> F of Py pr <> constraintsin p;

Financial Market <> k of Pppr <> xof p;

This unified formulation allows us to interpret robustness, not only as protection against
uncertainty but also as a nonlinear projection toward profitability under structural risk constraints.
Viewed through the lens of sustainability, this interpretation aligns with the need for resilient and
responsible financial strategies that remain viable across a range of uncertain futures.Strict
Robustness

The convenient than the objective function value is maximized in order to achieve a sufficiently
good solution, even in the worst case. It is intended that all restrictions to be checked for each scenario

Eel.

Then the strictly robust counterpart equivalence robust optimization problem (Q(E), £ € U) is
given by

sR : max pgr( X ) = max w f(x, {)

ZeU

{vq EU:F(x9=0 i=1m
X € R"
In [14], it is demonstrated that (sR) can be characterized through a scaling function z&* by
appropriately selecting the parameters k and B.

Reliable Robustness

When it is difficult or impossible to find a solution that satisfies all constraints for all scenarios,
we introduce reliable robustness. Instead of working with restrictions V{ € U: F;(x,§) = 0 , in this
case we allow the constraints to satisfy a tolerance di € R- provided that the solution to be possible to
obtain restriction weak F;(x,&) > §;. However, initial nominal constraints ¢ must be verified, i.e.
F(x§)>=0, i=1m.

The reliable robust optimization problem is:

R : max pyg(x)=max min f(x, )
e
{vz EU:F(x8) =6, F(x§) =0, i=1m
X € R"

In [14], it is demonstrated that (sR) can be characterized through a scaling function z&* by

appropriately selecting the parameters k and B.

2.3. Case Studies

To illustrate the theoretical framework developed in the previous sections, we consider a
portfolio optimization problem involving three risky assets, denoted by A, B, and C. The investor is
tasked with allocating capital among these assets in the presence of uncertainty regarding future
market conditions., represented by a finite set of four possible scenarios, denoted by U = {1, &2, &, &4
}. This scenario-based setup also serves as a proxy for sustainable investment planning, where
robustness under multiple futures is essential for economic resilience. For any allocation vector x€R+>
, we define:

- f(x,€) is the return associated with allocation x under scenario &
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- u(x, &) represents a risk measure associated with scenario &.

- € is the investor's risk tolerance level

-F(x,£) 2 01i.e. the feasibility constraint that must be satisfied in each scenario & of U, reflecting
regulatory, budgetary, or structural requirements

We define the set Be c R* as the collection of return vectors ( f(x,&1),...,f(x,E4) )
corresponding to portfolios whose risk remains below the investor’s tolerance level in all scenarios,
ie, u(x&) < € for all i = 1,...,4, which corresponds to all portfolios whose associated risk remains
below the tolerance level € in each scenario.

The admissible set F c R* contains all return vectors that satisfy the feasibility
condition F(x,£) 2 0 in every scenario. The reference direction vector is taken as k =
(1,1,1,1), representing a uniform preference for increasing returns across all scenarios. We assume the
scalarization condition B — t-k 2 B for all t > 0, ensuring that the nonlinear functional z5* is well
defined and satisfies the structural requirements outlined in ~ Section 2.2.

The investor’s objective is to identify a portfolio Xx€R+? that maximizes the worst-case return across all

scenarios, while remaining feasible. This leads to the robust optimization problem: max min f(x, ()
Ceu

{vqeu: F(x8=>0,i=1,

x € R3
formulation can be recast into a scalar optimization problem of the form

m Using the equivalence result established earlier, this robust

max zBk(y), where zB¥(y) is the nonlinear scalarizing functional defined as
YEF
zB*(y)=sup{teR/y€eB-tk}.
Under the stated assumptions, the two problems are equivalent, and the scalarization approach
provides a mathematically consistent and computationally tractable method to determine robust
investment strategies in the presence of uncertainty.

3. Results and Discussions

The theoretical framework developed in this paper establishes a novel connection between
robust optimization and scalarization-based decision-making. By introducing a nonlinear scalarizing
functional zB¥*(y), we reinterpret the classical notion of robustness as a geometric alignment
between potential decisions and a predefined direction of profitability, constrained by structural risk
boundaries. This scalarization transforms the original problem —defined under uncertainty —into a
tractable deterministic formulation that avoids the need for explicit probabilistic modeling. Such an
approach is particularly valuable in financial domains where data is scarce, volatile, or unreliable,
making classical methods difficult to apply with confidence. This makes it especially suitable for
sustainable financial planning, where long-term viability must be ensured despite informational
gaps, volatile markets, and evolving risk landscapes. By enabling reliable decision-making without
relying on fragile distributional assumptions, the proposed framework provides a practical
foundation for building resilient investment strategies aligned with sustainability goal

The scalarizing functional plays a dual role in the optimization process. On one hand, it
penalizes decisions that deviate from acceptable risk thresholds; on the other, it rewards portfolios
that maintain favorable return patterns across multiple scenarios. This dual nature is essential in
striking a balance between performance and robustness, especially in contexts where investors aim
to optimize returns without sacrificing structural safety.

The key property B — t-k 2 B ensures that improvements along the preferred direction k do not
compromise feasibility, thereby reflecting a natural economic preference: any portfolio that is deemed
acceptable should remain so if its performance improves uniformly

In the numerical case study, we applied the proposed model to a portfolio composed of three
risky assets evaluated under four discrete market scenarios. Each allocation vector was assessed with
respect to both return and risk, using scenario-specific constraints and a fixed investor tolerance level.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1977.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2025 d0i:10.20944/preprints202505.1977.v1

6 of 10

The direction vector k = (1,1,1,1) was selected to reflect a uniform preference for return improvement
across all scenarios. The scalarizing functional zB*(y), served as a filter to identify admissible
portfolios that align with the desired performance direction while remaining within the tolerated risk
region.

The equivalence established between the scalar optimization problem and the strict and reliable
robust counterparts provides not only theoretical depth but also practical relevance. In particular, the
scalarization approach allows decision-makers to bypass nested constraint formulations and
scenario-by-scenario feasibility checks—features that are often computationally demanding in
classical robust optimization frameworks. Instead, all uncertainty is embedded within the structure
of the functional itself, enabling a compact formulation that is amenable to efficient solution using
standard optimization solvers.

From a modeling perspective, the scalarization framework enhances interpretability. Unlike
traditional approaches based solely on variance minimization or expected utility maximization, this
model can accommodate nonlinear investor preferences, asymmetric risk responses, and feasibility
structures defined across discrete or continuous scenarios. This flexibility is critical in modern
economic environments where decision-making is shaped by both structural constraints (e.g.,
regulatory or liquidity limits) and behavioral dimensions (e.g., loss aversion, return targeting).

In the context of sustainable finance, portfolio strategies must not only deliver
consistent performance but also withstand structural uncertainty across diverse future conditions.
The results obtained in our empirical case study validate the theoretical contributions. Among the
evaluated portfolio strategies, those that maintained consistent returns across all four scenarios while
respecting the investor's risk threshold achieved higher scalarization scores. This confirms the
model’s ability to promote robust yet economically rational decision-making. The scalar framework
thus proves to be a useful tool for analysts and practitioners aiming to construct resilient portfolios
in uncertain and data-constrained environments.

In summary, the scalarization-based robust optimization model presented here succeeds in
bridging theoretical rigor with practical applicability. It offers a coherent decision-making
architecture that unifies multiple robustness concepts, supports computational efficiency, and aligns
naturally with real-world economic reasoning. The promising results of our study open the door to
further applications across a range of financial and economic problems, particularly those involving
scenario-based planning, risk-constrained optimization, and behavioral modeling.

Table 1 presents the simulated returns of three distinct portfolio strategies evaluated across the
four considered market scenarios. The scalarizing functional values are included to highlight each
portfolio's alignment with robust performance criteria.

Table 1. Portfolio Returns and Scalarization Values Simulated Portfolio Returns across Market Scenarios.

Portfolio Scalarizing Functional z"(B,k)(y)
P1 0.75
P2 0.95
P3 1.00

Scalarizing Functional Values

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1977.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org)

| NOT PEER-REVIEWED | Posted: 26 May 2025

d0i:10.20944/preprints202505.1977.v1

7 of 10

Scenario Portfolio P1 Portfolio P2 Portfolio P3
& 0.08 0.06 0.05
& 0.04 0.06 0.05
& 0.03 0.05 0.04
&y -0.01 0.05 0.04

Figure 1 graphically illustrates the portfolio behaviors under the different scenarios. Portfolio P3
exhibits the most stable performance, with minimal deviation across states and a superior
scalarization score, confirming its robustness relative to the other alternatives.

0.08 Portfolio P1
—m— Portfolio P2
—— Portfolio P3
0.06
c 0.04
2
Q
<
0.02
0.00

EI1 E‘z E‘i E“‘

Market Scenario
Figure 1. Portfolio Performance Across Scenarios.

Overall, the results support both the mathematical validity and the practical utility of the
proposed approach. By embedding robustness into a scalar performance index, the framework
equips decision-makers with a transparent and interpretable methodology for optimization under
uncertainty. This
applicability—helps bridge the longstanding gap between abstract modeling and real-world
decision-making

The findings of our study confirm that scalarization via nonlinear functionals is not only a

dual benefit—rigorous theoretical grounding and intuitive economic

mathematically sound technique but also a conceptually accessible one. It offers a unified structure
for incorporating investor preferences, risk constraints, and scenario variability within a single
optimization framework. Theoretical guarantees, combined with the encouraging empirical
performance, suggest that the approach holds significant potential for broader applications—
including portfolio optimization, resource allocation, financial regulation, and multi-scenario
economic planning. In this sense, our framework contributes to sustainability by enabling robust,
data-efficient decisions that remain viable across uncertain future scenarios.

4. Conclusions and Future Work

This paper introduced a unified robust optimization framework based on nonlinear scalarizing
functionals, offering a fresh perspective on decision-making under uncertainty. By integrating
multiple robustness paradigms—specifically strict and reliable robustness—within a single
scalarization-based structure, the proposed approach provides both a rigorous theoretical foundation
and a practical mechanism for modeling economic decisions affected by ambiguity. One of its core
strengths lies in recasting robust formulations into economically meaningful constructs, such as
expected returns and risk thresholds, thus facilitating the interpretation and application of robustness
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in real-world contexts. This interpretability is particularly relevant in sustainability contexts, where
decision-makers must align profitability with resilience and long-term feasibility under uncertainty.

The adoption of a multi-scenario planning perspective enables the translation of uncertainty into
a coherent risk-return profile. This is particularly valuable in financial environments characterized
by volatility and incomplete information. The empirical case study on portfolio optimization
demonstrated the model’s dual advantage: mathematical soundness and alignment with investor
goals. The ability to identify optimal strategies that balance return maximization with risk control
under multiple scenarios confirms the framework’s practical utility and relevance to modern
economic decision-making.

Beyond its immediate applicability, the research also reveals deeper conceptual links between
scalar robust optimization and other established paradigms. In particular, the proposed model shares
structural affinities with multi-objective optimization and scenario-based stochastic programming.
The scalarizing functional serves as a bridge between these approaches, offering a unified language
through which uncertainty, preference, and feasibility can be integrated. This opens promising
avenues for the development of hybrid models that combine robustness with probabilistic or
dynamic elements.

Looking ahead, several directions for future research are worth exploring. First, from a
theoretical standpoint, we intend to derive necessary optimality conditions for scalar robust
optimization problems, especially under differentiability assumptions. Establishing analogues to the
Karush-Kuhn-Tucker conditions within this framework would enhance the analytical
understanding of robust solutions and their sensitivity to changes in model parameters. Second, we
plan to extend the current methodology to address problems involving infinite-dimensional
uncertainty. This includes applications where uncertainty evolves over time, such as in continuous-
time finance or dynamic economic systems, requiring tools from functional analysis and infinite-
dimensional optimization. These future developments could further enhance the framework’s
applicability to sustainability-driven domains, where long-term planning under deep uncertainty is
a critical requirement.

Moreover, a particularly promising extension involves the integration of coherent risk
measures—such as Conditional Value-at-Risk (CVaR)—into the scalarization scheme. Embedding
such measures would further enhance the model’s relevance for financial regulation and risk
management practice, bringing it closer to established tools in the regulatory landscape.

In conclusion, this work presents a robust optimization paradigm that is conceptually rich,
mathematically consistent, and practically oriented. By unifying multiple robustness approaches and
grounding them in a scalar functional framework, we contribute a versatile tool for uncertainty-
aware decision-making. The theoretical insights and empirical validation presented here lay the
foundation for future developments in robust economic modeling, with applications extending from
portfolio management to sustainable resource allocation and policy planning under uncertainty.
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